Hydraulic steering unit

Information

  • Patent Grant
  • 10895328
  • Patent Number
    10,895,328
  • Date Filed
    Monday, July 29, 2019
    5 years ago
  • Date Issued
    Tuesday, January 19, 2021
    4 years ago
Abstract
A hydraulic steering unit is described comprising a housing (1) and a non-return valve (2) having a ball (3) and a valve seat (4) at an end of a channel (5) in the housing (1), wherein a movement of the ball (3) away from the valve seat (4) is limited by an abutment (7) in the channel (5). Such a steering unit should have a non-return valve which can be produced with low costs. To this end the abutment (7) extends transversely through the channel.
Description
CROSS-REFERENCE TO RELATED APPLICATION

This application claims foreign priority benefits under U.S.C. ยง 119 to German Patent Application No. 102018113952.7 filed on Jul. 30, 2018, the content of which is hereby incorporated by reference in its entirety.


TECHNICAL FIELD

The present invention relates to a hydraulic steering unit comprising a housing and a non-return valve having a ball and a valve seat at an end of a channel in the housing, wherein a movement of the ball away from the valve seat is limited by an abutment in the channel.


BACKGROUND

Such a hydraulic steering unit is known, for example, from U.S. Pat. No. 4,696,161 A. The ball is held in place by a bolt which is a special turned part and therefore expensive to manufacture.


Such a non-return valve can be used in emergency situations or for eliminating kick back in the steering unit.


SUMMARY

The object underlying the invention is to provide a steering unit having a non-return valve and which can be produced with low costs.


This object is solved with a hydraulic steering unit as described at the outset in that the abutment extends transversally through the channel.


It is therefore not necessary to have a bolt with a rather complicated form which is difficult to produce. It is simply necessary to have an abutment which extends from one side of the channel into the channel.


In an embodiment of the invention both ends of the abutment are held in the housing. The abutment is firmly held and cannot be flexed even when a pressure acting on the ball is quite high.


In an embodiment of the invention the abutment is arranged out of a center line of the channel. In other words, a center line of the abutment and the center line of the channel do not coincide. This means that on one side of the abutment transverse to the direction of movement there is a larger cross section available so that the increase of flow resistance caused by the abutment is limited.


In an embodiment of the invention the abutment is formed by a check-valve. Accordingly, the hydraulic steering unit has a non-return valve (which is in principle also a check-valve) and a check-valve. The check-valve has two functions. The first function is that of an ordinary check-valve. The second function is to limit the movement of the ball.


In an embodiment of the invention the abutment is formed by at least a moveable part of the check-valve. Accordingly, the size of the abutment can be limited to avoid a too high flow resistance in the channel.


In an embodiment of the invention the check-valve comprises a valve element and a valve seat element, wherein the valve element is loaded by a spring in a direction towards the valve seat element and the spring forms at least part of the abutment. The spring is preferably in form of a screw spring. Accordingly, the abutment is at least partly elastically deformable to avoid noise when the ball comes into contact with the abutment.


In an embodiment of the invention in a closed state of the check-valve the abutment is formed by the spring only and in an open state of the check-valve the abutment is formed additional by a part of the valve element. When the check-valve is open, there is in many cases a pressure which acts in a direction to move the ball against the valve seat against the non-return valve. On the other hand, when the non-return valve is open, there are many cases in which the check-valve is closed so that the ball is stopped by the spring of the check-valve to reduce noise.


In an embodiment of the invention the valve element is guided in the housing and in the valve seat element which is fixed in the housing. Accordingly, the valve element is guided at two positions which are remote from each other to achieve a stable alignment with respect to the valve seat even if the ball acts on the valve element with a certain force.


In an embodiment of the invention the valve element comprises a stem having a tapered section and the spring is arranged at least partly around the tapered section. In this case the spring can be elastically deformed when the ball comes in contact with the spring. This is of advantage to reduce noise. Furthermore, the stem reduces the cross section of the channel only to a small extend.


