Hydraulic rotating axial piston engine

Information

  • Patent Grant
  • 6358025
  • Patent Number
    6,358,025
  • Date Filed
    Friday, August 4, 2000
    24 years ago
  • Date Issued
    Tuesday, March 19, 2002
    22 years ago
Abstract
A hydraulic rotating axial piston engine having a housing, enclosing a cylinder barrel journaled in the housing for rotation around a barrel axis. The housing also has a number of circumferentially arranged cylinders with a number of pistons reciprocating between two defined end positions. The pistons cooperate with an angled plate in order to obtain the reciprocating movement. The axial piston engine has an input/output shaft, and the cylinder barrel has channels connecting each cylinder to port(s) in the cylinder barrel. The ports alternatively act as inlet and outlet ports. The housing has an inlet and outlet channel, each having a kidney-shaped port, facing towards the inlet and outlet ports of the cylinder barrel. The kidney-shaped ports communicate with a number of the ports at the barrel. The cylinder barrel ports extend in both directions outside the cylinders in the two circumferential directions of the cylinder barrel. The channels open to the cylinders along the peripheral wall of each cylinder, and the opening to the cylinders has substantially the same area as the area of the ports of the barrel.
Description




BACKGROUND OF THE INVENTION




A hydraulic piston engine is known from European Patent Reference EP-A1-0 567 805, having a number of axial cylinders, which are circumferentially arranged in a rotatable cylinder barrel. Each of the cylinders is provided with a channel, which alternatingly communicates with an inlet port or an outlet port in a housing. From this reference it is apparent that the dimension of the channel in the radial direction of the cylinder barrel is considerably less than the diameter of the cylinder assuming that the channel has a circular cross sectional shape. The cross sectional area of the channel is also considerably less than the cross sectional area of the corresponding cylinder. The result is that the maximum flow capacity of the cylinders and the total capacity of the engine is not fully utilized.




SUMMARY OF THE INVENTION




The object of the present invention is to provide a hydraulic rotating axial piston engine of the above discussed type having maximum flow capacity for a certain volume of the cylinders.




The present object is obtained by means of an engine according to the present invention, where the channels open to the cylinders along the peripheral wall of each cylinder. The opening to the cylinders has substantially the same area as the area of the ports of the barrel and extends completely outside the nearest end position of the piston in each cylinder.




The hydraulic rotating axial piston engine of the present invention has a housing enclosing a cylinder barrel journalled in the housing for rotation around a barrel axis, and a number of circumferentially arranged cylinders in the barrel with a number of pistons reciprocating between two defined end positions. The pistons cooperate with an angled plate in order to obtain the reciprocating movement. The axial piston engine has an input/output shaft. The cylinder barrel has channels connecting each cylinder to ports in the cylinder barrel, the ports alternatively acting as inlet and outlet ports. The housing has at least one inlet and outlet channel, each having a kidney shaped port, facing towards the inlet and outlet ports of the cylinder barrel. The kidney shaped ports communicate with a number of the ports at the barrel. At least a number of the cylinder barrel ports extend in both directions outside the cylinders in the two circumferential directions of the cylinder barrel.




Further features of the present invention will become apparent to those skilled in the art upon reviewing the following specification and attached drawings.











BRIEF DESCRIPTION OF DRAWINGS





FIG. 1

shows an axial section of a pump according to the present invention, according to a first embodiment;





FIG. 2

is a plan view of a connecting part in the first embodiment of the pump as seen separately from the inside;





FIG. 3

is an end view of a housing part of the pump according to

FIG. 1

;





FIG. 4

is an end view of the connecting part in a second embodiment of the pump;





FIG. 5

is a cross sectional view of the pump along the lines V—V in

FIG. 4

;





FIG. 6

is a plan view of the connecting part in the second embodiment of the pump as seen separately from the inside;





FIG. 7

is an axial section of a cylinder barrel of the pump according to the second embodiment;





FIG. 8

is an end view of the cylinder barrel as seen from the connecting part;





FIG. 9

is an end view of the cylinder barrel as seen from the opposite end; and





FIG. 10

is a partial section of the cylinder barrel along the lines X—X according to FIG.


