The present disclosure relates to a hydraulic system with thermal shock protection, more particularly, to a hydraulic system that is configured to protect hydraulic motor components when the components are used in cold weather.
Hydraulic components can fail or prematurely wear as a result of thermal shock. In the context of a hydraulic system, thermal shock occurs when hot hydraulic fluids are directed to cold hydraulic components. The rapid localized heating of the cold components can cause individual subcomponents of the hydraulic system to expand at different rates and undesirably contact each other.
A known method of preventing machine failure due to thermal shock is to gradually warm the components of a hydraulic system by manually directing hydraulic fluid through the entire system even before activating the cold components. This method avoids hot fluid being delivered to cold moving components. The effectiveness of this method is limited by the machine operator's ability to recognize the conditions that may cause thermal shock, and to remember to warm up the various hydraulic components before using them. There is a need in the art for improved, and more reliable, methods and systems for preventing machine failure due to thermal shock.
The present disclosure relates to a hydraulic system with thermal shock protection. The hydraulic system includes a controller that limits when hot hydraulic fluids may be directed to cold hydraulic components.
The present disclosure also relates to a trencher having thermal shock protection system. The trencher includes a control system that protects the hydraulic motor and other hydraulic components from failing as a result of uneven thermal expansion of the subcomponents (e.g., pistons and cylinders) within the hydraulic components (e.g., hydraulic motors).
The principles of the present disclosure are applicable to a wide variety of hydraulic systems. However, to provide an exemplary environment in which the various aspects of the present disclosure can be applied, the principles of the present disclosure are described herein with reference to a trencher. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
Referring generally to
More particularly, the depicted trencher 10 includes a chassis 12 that is supported by a pair of tracks 14, 16 that rotate to move the trencher 10. The chassis 12 supports a cab 18, a boom 22, and a conveyer 24. In the depicted embodiment, the cab 18 is configured to move vertically (up and down) with respect to the chassis 12 to provide an operator a clear view of the job site during the trenching. The boom 22 is pivotally coupled to a first end of the chassis 12. The boom 22 is configured to be raised during transport and lowered during the trenching. The boom 22 supports a digger chain 26 that is rotated during trenching operations. The conveyer 24 is used to discharge the dirt, rock, and other debris that are pulled into the trencher 10 out of the side of the trencher 10. In the depicted embodiment, the engine 20 is a diesel powered engine; however, it should be appreciated that any other types of engines/motors are also possible (e.g., gas, electric, hybrid, etc.)
Referring to
Since the hydraulic fluid from the various pumps and motor share the same reservoir 46, the depicted hydraulic circuit is configured such that hot hydraulic fluids could potentially be directed to cold hydraulic components. This can occurs when, for example, an operator starts the trencher 10 on a cold day and drives the trencher 10 a distance to the job site. Once reaching the job site, the operator activates the digger chain 26 and begins to trench. In the above scenario, the engine 20 runs pumps 30 and 34 and motors 32 and 36 during transport, but not motor 44. While in transport the temperature of the hydraulic fluid in the reservoir 46 and the hydraulic components that the hydraulic fluid flows through (i.e., pumps 30, 34 and motors 32, 36) gradually increases from the ambient temperature to a normal operating temperature. When the operator arrives at the job site and activates the digger chain 26, hydraulic fluid which is at the normal operating temperature flows into hydraulic components (i.e., pump 42 and motor 44) that are still at or near ambient temperature. Failure due to thermal shock is possible under these conditions since relatively hot hydraulic fluid is directed to flow into the relatively cold hydraulic components. In the depicted embodiment the motor 44 is particularly vulnerable to thermal shock as the clearances between moving parts within the motor 44 is small.
Referring to
Referring back to
There are many different ways that the system can be configured to accomplish the above illustrated steps. Some examples are described in greater detail below.
In one embodiment the controller 50 is configured to limit the functionality of the cold components and allow time for the cold components to warm up slowly. In one embodiment the controller 50 is configured to prevent the operator from operating the digger chain 26 if the temperature differential between the hydraulic fluid and the temperature of the motor 44 is greater than a predetermined value. In another embodiment, the controller 50 limits how intensely the operator can use the components to prevent thermal shock. In other words, as the components warm, the operator is allowed to drive the components harder. For example, until the temperature deferential is less than a predetermined valued, the controller 50 does not allow the motor 44 to be operated at speeds above a set RPM. The predetermined value can be in part based on the motor's rating, which is typically provided by the motor manufacturer.
The controller 50 can also be configured to alert the operator when thermal shock conditions exist. In such embodiments, the operator can gradually warm up the cold components by circulating warm hydraulic fluid through components (e.g., digger chain motor 44). This can occur, for example, while the operator drives the trencher 10 to the job site. In other embodiments, the controller 50 is configured to automatically begin circulating hydraulic fluid through the cold components when thermal shock conditions are identified. In such embodiments the machine (e.g., the trencher 10) can be configured such that hydraulic fluid can circulate through the components (e.g., pump 42 and motor 44) without activating the corresponding accessories (e.g., digger chain 26). For example, in some configurations a clutch is provided between the accessories and the corresponding hydraulic components to enable fluid to flow through the components without activating the accessories. In other embodiments, the hydraulic motors are configured such that a certain amount of hydraulic fluid can flow through them while they are in a neutral position.
In some embodiments thermal shock conditions are identified based on measuring the hydraulic fluid temperature and the temperature of the hydraulic components (e.g., motors 32, 36, 40, 44 and pumps 30, 34, 38, 42), and in other embodiments the thermal shock conditions are determined by other means. In one embodiment where the temperature is measured, temperature sensors can be located in the tank 46 to measure the temperature of the hydraulic fluid, and temperature sensors can be located in, on, or near various other hydraulic components. For example, the temperature of the motor 44 can be approximated by measuring the temperature of the fluid at the outlet side of the motor case (i.e., the temperature of the fluid exiting the motor 44). The controller 50 can be configured to allow the operator to operate the digger chain 26 when the motor 44 is warmed enough such that the temperature differential between the hydraulic fluid exiting the motor 44 and the hydraulic fluid in the reservoir 46 is less than the predetermined value.
In an alternative embodiment temperature thermal shock conditions are determined based on measuring the ambient temperature and collecting data regarding the operational characteristics of the machine. For example, the controller 50 may be configured to recognize that thermal shock conditions are present in motor 44 when the ambient temperature is below a certain predetermined temperature (e.g., 0° F.) and when the tracks have been running for a predetermined time before activating the digger chain. The controller may be configured to recognize thermal shock conditions whenever the ambient temperature is below a certain predetermined temperature and certain components are not used (i.e., cold components) and certain other components are used (i.e., hot components). When such conditions occur there exists a likelihood that hydraulic fluid warmed by the hot components can shock the cold components. This alternative embodiment illustrates that the controller 50 can be configured to identify thermal shock conditions without measuring the temperature of the hydraulic fluid or the temperature of the hydraulic components. In the above-described embodiment, the operational characteristics are used in the identification of thermal shock conditions.
Referring to
This application claims priority to provisional application Ser. No. 60/937,671 titled Hydraulic System With Thermal Shock Protection filed on Jun. 29, 2007, which is incorporated by reference in its entirety herein.
Number | Date | Country | |
---|---|---|---|
60937671 | Jun 2007 | US |