In an embodiment of the invention the spring rests against a protrusion of the valve element, wherein in a closed state of the check-valve at least part of the protrusion is in a position out of the channel. When the check-valve is closed, the protrusion does not significantly reduce the cross section of the channel.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention is now described with reference to the drawing, wherein:



FIG. 1 shows a schematic view of a part of a hydraulic steering unit,



FIG. 2 a top view of a dummy,



FIG. 3 a sectional view of the dummy, and



FIG. 4 a perspective view of the dummy.






FIG. 1 shows part of a housing 1 of a hydraulic steering unit.


DETAILED DESCRIPTION

A non-return valve 2 is arranged in the housing 1. The non-return valve 2 comprises a ball 3 and a valve seat 4. The valve seat 4 is arranged at an end of a channel 5. When the ball 3 rests against the valve seat 4, a connection between the channel 5 and another channel 6 is interrupted. In the position of the ball 3 relative to the valve seat 4 shown, this connection is open.


The movement of the ball 3 away from the valve seat 4 is limited by means of an abutment 7. The abutment 7 is formed in the present case by parts of a check-valve 8. However, it can be replaced by a pin or dummy only which does not have the function of a check-valve.


In the embodiment shown in the figure, the check-valve 8 comprises a valve element 9 and a valve seat element 10. The valve seat element 10 is mounted in a quite large bore 11 in the housing 1 to achieve a low pressure drop over the check-valve 8.


The valve seat element 10 is fixed in the housing 1 with a certain distance to the channel 5 and rests against a step 12 surrounding an opening 13 which will be explained later.


The valve element 9 is guided with one end 14 in the valve seat element 10 and with another end 15 in the housing 1.


The valve element 9 is loaded by a spring 16 in a direction towards the valve seat element 10. The spring 16 rests against a protrusion 17 of the valve element 9. The opening 13 is slightly larger than the circumference of the protrusion 17 and has a depth corresponding to a height of the protrusion 17, so that the protrusion 17 can at least partly be accommodated in the opening 16 when the check-valve 8 is in closed position.


The valve element 9 comprises a stem 18 having a tapered section 19. The spring 16 is arranged at least partly around the tapered section 19 so that there is a gap between a part of the spring 16 and the stem 18.


The valve element 9 of the check-valve 8 is arranged eccentrically to the channel 5, i.e. a center line 20 of the valve element 9 does not run through a center line 21 of the channel 5.


When a force produced by a pressure in bore 11 exceeds a force produced by the pressure in the channel 5 plus the force of spring 16, the check-valve 8 is opened to establish a connection between the bore 11 and the channel 5. Depending on the pressure in the second channel 6 this will cause the ball 3 to move against the valve seat 4 of the not-return valve 2 to close the non-return valve 2.


On the other hand, when a force produced by the pressure in the second channel 6 and acting on the ball 3 exceeds a force generated by the pressure in the channel 5 and acting on the ball 3 the ball 3 is moved away from the valve seat 4 of the non-return valve 2. However, the movement of the ball 3 away from the valve seat 4 is limited by the spring 16, when the check-valve 8 is closed or by the spring 16 and the protrusion 17 of the valve element 9, when the check-valve 8 is open. Since the valve element 9 is in any case held stable in the housing 1, it is able to withstand a considerable force acting on the ball 3.


The protrusion 17 is through going in circumferential direction and the valve element 9 is tapered on a side facing the valve seat element 10 to achieve a low pressure drop over the check-valve 8 when the check-valve 8 is opened.


The valve seat element 10 comprises a bushing 22 which is held by arms 23. The arms 23 are arranged in a star-like manner to connect the bushing 22 to the valve seat element 10.


As mentioned above, the check valve can be replaced by a pin or dummy 24 which is shown in FIGS. 2 to 4.


The dummy 24 comprises an end 15 which is inserted into the housing 1. Furthermore, the dummy 24 comprises an enlarged section 25 which can be inserted into bore 11 until it rests against step 12. The enlarged section 25 and the end 15 are connected by means of a stem 26 which is long enough so that the end 15 can protrude into the housing 1 on the other side of the channel 5.