8


.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT




The hydraulic rotating axial piston engine according to a first embodiment of the present invention is shown in

FIGS. 1-3

as an axial piston pump, indicated generally at


1


. The pump has a housing, indicated generally at


2


, which is comprised by at least two parts. Three parts are shown, namely a housing part


3


and a connecting part


4


, having connecting openings, namely an inlet opening


5


and an outlet opening


6


for connecting input and output conduits for hydraulic fluid to and from the pump respectively. A third part


7


of the housing is a support part for the input shaft


8


which is provided to be connected with a drive motor, not shown.




In

FIG. 1

the general parts of the pump are shown. The pump is of a so-called “bent axis” type, having a first rotational axis


9


, forming a rotational axis for the input shaft


8


, and a second rotational axis


10


inclined relative to the first axis by an angle of for example 40°. The second rotational axis is an axis for a cylinder barrel


11


which is rotatably journalled in the housing. The cylinder barrel


11


has a number of axially extending pistons


12


, movable axially, i.e., substantially in parallel with the axis


10


in a reciprocating movement in a corresponding number of cylinders


13


. Cylinders


13


also extend axially with the axis


10


, and are circumferentially equally spaced along a circle line


14


(see FIG.


3


). Each cylinder


13


has a fluid passage or channel


15


with a port


16


in the planar end surface


17


of the cylinder barrel


11


. Each opening


16


has its largest length along the peripheral circle line


14


, and is kidney-shaped.




From

FIG. 1

it is further apparent that each piston


12


has a piston rod


18


with a spherical head


19


. The spherical heads are supported in spherical bearing surfaces, forming recesses


20


in a swash plate


21


, which forms an integral part of the input shaft


8


. The spherical recesses


20


are rotatable around a radial plane which is angled relative to the radial plane of the cylinder barrel


11


. This results in the reciprocating movement of the pistons


12


and the pumping action according to a prior known principle, in order to create vacuum, i.e., suction in the inlet opening


5


and pressure in the outlet opening


6


(see for example U.S. Pat. No. 5,176,066).




Synchronizing means are arranged in order to synchronize the rotational movements of the cylinder barrel with the rotation of the swash plate


21


. In the shown example, the synchronizing means is made in the form of tooth gear formed by a tooth wheel rim


22


on the cylinder barrel cooperating with a tooth wheel


23


of the input shaft


8


. A support pin


24


supports the cylinder barrel


11


along the axis


10


. The support pin


24


cooperates with a shaft


25


which forms the rotational axis


10


and projects through a bore


26


of the cylinder barrel. The shaft


25


is supported in a bore


26


′ of the connecting piece


4


of the housing.





FIG. 2

shows the connecting part


4


of the housing separately and from the inside. The connecting part


4


has on its inside a substantially planar, circular surface


27


which in the mounted position faces the planar surface


17


of the cylinder barrel


11


. The two planar surfaces


17


,


27


are arranged to contact each other with a sealing fit. On its inside the connecting part


4


is provided with one inlet port


28


and one outlet port


29


, each of which are kidney-shaped. The inlet port


28


communicates through a channel


5


′ (

FIG. 1

) with the inlet opening


5


, and the inner outlet port


29


communicates through a separate channel


6


′ with the outlet opening


6


on the outside of the connecting part


4


.




The inlet and outlet ports


28


,


29


extend along a peripheral circle line


30


which has a corresponding radius as the circle line


14


of the openings


16


of the cylinder barrel


11


. The inlet and outlet openings


28


,


29


extend on each half of the circle line


30


, separated by a main plane


31


extending through the connecting part


4


. The inlet and outlet port


28


,


29


are further divided by a second main plane


32


extending 90° relative to the first main plane


31


. The inlet and outlet ports


28


,


29


further extend along the circle line


30


along a predetermined peripheral angle, which in the shown example is somewhat larger for the inlet opening


5


than for the outlet opening


6


, and are arranged so that simultaneously more than one cylinder port


16


communicates with the inlet port


28


and the outlet port


29


, respectively. The inlet and outlet ports


28


,


29


can be provided with slit extensions as a t


33


, the ends of which determine the total angular extension of the inlet and outlet ports.




