1. Field of the Invention
The present invention relates generally to the milling of minerals and more specifically to milling by shooting opposed jets of mineral and a carrying medium into one another.
2. Background Information
For hundreds of years, mankind has struggled to develop methods of reducing the size of ore and other minerals. Dozens of different types of mills have been invented to crush or mill minerals. In a hammer mill, for example, a series of “hammers” literally pound the material to crush it to a smaller size. Most often, after milling, the material is sized usually using one or more screens. Material which passes through a screen having the appropriate mesh size is usually sold or used in a manufacturing process, while material which doesn't pass through the appropriate screen is too large and is sent back to the mill.
In recent years, there has been increased interest in milling certain minerals to a very small size, usually referred to as nano sized particles. Generally, a nano particle is less than one micron. One potentially important use of nano particles is the creation of nano composite materials which have many desirable properties including high strength and light weight. One example of a nano composite would be the introduction of nano sized fillers into composite polymer structures. Nano particles are preferred over larger particles for such composites because they have a much greater surface area per weight than larger particles of the same material. The polymer has a much greater surface area to bond with when nano sized particles are used. For example, nano sized mica powder has approximately ten times as much surface area per gram as 75 micron sized mica powder.
Mica has several properties which make it very desirable for use in nano composites. One of the most important of which is the high aspect ratio of the material. That is, mica generally is in the shape of a flake and has a “diameter” which is significantly greater than its thickness. Aspect ratio may be defined as the ratio of the length or mean diameter to the thickness. When used as a filler or “strengthener,” materials having a high aspect ratio are generally preferable to materials having a low aspect ratio. As a rough analogy, concrete with a rebar filler (a high aspect ratio) is much stronger than concrete having an equal weight of steel balls as a filler (a low aspect ratio).
As a consequence of all of the above, more efficient and effective methods of milling minerals and other materials to nano size are in great demand. In addition, there is great interest in a method of milling materials such as mica which have a high aspect ratio to nano size while retaining the high aspect ratio. Under the current state of the art, mica, for instance, may be milled to nano size in an inefficient and expensive process, but when pulverized the mica assumes a shape more like a ball or cube than a flake with a high aspect ratio. A few minerals, such as mica, occur in the form of a plurality of very thin layers. The key to milling mica, for instance, to nano size, is to split the layers apart rather than breaking the layers in two.
One of the most promising possible avenues for successfully milling minerals and similar materials to a nano size involves the use of a jet mill. Jet mills are well known in the prior art as is demonstrated by the patents to Work (U.S. Pat. No. 2,846,250; Aug. 5, 1958) and Muschelknautz et al. (U.S. Pat. No. 3,876,156; Apr. 8, 1975). In Work the material to be pulverized is mixed with a vaporizable liquid such as water to form a slurry. The slurry is separated into two equal streams which pass through a heater to heat the slurry to a temperature and pressure such that part way through the heater a relatively low velocity dispersion of solid particles in a gas if formed. The two streams are then discharged into a “disintegrator chamber” such that the two streams flow through a pair of opposed nozzles and collide with each other. The collision is sufficient to mill the material. In Muschelknautz et al. a gas is forced through a gas propellant pipe and then over and under a stock container such that material in the stock container mixes with the gas and both pass through a jet tube. The material and the gas strike an impact plate where the material is pulverized.
Both the above patents and other known jet mill prior art use gas streams for pulverization. High pressure streams of liquid/material slurries are extremely abrasive and cause great wear on delivery tubes and nozzles.
The instant invention, a hydraulic opposed jet mill, is believed to solve, in a unique and effective manner, a variety of problems relating to the milling of minerals or other materials to very small sizes while maintaining the aspect ratio of the mineral or material.
The ideal hydraulic opposed jet mill should be capable of milling minerals or other materials to nano size. The ideal hydraulic opposed jet mill should also provide a method which greatly reduces abrasion wear on pumps, pipes, nozzles (or venturis) and other elements. The ideal hydraulic opposed jet mill also should insure that particles which have a high aspect ratio before milling should retain a high aspect ratio after milling or even cause the aspect ratio to be higher after milling. The ideal hydraulic opposed jet mill should also be simple, inexpensive, rugged, and easy to use.
The hydraulic jet mill of the instant invention is a process which ends at a pair of opposed jets or venturis through which a mineral/water slurry is forced such that the minerals collide with sufficient energy to pulverize the mineral. In the following example, the mineral, mica, is used; but the process could be used to mill a variety of minerals and other materials. Although much of the following describes milling using opposed jet mills, another embodiment of the invention is one or more jets which are not opposed, but in which the mineral/water slurry strikes an impact or impingement plate rather than a stream from an opposed jet to cause pulverization.
