The present disclosure relates generally to hydraulic systems and, more particularly, to a hydraulic system including flowsharing between one or more independent metering valves.
Hydraulic systems are known for converting fluid power, for example, pressurized flow, into mechanical power. Fluid power may be transferred from one or more hydraulic pumps through fluid conduits to one or more hydraulic actuators. Hydraulic actuators may include hydraulic motors that convert fluid power into shaft rotational power, hydraulic cylinders that convert fluid power into translational power, or other hydraulic actuators known in the art.
In an open-loop hydraulic system, fluid discharged from an actuator is directed to a low-pressure reservoir, from which the pump draws fluid. Controlling an operation of a hydraulic actuator in a hydraulic circuit is conventionally accomplished using a single spool-type valve. The single spool valve has a series of metering slots which control flows of hydraulic fluid in the hydraulic circuit, including a flow from a pump to the hydraulic actuator and a flow from the hydraulic actuator to a tank. When the hydraulic actuator is a hydraulic cylinder, these flows are commonly referred to as pump-to-cylinder flow and cylinder-to-tank flow, respectively.
The metering slots may be machined into the stem of the spool valve. With this arrangement, slot timing and modulation are fixed. Thus, in order to modify the performance of a hydraulic circuit including such a spool valve, the stem may require additional machining. Furthermore, in order to add additional features to the performance of the hydraulic circuit, an entirely new stem may be required. In turn, adding features to or optimizing the performance of conventional hydraulic circuits may be expensive and time consuming.
Hydraulic systems with independent metering valves (IMVs) provide an operator with the ability to modify the performance of the hydraulic circuit without modifying hardware. In a hydraulic system with IMVs, each IMV includes four independently operable, electronically controlled metering valves to control flows within the hydraulic circuit. Two of the metering valves are disposed between the input port and the control ports. The other two metering valves are disposed between the output port and the control ports. Because each of the metering valves is controlled electronically, the performance of the hydraulic circuit can be modified by adjusting a control signal to one or more of the metering valves.
U.S. Pat. No. 6,880,332 (hereinafter “the '332 publication”), titled “Method of Selecting a Hydraulic Metering Mode for a Function of a Velocity Based Control System,” purports to describe a hydraulic system with an IMV in which the metering modes can be varied according to the task. However, while the '332 publication offers certain advantages over conventional spool-type valves, the hydraulic system of the '332 publication include particular electrohydraulic (EH) control systems that are not present in conventional hydraulic systems. As a result, the hydraulic system of the '332 publication may be incompatible with conventional hydraulic systems incorporating spool-type valves.
Accordingly, there is a need for improved hydraulic systems to address the problems described above and/or problems posed by other conventional approaches.
In one aspect, a hydraulic system includes a first pump, a variable flow controller, a load-sense circuit, an independent metering valve circuit, an inverse resolver, and a signal conditioning element. The first pump is configured to generate a flow of a hydraulic fluid. The variable flow controller is configured to control a flow rate of the first pump in response to a first pressure signal. The load-sense circuit is fluidly coupled to the first pump. The load-sense circuit includes a first actuator and a first control valve. The first control valve is fluidly coupled to the first actuator and configured to control the flow of the hydraulic fluid to the first actuator. The first control valve has a signal port fluidly coupled to the variable flow controller and is configured to generate a second pressure signal. The independent metering valve circuit is fluidly coupled to the first pump and is configured to generate a third pressure signal. The independent metering valve circuit includes a second actuator, a set of independent metering valves, and an independent metering valve pre-compensator. The set of independent metering valves are fluidly coupled to the second actuator and are configured to independently control the flow of the hydraulic fluid to the second actuator. The independent metering valve pre-compensator is configured to control the flow of the hydraulic fluid to the set of independent metering valves. The inverse resolver is configured to receive the second pressure signal and the third pressure signal and output a fourth pressure signal. The signal conditioning element is configured to receive the fourth pressure signal and output the first pressure signal.
In another aspect, an independent metering valve circuit includes an actuator, a set of independent metering valves, an independent metering valve pre-compensator, an inverse resolver, and a signal conditioning element. The set of independent metering valves are fluidly coupled to the actuator and configured to independently control a flow of a hydraulic fluid to the actuator. The independent metering valve pre-compensator is configured to control the flow of the hydraulic fluid to the set of independent metering valves. The inverse resolver is configured to receive a first pressure signal from the independent metering valve circuit and a second pressure signal from a load-sense hydraulic system and output a third pressure signal. The signal conditioning element is configured to receive the third pressure signal and output a forth pressure signal configured to control a pump fluidly coupled to the load-sense hydraulic system and the independent metering valve circuit.
