The present invention relates to a hydraulic pressure supply unit comprising a hydraulic fluid reservoir, a hydraulic pump arranged within the reservoir and at least partially immersed in the stored hydraulic fluid, and an electric motor driving the hydraulic pump.
Hydraulic pressure supply units of the above-mentioned type are known in various designs and are used in hydraulic systems of various types. Only by way of example, reference should be made to GB 1329395 A, U.S. Pat. No. 6,524,084 B2, U.S. Pat. No. 6,592,336 B1, U.S. Pat. No. 6,132,184 A, EP 857871 A1, DE 19513286 B4 and DE 29609701 U1.
Depending on the individual application-specific requirements, the hydraulic pressure supply units differ in concept and/or construction. For example, according to U.S. Pat. No. 6,132,184 A, the hydraulic pressure supply unit has a horizontal axis, i.e. the electric motor is located alongside to the hydraulic pump driven by it. The motor shaft passes through a base body on which a space is formed which is bounded by an annular wall and which accommodates the pump arrangement. A motor housing is attached to the base body on one side and a pump housing is attached to the base body on the other side, wherein the pump housing together with the base body also defines and limits a tank volume. The control of the pressure supply unit is accommodated in a space arranged at the top of the pump housing, which is delimited by a saucer-type section of the pump housing and a cover placed on top of it.
EP 857871 A1 also discloses a hydraulic pressure supply unit with a horizontal axis. The electric motor, which is mounted directly on a base body opposite a pump support, is surrounded by a tubular motor housing that is connected to the base body in a sealed manner. This forms the inner wall of a tank which surrounds the electric motor in a ring shape and is externally limited by a tubular shell which is in turn attached to the base body in a sealing manner.
In the hydraulic pressure supply unit according to GB 1329395 A, a housing is divided by a partition wall into an upper and a lower section. The lower section houses a hydraulic unit with a tank, a hydraulic pump located in it and surrounded by the hydraulic fluid and an electric motor mounted on top of the tank. To attach the electric motor and the hydraulic pump to the upper tank wall, a motor support is mounted on top of the upper tank wall and a pump support is attached to the bottom of the upper tank wall. The vertically oriented motor shaft passes through the motor support, the upper tank wall and the pump support. The tank is smaller than the lower section of the housing, so that cooling air can circulate around the tank under the influence of a fan located in the upper section of the housing through openings provided in the partition wall.
Another hydraulic pressure supply unit with vertical axis, namely with an electric motor arranged above the pump, is known from EP 2241753 A1. A tubular base housing closed at the top and bottom by a cover is divided into an upper and a lower section by a heat transfer ring molded to the inside of the base housing and a support plate mounted to the heat transfer ring. The electric motor is accommodated in the upper section, namely it is inserted into a stator insertion seat constructed on the heat transfer ring. The lower section comprises an oil reservoir, which also houses the hydraulic pump mounted on the bottom of the support plate.
The individual application-specific requirements already mentioned above, which influence the concept and/or construction of the hydraulic pressure supply unit, include, for example, the power requirement, the available space and the installation situation in general including accessibility for maintenance purposes and possibilities for heat dissipation, the typical usage profile with regard to continuous or intermittent operation. Additional practical aspects are energy efficiency, reliability, manufacturing costs, etc.
The present invention has set itself the task of providing a hydraulic pressure supply unit of the type mentioned at the beginning, which is better suited than previously known pressure supply units for use as a hydraulic aggregate for hydraulic steering drives of watercraft and which meets the existing practical requirements in an outstanding manner.
