Hydraulic systems for delivering prosthetic heart valve devices and associated methods

Information

  • Patent Grant
  • 10575950
  • Patent Number
    10,575,950
  • Date Filed
    Tuesday, April 18, 2017
    7 years ago
  • Date Issued
    Tuesday, March 3, 2020
    4 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Schwiker; Katherine H
    Agents
    • Shumaker & Sieffert, P.A.
Abstract
Systems for delivering prosthetic heart valve devices and associated methods are disclosed herein. A delivery system configured in accordance with embodiments of the present technology can include, for example, an elongated catheter body, a delivery capsule carried by the elongated catheter body, and two fluid chambers within the delivery capsule. The delivery capsule can be hydraulically driven between a containment configuration for holding the prosthetic heart valve device and a deployment configuration for at least partially deploying the prosthetic heart valve device. For example, the delivery capsule can be urged towards the deployment configuration when fluid is removed from the first chamber and fluid is delivered into the second chamber, whereas the delivery capsule can be urged towards the containment configuration to resheathe the prosthetic heart valve device when fluid is removed from the second chamber and delivered into the first chamber.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application incorporates the subject matter of (1) International Patent Application No. PCT/US2014/029549, filed Mar. 14, 2014, (2) International Patent Application No. PCT/US2012/061219, filed Oct. 19, 2012, (3) International Patent Application No. PCT/US2012/061215, filed Oct. 19, 2012, (4) International Patent Application No. PCT/US2012/043636, filed Jun. 21, 2012. The present application also incorporates the subject matter of U.S. Application Ser. No. 15/490,024, filed concurrently herewith.


TECHNICAL FIELD

The present technology relates generally to systems for delivering prosthetic heart valve devices. In particular, several embodiments of the present technology are related to hydraulic systems for percutaneously delivering prosthetic heart valve devices into mitral valves and associated methods.


BACKGROUND

Heart valves can be affected by several conditions. For example, mitral valves can be affected by mitral valve regurgitation, mitral valve prolapse and mitral valve stenosis. Mitral valve regurgitation is abnormal leaking of blood from the left ventricle into the left atrium caused by a disorder of the heart in which the leaflets of the mitral valve fail to coapt into apposition at peak contraction pressures. The mitral valve leaflets may not coapt sufficiently because heart diseases often cause dilation of the heart muscle, which in turn enlarges the native mitral valve annulus to the extent that the leaflets do not coapt during systole. Abnormal backflow can also occur when the papillary muscles are functionally compromised due to ischemia or other conditions. More specifically, as the left ventricle contracts during systole, the affected papillary muscles do not contract sufficiently to effect proper closure of the leaflets.


Mitral valve prolapse is a condition when the mitral leaflets bulge abnormally up in to the left atrium. This can cause irregular behavior of the mitral valve and lead to mitral valve regurgitation. The leaflets may prolapse and fail to coapt because the tendons connecting the papillary muscles to the inferior side of the mitral valve leaflets (chordae tendineae) may tear or stretch. Mitral valve stenosis is a narrowing of the mitral valve orifice that impedes filling of the left ventricle in diastole.


Mitral valve regurgitation is often treated using diuretics and/or vasodilators to reduce the amount of blood flowing back into the left atrium. Surgical approaches (open and intravascular) for either the repair or replacement of the valve have also been used to treat mitral valve regurgitation. For example, typical repair techniques involve cinching or resecting portions of the dilated annulus. Cinching, for example, includes implanting annular or peri-annular rings that are generally secured to the annulus or surrounding tissue. Other repair procedures suture or clip the valve leaflets into partial apposition with one another.


Alternatively, more invasive procedures replace the entire valve itself by implanting mechanical valves or biological tissue into the heart in place of the native mitral valve. These invasive procedures conventionally require large open thoracotomies and are thus very painful, have significant morbidity, and require long recovery periods. Moreover, with many repair and replacement procedures, the durability of the devices or improper sizing of annuloplasty rings or replacement valves may cause additional problems for the patient. Repair procedures also require a highly skilled cardiac surgeon because poorly or inaccurately placed sutures may affect the success of procedures.


