The present invention relates generally to hydraulic pumps. More particularly, the present invention relates to a hydraulic pump configured to use the rotating shaft of a prime mover configured to operate the pump to also generate electric power.
Hydraulic pumps are often operated at construction or other work sites that do not always have access to electric power. The hydraulic pumps may be operated by a variety of different prime movers. For example, gasoline motors, diesel motors, pneumatic motors, natural gas motors, propane powered motors or any other type of motor may be used to drive a hydraulic pump. In many instances, the prime mover may provide a rotating shaft to the hydraulic pump. The hydraulic pump then has a shaft that connects to the output shaft of the prime mover in order to operate the hydraulic pump.
In some instances, it may be useful to have some electric power available in addition to the mechanical shaft power provided by the prime mover. For example, certain hydraulic valves may be electrically operated or controlled by electronic controller that runs on electricity. In other instances various valves a be moved by electric actuators. In still other instances, other devices may run on electricity forming a desire for electric power to be generated by the energy or rotating shaft of the prime mover. In some instances, generators may not be used to generate electric power because of arcing or sparks that may occur within the generator. For example, in mines where flammable gases may accumulate such generators should not be used. Accordingly, it is desirable to provide a method and apparatus that can use the rotating shaft provided by a prime mover to run both a hydraulic pump and generate electric power.
The foregoing needs are met, to a great extent, by the present invention, wherein in one aspect an apparatus is provided that in some embodiments uses a rotating shaft powered by a prime mover to run both a hydraulic pump and generate electricity.
In accordance with one embodiment of the present invention, a hydraulic pump is provided. The pump includes: a pump shaft adapter configured to rotate and operate the hydraulic pump thereby; a magneto operatively connected to the pump shaft adapter; conductors extending from the magneto connecting the magneto to a power outlet to provide electricity generated by the magneto to the power outlet; and a hydraulic pump housing enclosing both the hydraulic pump and the magneto.
In accordance with another embodiment of the present invention, a method of generating electricity is provided. The method includes: adapting a pump shaft to include an attaching structure; attaching a magneto to the attaching structure; and configuring the magneto to generate electricity when the pump shaft rotates.
In accordance with yet another embodiment of the present invention, a hydraulic pump is provided. The pump may include: a means for transmitting mechanical power configured to rotate and operate the hydraulic pump thereby; a means for generating electrical power operatively connected to the means for transmitting mechanical power; means for transmitting electrical power extending from the means for generating electrical power to a power outlet to provide electricity generated by the means for generating electrical power to the power outlet; and a hydraulic pump housing enclosing both the hydraulic pump and the means for generating electrical power.
There has thus been outlined, rather broadly, certain embodiments of the invention in order that the detailed description thereof herein may be better understood, and in order that the present contribution to the art may be better appreciated. There are, of course, additional embodiments of the invention that will be described below and which will form the subject matter of the claims appended hereto.
In this respect, before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of embodiments in addition to those described and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein, as well as the abstract, are for the purpose of description and should not be regarded as limiting.
As such, those skilled in the art will appreciate that the conception upon which this disclosure is based may readily be utilized as a basis for the designing of other structures, methods and systems for carrying out the several purposes of the present invention. It is important, therefore, that the claims be regarded as including such equivalent constructions insofar as they do not depart from the spirit and scope of the present invention.
The various embodiments in accordance with the present disclosure will now be described with reference to the drawing figures, in which like reference numerals refer to like parts throughout. An embodiment in accordance with the present disclosure provides a motorized hydraulic pump. The motorized hydraulic pump is driven by a prime mover. The prime mover provides energy to run the hydraulic pump in the form of a rotating shaft. In addition to performing pumping operations, the hydraulic pump is capable of generating electricity. Electricity may be used for a variety of purposes including operating hydraulic valves that may receive pressurized hydraulic fluid from the hydraulic pump.
In some embodiments, the flat end portion 30 is configured to engage with components of the hydraulic pump 18 to drive the hydraulic pump 18 (See
The adapted pump shaft 24 may be particularly adapted in order to both drive the hydraulic pump 18 and the rotor 21. In this regard, the adapted pump shaft 24 may include attaching structure such as, but not limited to, a flange 36 having connecting holes 38. The flange 36 and connecting holes 38 may allow the adapted pump shaft 24 to attach to the rotor 21 which will be described in additional detail below. The adapted pump shaft 24 may also define an opening 40. In some embodiments, the opening 40 may be encompassed about by a raised lip portion 41. Furthermore, in some embodiments, the opening 40 may also include a keyway 42 which may be dimensioned to engage with a key located on the drive shaft 22 in order to provide a positive rotational connection between the drive shaft 22 coming from the prime mover 12 and the adapted pump shaft 24.
The rotor 21 has a receiving hole 48. In some embodiments, the receiving hole 48 has been modified or formed so that it is dimensioned to permit the raised lip portion 41 of the adapted pump shaft 24 to extend into the rotor 21. In some embodiments, the receiving hole 48 is modified from a tapered shape common to off-the-shelf parts and is squared off as shown. The adapted pump shaft 24 sits upon a bearing 51 and extends into the hydraulic pump 18.
As shown in
In a nonlimiting example embodiment, the magneto rotor 21 and stator assembly 26 may be obtained from Universal Parts 7300 Bryan Dairy Road, Seminole, Fla., 33777. The rotor 21 is identified by part number 164-191 and the stator assembly 26 is identified by part number 164-289.
In order to make the power generated by the magneto 20 more suitable for use the electricity may first be run through the rectifier 50. In some instances, the rectifier may be one provided by FALGOR having part number FB2506 or a rectifier 21 provided by TAITRON (TCI) having part number GBPC25-06. It should be understood that these rectifiers 50 are meant to be examples that are not limiting.
As shown in
In some embodiments, the resistors 58 are wirewound resistors capable of industrial power. They are aluminum housed and chassis mounted. A nonlimiting example resistor 58 that may be used is one provided by Vishay Dale identified by global part number RH050.
The signal processing described above with respect to the power generation assembly 14 is not meant to be limiting but rather an example description. One of ordinary skill in the art after reviewing this disclosure will understand how to configure various components to achieve a desired level of signal processing. It should be understood that a variety of types of signal processing of the power generated by the magneto 20 may be accomplished in accordance with the disclosure.
The many features and advantages of the invention are apparent from the detailed specification, and thus, it is intended by the appended claims to cover all such features and advantages of the invention which fall within the true spirit and scope of the invention. Further, since numerous modifications and variations will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation illustrated and described, and accordingly, all suitable modifications and equivalents may be resorted to, falling within the scope of the invention.
This application claims the benefit of a provisional U.S. patent application entitled HYDRAULIC PUMP WITH ELECTRIC GENERATOR, having a Ser. No. 62/174,242, filed Jun. 11, 2015. The disclosure of this application is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62174242 | Jun 2015 | US |