The present task is solved by a hydraulic pressure supply unit corresponding to the type specified at the beginning, which is further characterized by the following combination of mutually interacting features:
The motor concept in accordance with the invention has an outstanding influence in particular on the possibilities of optimizing the heat balance even under unfavorable conditions, such as those encountered in the application environment of particular interest here, while at the same time favoring the possibilities of integrating the hydraulic pressure supply unit into this very application environment. This is because the hydraulic fluid is used for effective dissipation of the electric motor's heat loss. However, this does not take place in accordance with the widely used concept (cf. for example DE 29609701 U1 and DE 19513286 B4), in which the electric motor is designed as an oil-immersed motor, i.e. cooled directly by the hydraulic fluid. Rather, in the hydraulic pressure supply unit according to the invention, in which the hydraulic pump is arranged above the electric motor driving it, heat is dissipated from the electric motor arranged in a dry motor compartment via a partition base, below which the electric motor is arranged and to which it is coupled in a heat-conducting manner, into the hydraulic fluid, which is stored in the reservoir and wetting the partition base on its upper side. The hydraulic fluid present in the reservoir thus acts as a kind of cooling medium for the partition base. As a result of the construction of the pressure supply unit according to the invention, a kind of natural convection is established in the hydraulic fluid stored in the reservoir; this transports the heat to the exposed outer wall of the reservoir, wherein—due to the comparatively large possible heat transfer surfaces—high efficiency can be achieved and local temperature peaks can be effectively avoided.
According to the invention, the dry motor compartment provided—below the partition base—for the accommodation of the electric motor is further used for the protected (from splash water etc.) accommodation of other functionally relevant electrical components, such as electronic assemblies. This is an inestimable advantage for the reliability of the overall system, especially since in addition to the protection of the electrical components accommodated in the motor compartment against moisture and other environmental influences, a particularly effective shielding is possible in this way, which is beneficial to the EMC compatibility of the hydraulic pressure supply unit. The achievable thermotechnical advantages are particularly pronounced when accommodating such additional electrical components in the motor compartment, which also generate a considerable amount of heat loss. In particular, they can be coupled in a heat-conducting manner with the partition base and/or a wall portion laterally delimiting the motor compartment, the latter having cooling fins on its outer surface in a particularly preferred embodiment.
In accordance with a first preferred embodiment of the invention, the partition base is connected in a heat-conducting manner to a housing part which circumferentially delimits the hydraulic fluid reservoir. It is particularly advantageous if the said housing part has cooling fins on its outside. This ensures reliable redundant dissipation of the heat loss generated in the electric motor, namely on the one hand from the partition base via the hydraulic fluid into the housing part and on the other hand via direct heat transfer from the partition base into the housing part, wherein the cooling fins preferably provided on the housing part ensure efficient and reliable dissipation of the heat loss generated in the electric motor to the environment.
For certain applications, it may be advantageous if the aforementioned housing part, in a further preferred embodiment, extends downwards beyond the partition base and also circumferentially delimits the motor compartment, wherein the partition base is inserted inside the housing part. In this case, it is not necessary to join two separate housing parts which delimit the reservoir on the one hand and the motor compartment on the other hand; and there may also be thermal advantages in that there is a favorable heat flow through the continuous housing part which extends both upwards and downwards in relation to the partition base, with the additional possibility of cooling fins extending continuously along the level of the hydraulic fluid reservoir and the motor compartment.
For other applications, on the other hand, a different concept of the constructive implementation of the present invention offers decisive advantages, in which the partition base is constructed in the manner of a carrier plate, on which not only—on different sides—the hydraulic pump and the electric motor are attached, but in which also—by means of corresponding built-in elements (channels, lines, throttles, valves, filters, etc.)—hydraulic functionalities are integrated. In this case, preferably, a first housing part, which laterally delimits the hydraulic fluid reservoir, is attached to the top of the carrier plate partition base and a separate second housing part, which laterally delimits the motor compartment, is attached to the bottom. Between the two housing parts, the carrier plate partition base is accessible at the circumference. This allows in particular the electrical and hydraulic interfaces of the pressure supply unit, i.e. the electrical power and control connections as well as the hydraulic connections, to be located on the side of the partition base. In this way, openings in the housing parts can be avoided. For favorable conditions with regard to heat transfer and heat dissipation, the carrier plate partition base can be made of aluminum in particular.
In a further preferred embodiment, the mentioned housing part (resp. each of the mentioned housing parts) has a cylindrical—which does not necessarily mean circular-cylindrical—basic shape. In particular, it (or each of them) can be formed by a section of a profile tube—for example, manufactured as an extruded profile made of aluminum. In the sense described above, the housing part may form a continuous housing shell. At the ends, the one continuous housing part or both separate housing parts can be closed by two covers. At least one of these covers can be configured as a mounting plate and have at least one fastening portion extending radially beyond the housing shell, in particular a flange-like fastening portion.