Less invasive approaches to aortic valve replacement have been implemented in recent years. Examples of pre-assembled, percutaneous prosthetic valves include, e.g., the CoreValve Revalving® System from Medtronic/Corevalve Inc. (Irvine, Calif., USA) and the Edwards-Sapien® Valve from Edwards Lifesciences (Irvine, Calif., USA). Both valve systems include an expandable frame and a tri-leaflet bioprosthetic valve attached to the expandable frame. The aortic valve is substantially symmetric, circular, and has a muscular annulus. The expandable frames in aortic applications have a symmetric, circular shape at the aortic valve annulus to match the native anatomy, but also because tri-leaflet prosthetic valves require circular symmetry for proper coaptation of the prosthetic leaflets. Thus, aortic valve anatomy lends itself to an expandable frame housing a replacement valve since the aortic valve anatomy is substantially uniform, symmetric, and fairly muscular. Other heart valve anatomies, however, are not uniform, symmetric or sufficiently muscular, and thus transvascular aortic valve replacement devises may not be well suited for other types of heart valves.





BRIEF DESCRIPTION OF THE DRAWINGS

Many aspects of the present disclosure can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale. Instead, emphasis is placed on illustrating clearly the principles of the present disclosure. Furthermore, components can be shown as transparent in certain views for clarity of illustration only and not to indicate that the illustrated component is necessarily transparent. The headings provided herein are for convenience only.



FIG. 1 is a schematic, cross-sectional illustration of the heart showing an antegrade approach to the native mitral valve from the venous vasculature in accordance with various embodiments of the present technology.



FIG. 2 is a schematic, cross-sectional illustration of the heart showing access through the inter-atrial septum (IAS) maintained by the placement of a guide catheter over a guidewire in accordance with various embodiments of the present technology.



FIGS. 3 and 4 are schematic, cross-sectional illustrations of the heart showing retrograde approaches to the native mitral valve through the aortic valve and arterial vasculature in accordance with various embodiments of the present technology.



FIG. 5 is a schematic, cross-sectional illustration of the heart showing an approach to the native mitral valve using a trans-apical puncture in accordance with various embodiments of the present technology.



FIG. 6 is an isometric view of a system for delivering a prosthetic heart valve device configured in accordance with an embodiment of the present technology.



FIG. 7A is a partially schematic illustration of a distal portion of the system of FIG. 6 positioned in a native mitral valve of a heart using a trans-apical delivery approach in accordance with embodiments of the present technology.



FIG. 7B is a partially schematic illustration of the distal portion of the system of FIG. 7A in a deployment configuration and a deployed prosthetic heart valve device in accordance with embodiments of the present technology.



FIGS. 8A and 8B are partially schematic cross-sectional views of the delivery system of FIG. 6 in a containment configuration (FIG. 8A) and a deployment configuration (FIG. 8B) in accordance with an embodiment of the present technology.



FIGS. 9A and 9B are cross-sectional views of a distal portion of a delivery system for a prosthetic heart valve device in a partially retained state (FIG. 9A) and in a fully deployed state (FIG. 9B) in accordance with another embodiment of the present technology.



FIG. 9C is a top view of an engagement pedestal of the delivery system of FIGS. 9A and 9B configured in accordance with an embodiment of the present technology.



FIGS. 10A-10C are a series of partially schematic illustrations of a distal portion of a delivery system deploying a prosthetic a prosthetic heart valve device within a native mitral valve of a heart using a trans-septal approach in accordance with further embodiments of the present technology.



FIGS. 11A and 11B are enlarged, partially schematic cross-sectional views of a distal portion of a trans-septal delivery system in a partially expanded deployment configuration (FIG. 11A) and a containment configuration (FIG. 11B) in accordance with another embodiment of the present technology.



FIG. 12A is a cross-sectional side view and FIG. 12B is a top view schematically illustrating a prosthetic heart valve device in accordance with an embodiment of the present technology.



FIGS. 13A and 13B are cross-sectional side views schematically illustrating aspects of delivering a prosthetic heart valve device in accordance with an embodiment of the present technology.



FIG. 14 is a top isometric view of a prosthetic heart valve device in accordance with an embodiment of the present technology.



FIG. 15 is a side view and FIG. 16 is a bottom isometric view of the prosthetic heart valve device of FIG. 14.



FIG. 17 is a side view and FIG. 18 is a bottom isometric view of a prosthetic heart valve device in accordance with an embodiment of the present technology.



FIG. 19 is a side view and FIG. 20 is a bottom isometric view of the prosthetic heart valve device of FIGS. 17 and 18 at a partially deployed state with respect to a delivery device.