In yet another aspect, the disclosure describes a method of integrating an independent metering valve circuit in a load-sense hydraulic system. In this method, an inverse resolver, a signal conditioning element, and independent metering valve circuit are installed in the load-sense hydraulic system. The inverse resolver is configured to receiving a first pressure signal from an independent metering valve circuit and a second pressure signal from a load-sense hydraulic system and outputting a third pressure signal. The signal conditioning element is configured to receiving the third pressure signal from the inverse resolver and outputting a forth pressure signal configured to control a pump fluidly coupled to the load-sense hydraulic system and the independent metering valve circuit. The independent metering valve circuit includes an actuator, a set of independent metering valves, and an independent metering valve pre-compensator. The set of independent metering valves are fluidly coupled to the actuator and configured to independently control a flow of a hydraulic fluid to the actuator. The independent metering valve pre-compensator is configured to control the flow of the hydraulic fluid to the set of independent metering valves.
It is to be understood that the disclosure is not limited in its application to the details of construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. The disclosed device and method are capable of aspects in addition to those described and of being practiced and carried out in various ways. Also, it is to be understood that the terminology employed herein, as well as the abstract, are for the purpose of description and should not be regarded as limiting.
As such, those skilled in the art will appreciate that the conception upon which this disclosure is based may readily be utilized as a basis for the designing of other structures, methods and systems for carrying out the several purposes of the various aspects. It is important, therefore, that the claims be regarded as including such equivalent constructions insofar as they do not depart from the spirit and scope of the various aspects.
The drawings presented are intended solely for the purpose of illustration and therefore, are neither desired nor intended to limit the subject matter of the disclosure to any or all of the exact details of construction shown, except insofar as they may be deemed essential to the claims.
Referring to
According to an exemplary aspect of the disclosure, actuators (e.g., linear actuators) in the form of hydraulic cylinders, control the movements of the various components of the implement system 36. For example, a boom hydraulic cylinder 44 extends between the deck 12 and the boom 38 to control movement of the boom 38 relative to the deck 12. In addition, an arm hydraulic cylinder 46 extends between the boom 38 and the arm 40 to control movement of the arm 40 relative to the boom 38. A curl hydraulic cylinder 48 extends between the boom 38 and the work tool 42 to control movement of the work tool 42 relative to the arm 40. According to an exemplary aspect of the disclosure, the hydraulic cylinders 44, 46, 48 are double-acting cylinders, configured to receive hydraulic fluid on both ends of the respective pistons. Additional actuators (e.g., electric or hydraulic motors) may be used to propel the machine 10 via the drive system 14, and/or to rotate the deck 12 relative to the drive system 14.
Numerous different work tools 42 may be attached to the machine 10 and controlled by an operator. The work tool 42 may include any device used to perform a particular task such as, for example, a bucket (shown in
The drive system 14 may include one or more traction devices powered to propel the machine 10. As illustrated in
The power source 26 may include a combustion engine such as, for example, a reciprocating compression ignition engine, a reciprocating spark ignition engine, a combustion turbine, or another type of combustion engine known in the art. It is contemplated that the power source 26 may alternatively include a non-combustion source of power such as a fuel cell, a power storage device, or another power source known in the art. The power source 26 may produce a mechanical or electrical power output that may then be converted to hydraulic power for moving the actuators of the implement system 36.
The operator station 22 may include devices that receive input from an operator indicative of desired maneuvering. Specifically, the operator station 22 may include one or more operator interface devices 58 (shown in
The head-end chamber 88 and the rod-end chamber 82 of the linear hydraulic actuator 70 may be selectively supplied with pressurized fluid or drained of fluid via the head-end port 92 and the rod-end port 94, respectively, to cause piston assembly 76 to translate within tube 72, thereby changing the effective length of the actuator to move work tool 42, for example. A flow rate of fluid into and out of the head-end chamber 88 and the rod-end chamber 82 may relate to a translational velocity of the actuator, while a pressure differential and/or an area differential between the head-end chamber 88 and the rod-end chamber 82 may relate to a force imparted by the actuator on the work tool 42. It will be appreciated that any of the boom hydraulic cylinders 44, the arm hydraulic cylinder 46, or the curl hydraulic cylinder 48, shown in
A rotary actuator may include first and second chambers located to either side of a fluid work-extracting mechanism such as an impeller, plunger, or series of pistons. When the first chamber is filled with pressurized fluid and the second chamber is simultaneously drained of fluid, the fluid work-extracting mechanism may be urged to rotate in a first direction by a pressure differential across the first and second chambers of the rotary actuator. Conversely, when the first chamber is drained of fluid and the second chamber is simultaneously filled with pressurized fluid, the fluid work-extracting mechanism may be urged to rotate in an opposite direction by the pressure differential. The flow rate of fluid into and out of the first and second chambers may be determined by a rotational velocity of the actuator, while a magnitude of the pressure differential across the pumping mechanism may determine an output torque. It will be appreciated that any of the hydraulic swing motor 60, the left travel motor 54, or the right travel motor 56, illustrated in
As shown in
The load-sense circuit 104A includes a control valve 120A configured to control the flow of hydraulic fluid to and from the boom hydraulic cylinder 44 in response to control signals from the operator interface device 58 (shown in
Optionally, the load-sense circuit 104A includes the post-compensation valve 136 configured to modulate the flow of hydraulic fluid through the control valve 120A in response to a load-sense pressure 148. If included, as is generally understood, the post-compensation valve 136 is configured to maintain a constant pressure drop across the control valve 120A regardless of the load induced pressure on the boom hydraulic cylinder 44.