The enlarged section 25 comprises a number of openings 27 through which hydraulic fluid can pass.


The stem 26 forms an abutment in the channel 5 which limits the movement of ball 3 in channel 5.


Again, the dummy 24 extends transversely through the channel 5 and is fixed with both ends in the housing 1 to avoid deflections.


While the present disclosure has been illustrated and described with respect to a particular embodiment thereof, it should be appreciated by those of ordinary skill in the art that various modifications to this disclosure may be made without departing from the spirit and scope of the present disclosure.

Claims
  • 1. A hydraulic steering unit comprising a housing, a non-return valve having a ball and a first valve seat at an end of a channel in the housing, and a valve extending transversely through the channel, the valve having a guiding stem, a head, a second valve seat, and a spring surrounding the guiding stem, wherein a movement of the ball away from the first valve seat is limited by a side portion of the guiding stem and/or spring extending transversely through the channel.
  • 2. The hydraulic steering unit according to claim 1, wherein both ends of the valve are held in the housing.
  • 3. The hydraulic steering unit according to claim 1, wherein the valve is arranged out of a center line of the channel.
  • 4. The hydraulic steering unit according to claim 1, wherein the valve is a check-valve.
  • 5. The hydraulic steering unit according to claim 4, wherein the side portion is formed by at least a moveable part of the check-valve.
  • 6. The hydraulic steering unit according to claim 4, wherein the head is loaded by the spring in a direction towards the second valve seat and the spring limits the movement of the ball away from the first valve seat.
  • 7. The hydraulic steering unit according to claim 6, wherein in a closed state of the check-valve the abutment side portion limiting movement of the ball away from the first valve seat is formed by the spring only and in an open state of the check-valve the side portion limiting movement of the ball away from the first valve seat is formed additionally by the guiding stem.
  • 8. The hydraulic steering unit according to claim 6, wherein the guiding stem is guided in the housing and in a valve seat element which is fixed in the housing, the valve seat element comprising the second valve seat.
  • 9. The hydraulic steering unit according to claim 6, wherein the guiding stem comprises a stem having a tapered section and the spring is arranged at least partly around the tapered section.
  • 10. The hydraulic steering unit according to any of claim 6, wherein the spring rests against the head, wherein in a closed state of the check-valve at least part of the head check-valve at least part of the protrusion is in a position out of the channel.
  • 11. The hydraulic steering unit according to claim 2, wherein the valve is arranged out of a center line of the channel.
  • 12. The hydraulic steering unit according to claim 2, wherein the valve is by a check-valve.
  • 13. The hydraulic steering unit according to claim 3, wherein the valve is by a check-valve.
  • 14. The hydraulic steering unit according to claim 5, wherein the valve head is loaded by the spring in a direction towards the second valve seat and the spring limits the movement of the ball away from the first valve seat.
  • 15. The hydraulic steering unit according to claim 7, wherein the guiding stem is guided in the housing and in a valve seat element which is fixed in the housing, the valve seat element comprising the second valve seat.