FIG. 21 is an isometric view of a valve support for use with prosthetic heart valve devices in accordance with the present technology.



FIGS. 22 and 23 are side and bottom isometric views, respectively, of a prosthetic heart valve attached to the valve support of FIG. 21.



FIGS. 24 and 25 are side views schematically showing valve supports in accordance with additional embodiments of the present technology.





DETAILED DESCRIPTION

The present technology is generally directed to hydraulic systems for delivering prosthetic heart valve devices and associated methods. Specific details of several embodiments of the present technology are described herein with reference to FIGS. 1-25. Although many of the embodiments are described with respect to devices, systems, and methods for delivering prosthetic heart valve devices to a native mitral valve, other applications and other embodiments in addition to those described herein are within the scope of the present technology. For example, at least some embodiments of the present technology may be useful for delivering prosthetics to other valves, such as the tricuspid valve or the aortic valve. It should be noted that other embodiments in addition to those disclosed herein are within the scope of the present technology. Further, embodiments of the present technology can have different configurations, components, and/or procedures than those shown or described herein. Moreover, a person of ordinary skill in the art will understand that embodiments of the present technology can have configurations, components, and/or procedures in addition to those shown or described herein and that these and other embodiments can be without several of the configurations, components, and/or procedures shown or described herein without deviating from the present technology.


With regard to the terms “distal” and “proximal” within this description, unless otherwise specified, the terms can reference relative positions of portions of a prosthetic valve device and/or an associated delivery device with reference to an operator and/or a location in the vasculature or heart. For example, in referring to a delivery catheter suitable to deliver and position various prosthetic valve devices described herein, “proximal” can refer to a position closer to the operator of the device or an incision into the vasculature, and “distal” can refer to a position that is more distant from the operator of the device or further from the incision along the vasculature (e.g., the end of the catheter). With respect to a prosthetic heart valve device, the terms “proximal” and “distal” can refer to the location of portions of the device with respect to the direction of blood flow. For example, proximal can refer to an upstream position or a location where blood flows into the device (e.g., inflow region), and distal can refer to a downstream position or a location where blood flows out of the device (e.g., outflow region).


Overview


Several embodiments of the present technology are directed to delivery systems and mitral valve replacement devices that address the unique challenges of percutaneously replacing native mitral valves and are well-suited to be recaptured in a percutaneous delivery device after being partially deployed for repositioning or removing the device. Compared to replacing aortic valves, percutaneous mitral valve replacement faces unique anatomical obstacles that render percutaneous mitral valve replacement significantly more challenging than aortic valve replacement. First, unlike relatively symmetric and uniform aortic valves, the mitral valve annulus has a non-circular D-shape or kidney-like shape, with a non-planar, saddle-like geometry often lacking symmetry. The complex and highly variable anatomy of mitral valves makes it difficult to design a mitral valve prosthesis that conforms well to the native mitral annulus of specific patients. As a result, the prosthesis may not fit well with the native leaflets and/or annulus, which can leave gaps that allows backflow of blood to occur. For example, placement of a cylindrical valve prosthesis in a native mitral valve may leave gaps in commissural regions of the native valve through which perivalvular leaks may occur.


Current prosthetic valves developed for percutaneous aortic valve replacement are unsuitable for use in mitral valves. First, many of these devices require a direct, structural connection between the stent-like structure that contacts the annulus and/or leaflets and the prosthetic valve. In several devices, the stent posts which support the prosthetic valve also contact the annulus or other surrounding tissue. These types of devices directly transfer the forces exerted by the tissue and blood as the heart contracts to the valve support and the prosthetic leaflets, which in turn distorts the valve support from its desired cylindrical shape. This is a concern because most cardiac replacement devices use tri-leaflet valves, which require a substantially symmetric, cylindrical support around the prosthetic valve for proper opening and closing of the three leaflets over years of life. As a result, when these devices are subject to movement and forces from the annulus and other surrounding tissues, the prostheses may be compressed and/or distorted causing the prosthetic leaflets to malfunction. Moreover, a diseased mitral annulus is much larger than any available prosthetic aortic valve. As the size of the valve increases, the forces on the valve leaflets increase dramatically, so simply increasing the size of an aortic prosthesis to the size of a dilated mitral valve annulus would require dramatically thicker, taller leaflets, and might not be feasible.