In the above first embodiment there has been described a so-called single pump, serving a single hydraulic system by means of one single outlet pressure opening


6


. Therefore there is one single fluid passage and one single inner port


29


. Consequently the cylinder barrel has one single set of cylinders circumferentially positioned along one single peripheral circle line


14


.




In a second embodiment there is shown a so-called double pump, serving two independent hydraulic systems. The second embodiment will now be described with reference particularly to

FIGS. 4-9

. From the end view of the connecting part


104


it is apparent that in the double pump there are two outlet pressure openings


106




a


,


106




b


. The inlet suction opening


105


is dimensioned to receive sufficient flow of fluid in order to serve the two outlet openings and the corresponding hydraulic systems. By means of the section in

FIG. 5

the extension of the fluid passages


105


′ and


106





a


are shown as an example, as well as the inlet port


128


and one of the outlet ports


129




a


. Also the planar surface


127


is shown facing the end surface of the cylinder barrel.




From

FIG. 6

it is apparent that the inlet port


128


has considerable radial extension contrary to the outlet ports


129




a


,


129




b


, and all extend substantially concentrically relative to the second rotational axis


110


, which is the axis for the cylinder barrel


111


, as shown in

FIGS. 7-9

.




From

FIGS. 7-9

it is apparent that in the second embodiment there are two sets of axial cylinders


113




a


,


113




b


which are circumferentially arranged around the rotational axis


110


. An inner set of cylinders


113




a


are equally spaced along an inner circle line


114




a


; and an outer set of cylinders


113




b


are equally spaced along an outer circle line


114




b.






Especially when having two circumferentially arranged sets of cylinders


113




a


,


113




b


the radial space in the planar end surface


117


facing the planar inner surface


127


of the connecting piece is very limited, as the radially inner set of cylinders has to communicate with the radially inner pressure port


129




a


, and the radially outer set of cylinders


113




b


has to communicate with the radially outer pressure port


29




b


. However, the cylinder ports


11




6




a


,


11




6




b


are highly extended along their circle lines


114




a


,


114




b


respectively. This is especially expressed in the outer set of cylinder ports


116




b


. It is particularly important that the cross sectional area of the cylinder barrel ports


116




a


,


116




b


is as large as possible and not too much smaller than the cross sectional area of the cylinders. It is also important that the cylinder barrel ports


116




a


,


116




b


do not reduce the flow capacity of the pump as a whole.




However, it is not only the cross sectional area of the cylinder barrel ports


116




a


,


116




b


in the cylinder barrel end surface that is important for the flow capacity. From the sectional view of

FIG. 10

, the section through one of the radially outer cylinder port channels


115




b


is shown. In the radially outer cylinder port channels, it is especially visible that according to the present invention the channel


115




b


has an inner opening


150


to the cylinder which extends along the peripheral wall


151


of the cylinder, and has substantially the same area as the area of the ports of the barrel. Furthermore, the cross sectional area of each channel


115




b


is nowhere less than the area of the opening


150


. Furthermore, as seen best in

FIG. 7

, the opening


150


has a contour line which is U-shaped. It is apparent from

FIG. 10

that the opposite walls


152


at the end portions


153


,


154


converge in direction towards the inner opening


150


of the channel


115




b


. Walls


152


pass near the opening


150


over to a wall portion


155


which extends to the planar end surface


117


of the cylinder barrel


111


. The transition between wall


152


and the wall portion


155


forms an angle exceeding 90 degrees.




By means of the shape and the arrangement of the cylinder port channels


115




b


, the channels will not form a limitation of the flow capacity of the pump which substantially will be determined by the volume of the cylinders


113




a


,


113




b.