The load-sense circuit 104A may further include a resolver 150 configured to receive the induced load pressure from the control valve 120A and the highest induced load pressure from the downstream circuits (load-sense circuits 104B and 104C) and output the highest load pressure to a system resolver 160. Prior to integrating the IMV circuit 102 into the hydraulic system 100, the system resolver 160 was configured to output the highest induced load pressure to one or more variable flow controllers 162A-162C (collectively referred to as the variable flow controller 162). The variable flow controller 162 is a pressure responsive controller configured to control the output of the pump 106. In a particular example, the variable flow controller 162 is configured to de-stroke or otherwise control the displacement of the pump 106 via a swashplate actuator. However, the variable flow controller 162 may include any suitable controller capable of modulating the output of the pump 106. In this manner, the pump 106 is operable to supply sufficient flow for the highest induced pressure circuit of the load-sense circuits 104A-104C. However, to integrate the IMV circuit 102 into the hydraulic system 100, an inverse resolver 170 and a signal conditioning element 172 are added to the hydraulic system 100. A load-sense outlet conduit 174 provides the induced pressure from the IMV circuit 102 to the inverse resolver 170 and the inverse resolver 170 is configured to resolve the induced load pressure between the IMV circuit 102 and the load-sense circuits 104A-104C and output the lowest induced pressure to the signal conditioning element 172. The signal conditioning element 172 is configured to receive the pressure signal from the inverse resolver 170 and output a signal pressure suitable to control the variable flow controller 162 via a load-sense supply conduit 176. The signal conditioning element 172 is also configured to output the load-sense pressure 148 that serves to signal the post-compensation valve 136 and serves as the load-sense signal for the IMV circuit 102.
The IMV pre-compensator 180 is configured to receive the load-sense pressure from the signal conditioning element 172 (Shown in
The supply conduit 192 is connected to the IMV pre-compensator 180 via a supply conduit 196. A supply conduit 198 then connects the IMV pre-compensator 180 to a supply conduit 204 that, in turn, is connected to the pair of electronically-actuated independent metering valves 184B and 184C.
The independent metering valves 184A and 184B are connected by a first actuator conduit or head end actuator conduit 200 to the bi-directional linear hydraulic cylinder 70. The linear hydraulic cylinder 70 is also connected to the independent metering valves 184C and 184D by a second actuator conduit or rod end actuator conduit 202. A pressure sensor 210 is shown connected to the head end actuator conduit 200 to sense the pressure in the head end actuator conduit 200. Another pressure sensor 212 is connected to the rod end actuator conduit 202 for sensing the pressure in the rod end actuator conduit 202. Another conduit such as an output conduit 214 connects the independent metering valves 184A and 184D to the tank 108.
The IMV circuit 102A further includes a flow control module 220, such as a microprocessor, which is used to control operation of the IMV circuit 102A. The flow control module 220 may be connected to the pressure sensors 194, 210, and 212 by electrical leads 222, 224, and 226, respectively. The flow control module 220 is capable of receiving signals from the pressure sensors 194, 210, and 212 over the electrical leads 222, 224, and 226 to determine the pressure in the supply conduit 192 and the head end actuator conduit 200 and the rod end actuator conduit 202.
The independent metering valves 184A, 184B, 184C, and 184D are connected to the flow control module 220 via electrical connections 230, 232, 234, and 236, respectively. The flow control module 220 is capable of sending command signals over the electrical connections 230, 232, 234, and 236 to control operation of the independent metering valves 184A, 184B, 184C, and 184D. The flow control module 220 also includes an operator interface device 58 connected to the flow control module 220 by a wire 242. The operator interface device 58 may include such devices as an operator lever, pedal, joystick, keypad, or a keyboard for inputting information such as the speed required of the linear hydraulic cylinder 70. The operator interface device 58 is also capable of providing an input signal or command to the flow control module 220 over the wire 242. Typically, input signal from the operator interface device 58 is a velocity command signal. That is, the operator in the operator station 22 manipulates the operator interface device 58 to achieve a velocity of a selected implement.
