The present disclosure relates to a hydraulic seal having a dynamic clearance for use with a fuel injector. More particularly, the disclosure relates to a hydraulic seal for a fuel injector used in a hydraulically intensified fuel injection system.
Fuel systems for modern diesel engines operate at ever increasing fuel injection pressures. One way to achieve these high fuel injection pressures is to utilize a hydraulically intensified fuel injection system. Such a system may utilize a high-pressure common rail system that provides fuel to each individual injector from a high-pressure accumulator, oftentimes referred to as the “rail” or “common rail.” The injector also receives a high-pressure hydraulic fluid, such as engine oil, that is utilized to drive a piston, or other pressure intensifying system, to increase the pressure of the fuel that leaves the injector to the pressures required by modern diesel engines. The delivery of high-pressure hydraulic fluid to the fuel injector to may also be provided from a hydraulic fluid accumulator sometimes called an “oil-rail.”
According to one embodiment, a hydraulically intensified fuel injection system comprises a hydraulic fluid accumulator, an adapter, and an injector connecting tube. The hydraulic fluid accumulator has a fluid outlet and is adapted to contain a volume of hydraulic fluid at a pressure from about 30 MPa to about 50 MPa. The adapter is disposed at least partially within the fluid outlet of the hydraulic fluid accumulator. The adapter has a first opening provided in fluid communication with the fluid outlet of the hydraulic fluid accumulator. The first opening of the adapter has a recessed groove. The injector connecting tube is disposed at least partially within the first opening of the adapter. The injector connecting tube has an upper portion and a lower portion. The upper portion is adapted to deflect outward to reduce a gap between the injector connecting tube and the first opening of the adapter. The injector connecting tube has an second opening formed through the upper portion and the lower portion.
According to another embodiment, an injector connecting tube for use with a hydraulically intensified fuel injection system comprises an upper portion, a lower portion, and an opening formed through the upper portion and the lower portion. The upper portion has a first outer diameter. The lower portion has a second outer diameter. The opening has a first inner diameter in a portion of the opening formed through the upper portion. The opening has a second inner diameter in a portion of the opening formed through the lower portion. The opening is adapted to receive pressurized hydraulic fluid from a hydraulic fluid accumulator. A wall thickness between the outer diameter of the upper portion and the inner diameter of the opening formed through the upper portion is less than a wall thickness between the outer diameter of the lower portion and the inner diameter of the opening formed through the lower portion.
According to a further embodiment, an injector connecting tube for use with a hydraulically intensified fuel injection system comprises an upper portion, a lower portion, an intermediate portion, and an opening. The upper portion has a first outer diameter. The lower portion has a second outer diameter. The intermediate portion is disposed between the upper portion and the lower portion. The intermediate portion has a third outer diameter. The opening is formed through the upper portion, the lower portion and the intermediate portion. The opening has a first inner diameter in a portion of the opening formed through the upper portion, a second diameter in a portion of the opening formed through the lower portion, and the opening has a third inner diameter in a portion of the opening formed through the intermediate portion. The opening is adapted to receive pressurized hydraulic fluid from a hydraulic fluid accumulator. A wall thickness between the outer diameter of the intermediate portion and the third inner diameter of the opening formed through the intermediate portion is less than a wall thickness between the outer diameter of the lower portion and the first inner diameter of the opening formed through the lower portion and a wall thickness between the outer diameter of the upper portion and the second inner diameter of the opening formed through the upper portion.
As shown more clearly in
The hydraulic fluid within the hydraulic accumulator 100 that is provided to the injector connecting tube 104 is at a pressure from about 30 MPa to about 50 MPa, more specifically, a pressure of about 40 MPa is present within the accumulator 100. The center opening 112 has a diameter D. The upper portion 114 of the injector connecting tube 104 has an outer diameter E, which is greater than the diameter D of the center opening 112. The lower portion 116 of the injector connecting tube 104 has an outer diameter F, which is greater than the diameter D of the upper portion 114 of the injector connecting tube 104.
Hydraulic fluid passing through the center opening 112 of the injector connecting tube 104 at a pressure of between about 30 MPa and 50 MPa exerts a substantial radial force A on a sidewall 112a of the center opening 112. The radial force A causes displacement of the outer periphery 110 of the upper portion 114 of the injector connecting tube 104. This displacement of the outer periphery 110 decreases a distance between the seal 106 and the injector connecting tube 104, thereby enhancing the fluid flow restriction properties of the seal 106. Additionally, the outer periphery 110 moves closer to the adapter 102, further restricting the flow of any hydraulic fluid that may leak past the seal 106 at locations downstream of the hydraulic fluid flowing direction.
The upper portion 114 of the injector connecting tube 104 thus has a thinner wall than the lower portion 116 of the injector connecting tube 104. This thinner wall of the upper portion causes the upper portion to deform based on the pressure of the hydraulic fluid passing through the center opening 112, thereby increasing the outer diameter E, and reducing a gap between the injector connecting tube 104 and the adapter 102. This increases the effectiveness of the seal 106 to resist hydraulic fluid passing between the injector connecting tube 104 and the adapter 102.
Finally,
Thus, the injector connecting tubes 104, 104b, 104c provide a region where hydraulic fluid flowing through a center opening 112, 112b, 112c displaces a portion of an outer wall of the injector connecting tube outward, reducing the gap between the injector connecting tubes 104, 104b, 104c and an adapter 102, thereby reducing the likelihood of fluid leaking between the injector connecting tube 104, 104b, 104c and the adapter.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US11/28955 | 3/18/2011 | WO | 00 | 9/14/2013 |