The extension of the cylinder barrel ports


116




a


,


116




b


along their peripheral circle lines


114




a


,


114




b


, and also the corresponding peripheral extension of the suction port


128


and pressure ports


129




a


,


129




b


, determines the time sequence and operation of the cylinder barrel ports as alternatingly suction ports and pressure ports. The ports are in syncronization with the angular positions in the end positions, i.e., for upper dead point (UPD) and lower dead point (LDP) for the pistons in a principally prior known manner. Further, the opening extends along the peripheral wall of the cylinders along at least the outer circle line


114




b


completely outside the nearest end position of the piston in the cylinder. However, in the example as shown in

FIGS. 8 and 9

, the openings extend along the peripheral wall of the cylinders along both circle lines


114




a


,


114




b.






The design of the cylinder barrel channels has been described and shown with reference to the second embodiment with the double pump. However, the same principle is applied to the single pump in order to achieve a maximum of capacity for a certain cylinder volume. The detailed shape of the channel can be modified without changing the principle of the present invention. For example, the peripheral extension as described and shown can be excluded for the openings of the cylinders along the inner circle line


116




a.





Claims
  • 1. A hydraulic rotating axial piston engine, comprising:a housing enclosing a cylinder barrel journalled in said housing for rotation around a barrel axis, and having a number of circumferentially arranged cylinders with a number of pistons reciprocating between two defined end positions, said pistons cooperating with an angled plate in order to obtain said reciprocating movement, said axial piston engine having an input/output shaft, said cylinder barrel having channels connecting each cylinder to ports in the cylinder barrel, said ports alternatively acting as inlet and outlet ports, said housing having at least one inlet and outlet channel, each having a kidney shaped port facing towards said inlet and outlet ports of said cylinder barrel, said kidney shaped ports communicating with a number of said ports of said barrel, at least one of said cylinder barrel ports extending in both directions outside the cylinders in the two circumferential directions of the cylinder barrel, wherein said channels have an opening to said cylinders along a peripheral wall of each cylinder, said opening to said cylinders having substantially the same area as the area of the ports of the barrel and extending completely outside the nearest end position of said piston in each cylinder.
  • 2. A hydraulic rotating axial piston engine according to claim 1, wherein said engine is a pump, driven by means of a motor, applying a torque to the input shaft.
  • 3. A hydraulic rotating axial piston engine according to claim 2, wherein said input shaft is angled relative to the axis of the cylinder barrel rotatable with said angled plate.
  • 4. A hydraulic rotating axial piston engine according to claim 3, wherein said cylinder barrel ports are circumferentially arranged along two concentric circle lines and communicate with two separate kidney shaped ports in the housing.
  • 5. A hydraulic rotating axial piston engine according to claim 1, wherein said opening has a U-shaped contour line.
Priority Claims (1)
Number Date Country Kind
9800412 Feb 1998 SE
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of copending International Application No. PCT/SE99/00187, which designated the United States, and claims priority to Swedish Patent Application 9800412-0, filed Feb. 13, 1998.

US Referenced Citations (13)
Number Name Date Kind
3793924 Eickmann Feb 1974 A
3834281 Heyl et al. Sep 1974 A
4223594 Gherner Sep 1980 A
4920860 Alm et al. May 1990 A
4934253 Berthold et al. Jun 1990 A
5176066 Kanamaru et al. Jan 1993 A
5253983 Suzuki et al. Oct 1993 A
5358388 Schutten et al. Oct 1994 A
5593285 Watts Jan 1997 A
5603609 Kadlicko Feb 1997 A
5636561 Pecorari Jun 1997 A
6092457 Inoue et al. Jul 2000 A
6287086 Steen Sep 2001 B1
Foreign Referenced Citations (4)
Number Date Country
592 812 Nov 1977 CH
0 567 805 Apr 1993 EP
2582738 May 1985 FR
431 897 May 1984 SE
Non-Patent Literature Citations (3)
Entry
Copy of the International Application Published Under the PCT in Case No. PCT/SE98/02218.
Copy of the International Application Published Under the PCT in Case No. PCT/SE99/00186.
Copy of the International Application Published Under the PCT in Case No. PCT/SE99/00187.
Continuations (1)
Number Date Country
Parent PCT/SE99/00187 Feb 1998 US
Child 09/633022 US