The flow control module 220 is capable of receiving signals from the operator interface device 58 and pressure sensors 194, 210, and 212 and/or other suitable sensors. Based upon these signals the flow control module 220 is able to control operation of the independent metering valves 184A, 184B, 184C, and 184D and, optionally, the pump 106. In some particular examples of control sequences, the independent metering valves 184B and 184D may be initially opened and the independent metering valves 184A and 184C are initially closed. Extension of the linear hydraulic cylinder 70 occurs when the independent metering valves 184B and 184D are opened and the independent metering valves 184A and 184C are closed.
Depending upon the pressures sensed by the pressure sensors 194, 210, and 212, the independent metering valve 184C may be opened to restrict the flow of hydraulic fluid, for example, from the linear hydraulic cylinder 70, to brake or slow down the linear hydraulic cylinder 70. Additionally, the independent metering valve 184A may be opened to divert the flow of hydraulic fluid back to the tank 108. The output conduit 214 allows hydraulic fluid to flow from the independent metering valve 184A through the output conduit 214 into the tank 108 to be used again by the pump 106. This provides for a regenerative supply or source of hydraulic fluid for the pump 106, and in this mode of operation the IMV circuit 102A is regenerative. These and other suitable control sequences may be controlled by the flow control module 220.
The present disclosure may be applicable to any machine in which an independent metering valve (IMV) circuit is combined in a flowsharing arrangement with a load-sense hydraulic system. Aspects of the disclosed hydraulic system and method may promote increased functionality, operationally flexibility, performance, and energy efficiency of hydraulic systems.
According to an aspect of the disclosure, with reference to
In order to add the IMV circuit 102 in a flowsharing manner, and thus remove the need to add a separate hydraulic pump, tank, and the like for the IMV circuit 102, flow characteristics between the existing load-sense circuits 104A-104C and the newly added IMV circuit 102 must be resolved. In order to perform this resolution, the inverse resolver 170 (Shown in
Each of the IMV circuits 102A to 102C provide a novel and inventive example of how the capabilities of a load-sense hydraulic system can be improved upon by the flowsharing integration of an IMV circuit. Each of the IMV circuits 102A to 102C have modifications in order to integrate with particular variations in the load-sense circuitry. For example, the IMV circuit 102A is configured for integration into the hydraulic system 100 that includes the load-sense supply conduit 176 to output a load-sense signal, the load-sense conduit 168 to receive a load-sense signal, and the hydraulic system 100 includes elements such as the post-compensation valve 136 to compensate the flow of hydraulic fluid in response to the load-sense signal. In the example shown in
According to an aspect of the disclosure, the inverse resolver 170 and the signal conditioning element 172 are included in a kit to be added to a machine 10. Further, such a kit may also include the IMV circuit 102, corresponding control structures or software that compose, at least in part, the flow control module 220. According to another aspect of the disclosure, a kit including the inverse resolver 170, the signal conditioning element 172, the IMV circuit 102, corresponding control structures or software that compose, at least in part, the flow control module 220, or combinations thereof, are installed on a machine 10.
It will be appreciated that the foregoing description provides examples of the disclosed system and technique. However, it is contemplated that other implementations of the disclosure may differ in detail from the foregoing examples. All references to the disclosure or examples thereof are intended to reference the particular example being discussed at that point and are not intended to imply any limitation as to the scope of the disclosure more generally. All language of distinction and disparagement with respect to certain features is intended to indicate a lack of preference for those features, but not to exclude such from the scope of the disclosure entirely unless otherwise indicated.
Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context.
Throughout the disclosure, like reference numbers refer to similar elements herein, unless otherwise specified.
Number | Name | Date | Kind |
---|---|---|---|
6880332 | Pfaff | Apr 2005 | B2 |
7251935 | Zhang | Aug 2007 | B2 |
7814749 | Cadman et al. | Oct 2010 | B2 |
7921878 | Coolidge | Apr 2011 | B2 |
8899143 | Ho | Dec 2014 | B2 |
20080238187 | Garnett et al. | Oct 2008 | A1 |
20090025380 | Harsia | Jan 2009 | A1 |
20130098459 | Opdenbosch | Apr 2013 | A1 |
20130112297 | Jadhav et al. | May 2013 | A1 |
20140093397 | Engelbrecht et al. | Apr 2014 | A1 |
Number | Date | Country | |
---|---|---|---|
20160312807 A1 | Oct 2016 | US |