Very simple and compactly constructed units can be realized, according to another preferred embodiment of the invention, by aligning the motor axis and the pump axis, wherein the electric motor and the hydraulic pump can be directly coupled to each other, in particular via a shaft arrangement penetrating the partition base.
In particular in such embodiments in which the partition base as a whole is not constructed in the form of a carrier plate (see above), a separate socket with an integrated line and valve arrangement may be connected to the partition base, on which the hydraulic pump is placed, wherein the motor-pump-shaft arrangement also penetrates that socket. A projection of the socket or the socket as such may pass through an opening in the partition base. In particular, the electric motor can have a flange connected to the front side of the socket or the socket projection, wherein it is particularly advantageous if that flange is fixed to the underside of the partition base with a protrusion that protrudes beyond the socket projection. This allows direct mechanical coupling of the electric motor—via its flange—to the partition base, which favors heat dissipation. If the opening of the partition base is substantially larger than the socket projection, so that a gap (especially an annular one) remains, the gap is flooded with hydraulic fluid. The hydraulic fluid thus cools the socket projection on its outside immediately adjacent to its connection to the electric motor, which facilitates efficient heat dissipation with as small local temperature differences within the pressure supply unit as possible. In a further preferred embodiment, a side wall of the socket with a pressure outlet can face a wall that delimits the hydraulic fluid reservoir, wherein the pressure outlet of the socket communicates with a pressure connection provided on the reservoir wall.
In the following, the present invention is explained in more detail by means of two preferred embodiments illustrated in the drawing. Therein it is shown
The hydraulic pressure supply unit shown in
The reservoir 1 is delimited laterally by a housing part 4, downward by a partition base 5 inserted into the housing part 4 and upward by a fitted upper cover 6. The partition base 5 is connected to the housing part 4 in a heat-conducting and fluid-tight manner. The housing part 4 has an oval-cylindrical basic shape. It is formed of a section of extruded aluminum profile tube. It extends downwards beyond the partition base 5 and delimits on the circumference a separate motor compartment 7 arranged below the partition base 5, which in turn is closed downwards by a lower cover 8, which is configured as a mounting plate 9 and has a fastening portion 10 extending radially beyond the profile tube. In this way, the housing part 4 forms a continuous housing shell 11. Cooling fins 12 provided on the outside of the housing shell 11 extend continuously along the level of the reservoir 1 for hydraulic fluid and the motor compartment 7.
The motor compartment 7 is dry and is not fluidically connected to the reservoir 1 for hydraulic fluid. The electric motor 3 driving the hydraulic pump 2 is accommodated in it, below the hydraulic pump 2. The electric motor 3 is coupled to the partition base 5 in a heat-conducting manner. For this purpose, it is attached to the partition base 5 by means of a flange 13, which lies flat against the underside 14 of the partition base 5 along an annular surface.
Above the electric motor 3, the partition base 5 has an opening 15. Through this opening 15 passes with a corresponding projection 16 a socket 17, in which a line and valve arrangement is accommodated and on which the hydraulic pump 2 is mounted. The socket 17 is connected to the electric motor 3 at the front side of its flange 13. The positioning of the electric motor 3 and the hydraulic pump 2 is such that the motor axis and pump axis are aligned with each other. The socket 17 has an opening through which the electric motor 3 and the hydraulic pump 2 are directly coupled by means of an appropriate shaft arrangement.
The two fluid connections 18, 19 of the pressure supply unit are located on the housing part 4 at a level above the partition base 5. One of the two connections, namely the “tank connection” 18, opens directly into the reservoir 1, wherein the backflowing hydraulic fluid is fed into the reservoir 1 at a position remote from the suction point of the hydraulic pump 2 via a pipe arrangement 20 in order to support circulation of the hydraulic fluid in the reservoir 1. A side wall of the socket 17 having the pressure outlet is directly opposite the housing part 4, so that the pressure connection 19 of the pressure supply unit communicates directly with the pressure outlet of the socket 17. (However, in the case of reversible pressure supply units, both connections lead to the line and valve arrangement accommodated in the socket.)