The process begins with the introduction of mica particles which have been reduced to a greater than nano size using some conventional milling process into a incompressible liquid such as water. The slurry is separated into two roughly equal streams and pumped at low pressure and velocity to the forward portions of each of the two jets.
A conventional positive displacement pump pumps water or other incompressible liquid into a water line at low velocity. The water line splits into two self equalizing low velocity lines and the water is introduced into the rearward portion of each of the two jets. The cross sectional area of the rearward portion of the jets is significantly greater than the cross sectional area of the forward portion of the jets. This causes the velocity of the water or other incompressible liquid to increase.
The high velocity water sprays out of the jets. Because the cross sectional area of the jets grows smaller from the rearward portion to the forward portion, the pressure of the water near the forward portion of the jets becomes sufficiently small that the relatively low pressure mineral/water slurry enters the interior of the jet and mixes with the water within the jet. The shape of the opening of the jet tends to cause the mica particles to align such that they leave the opening of the jet edge forward rather than flat side forward. Mica particles collide, edge to edge, with high energy where the jets come together in a pulverization chamber. Because the particles are align edge forward, the collisions tend to cause the layers of mica to split apart as well as being broken in two. This helps to preserve the high aspect ratio of the mica particles. The openings in the forward ends of the jets are not only opposed, but are also coplanar.
The pulverization chamber is of sufficient size that the internal pressure is near ambient pressure. The milled mica slurry is drawn from the pulverization chamber and transported to a conventional centrifuge for de-watering. The majority of the water is separated from the milled mica and recycled to both the low pressure slurry line and the water line. The “cake” or damp milled mica is transported to a conventional dryer and then to a conventional air classifier for sorting of the material by particle size. The separated nano sized particles may be packaged and shipped as desired. The macro sized particles may be packaged and shipped or reintroduced to the slurry stream.
One of the major objects of the hydraulic opposed jet mill of the instant invention is to mill minerals or other materials to nano size.
Another objective of the present invention is to provide a method which greatly reduces abrasion wear on pumps, pipes, nozzles (or venturis) and other elements.
Another objective of the present invention is to insure that particles which have a high aspect ratio before milling should retain a high aspect ratio after milling.
Another objective of the present invention is to provide a milling process which is simple, inexpensive, rugged, and easy to use.
These and other features of the invention will become apparent when taken in consideration with the following detailed description and the drawings.
Referring to the drawings,
Now referring to
Still referring to
Still referring to
Now referring to
Now referring to
In a second embodiment, all elements are the same as described above; but rather than having opposed jets, one or more jets 16 would direct the mineral/water slurry against an impact or impingement plate (not shown) located within said pulverization chamber 18. Extensive testing of the operation and efficiency of the instant invention of this second embodiment have been done. Prior to treatment, ninety percent of the input mica was between 7 and 80 microns with a fairly even distribution of sizes between those limits. In these tests, the mica/water slurry was cycled through the process fifteen times before samples were taken and measurements made. The results of these tests are summarized in the following table.
The average aspect ratio of the mica prior to treatment was 10 to 1. The aspect ratio of the mica after treatment varied from 30 to 1 to 40 to 1.
In a third embodiment, the centrifuge 34 is replaced by a conventional wet filter. With this wet filter the slurry is pressed through the filter and the slurry can be separated into slurry with nano sized particles and slurry with greater than nano sized particles. After separation, both slurries may be shipped and sold as is or the greater than nano sized particles slurry may be recycled through either said water supply tank 2 for nonabrasive materials or at 24 for abrasive materials.
In a fourth embodiment, said orifice 64 is not elongated. Instead, a pair of opposed vanes is affixed to the outer surface of said jet 16 such that the material/liquid slurry is forced into the shape of a thin fan upon exiting said orifice 64.
In the preferred embodiment, all elements are conventional and may be secured from a variety of sources with the exception of said jets 16. Said jets 16 are manufactured from an alloy such as AR steel, Ni-hard steel, or a ceramic which is very resistant to abrasion. All elements which transport slurry are also made from abrasion resistant material.
While preferred embodiments of this invention have been shown and described above, it will be apparent to those skilled in the art that various modifications may be made in these embodiments without departing from the spirit of the present invention.
This application relies for priority upon the Provisional Patent Application filed by George Kruse entitled Hydraulic opposed jet mill, Ser. No. 60/602,029, filed Aug. 16, 2004.
Number | Date | Country | |
---|---|---|---|
60602029 | Aug 2004 | US |