  • 16. The hydraulic steering unit according to claim 7, wherein the guiding stem comprises a stem having a tapered section and the spring is arranged at least partly around the tapered section.
  • 17. The hydraulic steering unit according to claim 8, wherein the guiding stem comprises a stem having a tapered section and the spring is arranged at least partly around the tapered section.
  • 18. The hydraulic steering unit according to claim 7, wherein the spring rests against the head, wherein in a closed state of the check-valve at least part of the head is in a position out of the channel.
  • 19. The hydraulic steering unit according to claim 8, wherein the spring rests against the head, wherein in a closed state of the check-valve at least part of the head is in a position out of the channel.
  • 20. The hydraulic steering unit according to claim 9, wherein the spring rests against the head, wherein in a closed state of the check-valve at least part of the head is in a position out of the channel.
Priority Claims (1)
Number Date Country Kind
10 2018 113 952 Jul 2018 DE national
US Referenced Citations (84)
Number Name Date Kind
1359988 Hansen Nov 1920 A
1401223 Wittenmeier Dec 1921 A
1512597 Harmon Oct 1924 A
1602647 Worthington Oct 1926 A
1744357 Brice Jan 1930 A
1884550 Boynton Oct 1932 A
2004097 Hollingshead Jun 1935 A
2006141 Hussey Jun 1935 A
2043453 Vickers Jun 1936 A
2044629 Parker Jun 1936 A
2101316 Kettnich Dec 1937 A
2306012 Campbell Dec 1942 A
2310677 Campbell Feb 1943 A
2404796 Grant, Jr. Jul 1946 A
2444182 Calvin Jun 1948 A
2467434 Kuplec Apr 1949 A
2471382 Althouse, Jr. May 1949 A
2475739 Gustav Jul 1949 A
2497758 Campbell Feb 1950 A
2634743 Audemar Apr 1953 A
2646062 Nixon Jul 1953 A
2649115 Deardorff Aug 1953 A
2651549 Ross Sep 1953 A
2725074 McLeod Nov 1955 A
2738796 Chadwick Mar 1956 A
2757616 Hill Aug 1956 A
2809659 Gillespie Oct 1957 A
2847937 Garvey Aug 1958 A
2903014 Sheppard Sep 1959 A
3170525 Gunnar Feb 1965 A
3183992 Brueder May 1965 A
3263425 Rohde Aug 1966 A
3447564 North Jun 1969 A
3527250 Thomas Sep 1970 A
3550612 Maxon Dec 1970 A
3661167 Hussey May 1972 A
3732890 Smith May 1973 A
3742926 Kemp Jul 1973 A
3861414 Peterson, II Jan 1975 A
3906991 Haussler Sep 1975 A
4031619 Gregory Jun 1977 A
4068680 Sliger Jan 1978 A
4139469 Rainin Feb 1979 A
4184510 Murry Jan 1980 A
4217931 Jaekel Aug 1980 A
4282897 de Mey, II Aug 1981 A
4286573 Nickel Sep 1981 A
4387736 Major Jun 1983 A
4392507 Harris Jul 1983 A
4546791 Huang Oct 1985 A
4567911 Kedem Feb 1986 A
4696161 Rasmussen Sep 1987 A
4832075 Dubach May 1989 A
4846218 Upchurch Jul 1989 A
4856549 Ueno Aug 1989 A
4947672 Pecora Aug 1990 A
5573033 Litzel Nov 1996 A
5701970 Arbjerg Dec 1997 A
5782269 Seaney Jul 1998 A
5979215 Lefavour Nov 1999 A
6021810 Gaillard Feb 2000 A
6206032 Hill Mar 2001 B1
6684415 Kozono Feb 2004 B1
6968858 Kuehn et al. Nov 2005 B2
7806235 Roys Oct 2010 B1
8905732 Kuttler Dec 2014 B2
9188114 Kuttler Nov 2015 B2
20040089347 Cavagna May 2004 A1
20060192161 Kuna Aug 2006 A1
20080041452 Zweber Feb 2008 A1
20080314449 Ho Dec 2008 A1
20090301583 Mills Dec 2009 A1
20100170571 Anderson Jul 2010 A1
20120128533 Deguchi May 2012 A1
20120160335 Thyroff Jun 2012 A1
20140020772 Anderson Jan 2014 A1
20150219234 Hobmeyr Aug 2015 A1
20160040663 Herman Feb 2016 A1
20160097486 Herman Apr 2016 A1
20160281875 Sutton Sep 2016 A1
20170037768 Fangauer Feb 2017 A1
20170146139 Patterson May 2017 A1
20180156488 Evans Jun 2018 A1
20190049028 Beuschel Feb 2019 A1
Foreign Referenced Citations (3)
Number Date Country
102006010706 Sep 2007 DE
1 291 563 Mar 2003 EP
S6187269 Jun 1986 JP
Non-Patent Literature Citations (1)
Entry
Indian First Examination Report for Application No. 201914014856 dated Jul. 15, 2020.
Related Publications (1)
Number Date Country
20200032916 A1 Jan 2020 US