In addition to the electric motor 3, motor compartment 7 accommodates further electrical components K, in particular a transformer-, switching- and control-group 21, which does not serve the operation of the pressure supply unit, and which is coupled in a heat-conducting manner to a wall portion that laterally delimits motor compartment 7. The cooling fins 12 arranged on the outside of the housing shell 11 extend (also) over the mounting point of the transformer-, switching- and control-group 21. A media-tight bushing 23 is provided in the housing shell 11 for the electrical supply of the electric motor 3 of the pressure supply unit and the transformer-, switching- and control-group 21 as well as for control and signal lines 22.
The second preferred embodiment of a hydraulic pressure supply unit according to the present invention shown in
A first housing part 25, which laterally delimits the hydraulic fluid reservoir 1, is attached to the top of the carrier plate partition base 5′ and a separate second housing part 26, which laterally delimits the motor compartment 7, is attached to the bottom. Between the two housing parts 25, 26 the carrier plate partition base 5′ is accessible at the circumference; on the circumferential surface 27 both hydraulic connections 18, 19 and—illustrated by line 22—the electrical supply and control connections are provided.
As illustrated, the unit consisting of carrier plate partition base 5′, upper and lower housing parts 25, 26 and upper and lower cover 6, 8 can be held together, for example, via external tie rods 28.
Two further special features of the pressure supply unit according to the second embodiment can be seen in
Furthermore,
In addition, the pressure supply unit according to the second embodiment is understandable for the skilled person from the above explanations of the embodiment according to
Number | Date | Country | Kind |
---|---|---|---|
102017127675.0 | Nov 2017 | DE | national |
This application is a divisional of U.S. application Ser. No. 16/765,426, filed May 19, 2020, now U.S. Pat. No. 11,530,692 issued Dec. 20, 2022 which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2675759 | Yarger | Apr 1954 | A |
3515167 | Svenson | Jun 1970 | A |
5181837 | Niemiec | Jan 1993 | A |
5360322 | Henein | Nov 1994 | A |
5953913 | Schroder | Sep 1999 | A |
5988989 | Hobson | Nov 1999 | A |
6132184 | Robertson | Oct 2000 | A |
6158983 | Harpole | Dec 2000 | A |
6183213 | Robertson | Feb 2001 | B1 |
6287090 | Hamasaki | Sep 2001 | B1 |
6322329 | Vera | Nov 2001 | B1 |
6506029 | Reichenmiller | Jan 2003 | B1 |
6524084 | Neumair | Feb 2003 | B2 |
6592336 | Hirano | Jul 2003 | B1 |
7182583 | Gandrud | Feb 2007 | B2 |
7488160 | Jordan | Feb 2009 | B2 |
7488162 | Jordan | Feb 2009 | B2 |
7799074 | Grimme | Sep 2010 | B2 |
8133037 | Fischer | Mar 2012 | B2 |
8591203 | Yoshihara | Nov 2013 | B2 |
20020102168 | Gegalski | Aug 2002 | A1 |
20060090639 | Dong | May 2006 | A1 |
20070274848 | Arbogast | Nov 2007 | A1 |
20150267699 | Pippes | Sep 2015 | A1 |
20160161133 | Oh | Jun 2016 | A1 |
20190277294 | Hoshiko | Sep 2019 | A1 |
Number | Date | Country |
---|---|---|
19513286 | Oct 1995 | DE |
29609701 | Aug 1996 | DE |
29609701 | Aug 1996 | DE |
19959022 | Jun 2001 | DE |
202005005620 | Sep 2006 | DE |
19513286 | Oct 2006 | DE |
0857871 | Aug 1998 | EP |
0857871 | Aug 1998 | EP |
1731762 | Dec 2006 | EP |
2241753 | Oct 2010 | EP |
2241753 | Oct 2010 | EP |
2480865 | Oct 1981 | FR |
1329395 | Sep 1973 | GB |
Number | Date | Country | |
---|---|---|---|
20230128506 A1 | Apr 2023 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16765426 | US | |
Child | 18054184 | US |