In addition to its irregular, complex shape, which changes size over the course of each heartbeat, the mitral valve annulus lacks a significant amount of radial support from surrounding tissue. Compared to aortic valves, which are completely surrounded by fibro-elastic tissue that provides sufficient support for anchoring a prosthetic valve, mitral valves are bound by muscular tissue on the outer wall only. The inner wall of the mitral valve anatomy is bound by a thin vessel wall separating the mitral valve annulus from the inferior portion of the aortic outflow tract. As a result, significant radial forces on the mitral annulus, such as those imparted by an expanding stent prostheses, could lead to collapse of the inferior portion of the aortic tract. Moreover, larger prostheses exert more force and expand to larger dimensions, which exacerbates this problem for mitral valve replacement applications.


The chordae tendineae of the left ventricle may also present an obstacle in deploying a mitral valve prosthesis. Unlike aortic valves, mitral valves have a maze of cordage under the leaflets in the left ventricle that restrict the movement and position of a deployment catheter and the replacement device during implantation. As a result, deploying, positioning and anchoring a valve replacement device on the ventricular side of the native mitral valve annulus is complicated.


Embodiments of the present technology provide systems, methods and apparatus to treat heart valves of the body, such as the mitral valve, that address the challenges associated with the anatomy of the mitral valve and provide for repositioning and removal of a partially deployed device. The apparatus and methods enable a percutaneous approach using a catheter delivered intravascularly through a vein or artery into the heart, or through a cannula inserted through the heart wall. For example, the apparatus and methods are particularly well-suited for trans-septal and trans-apical approaches, but can also be trans-atrial and direct aortic delivery of a prosthetic replacement valve to a target location in the heart. Additionally, the embodiments of the devices and methods as described herein can be combined with many known surgeries and procedures, such as known methods of accessing the valves of the heart (e.g., the mitral valve or triscuspid valve) with antegrade or retrograde approaches, and combinations thereof.


The systems and methods described herein facilitate controlled delivery of a prosthetic heart valve device using trans-apical or trans-septal delivery approaches and allow resheathing of the prosthetic heart valve device after partial deployment of the device to reposition and/or remove the device. The delivery systems can include two independent fluid chambers that are interchangeably filled with fluid and drained of fluid to initiate deployment and resheathing of the prosthetic device. This facilitates hydraulic control and power for both proximal and distal movement of a capsule housing that provides for controlled delivery of the prosthetic heart valve device and inhibits uncontrolled movement of the delivery system resulting from forces associated with expansion of the prosthetic heart valve device (e.g., axial jumping, self-ejection, etc.). In addition, the hydraulic delivery systems disclosed herein can inhibit longitudinal translation of the prosthetic heart valve device relative to the treatment site while the prosthetic heart valve device moves between the containment configuration and the deployment configuration. This allows the clinician to position the sheathed prosthetic heart valve device at the desired target site for deployment, and then deploy the device at that target site without needing to compensate for any axial movement caused by deployment.


Access to the Mitral Valve


To better understand the structure and operation of valve replacement devices in accordance with the present technology, it is helpful to first understand approaches for implanting the devices. The mitral valve or other type of atrioventricular valve can be accessed through the patient's vasculature in a percutaneous manner. By percutaneous it is meant that a location of the vasculature remote from the heart is accessed through the skin, typically using a surgical cut down procedure or a minimally invasive procedure, such as using needle access through, for example, the Seldinger technique. The ability to percutaneously access the remote vasculature is well known and described in the patent and medical literature. Depending on the point of vascular access, access to the mitral valve may be antegrade and may rely on entry into the left atrium by crossing the inter-atrial septum (e.g., a trans-septal approach). Alternatively, access to the mitral valve can be retrograde where the left ventricle is entered through the aortic valve. Access to the mitral valve may also be achieved using a cannula via a trans-apical approach. Depending on the approach, the interventional tools and supporting catheter(s) may be advanced to the heart intravascularly and positioned adjacent the target cardiac valve in a variety of manners, as described herein.



FIG. 1 illustrates a stage of a trans-septal approach for implanting a valve replacement device. In a trans-septal approach, access is via the inferior vena cava IVC or superior vena cava SVC, through the right atrium RA, across the inter-atrial septum IAS, and into the left atrium LA above the mitral valve MV. As shown in FIG. 1, a catheter 1 having a needle 2 moves from the inferior vena cava IVC into the right atrium RA. Once the catheter 1 reaches the anterior side of the inter-atrial septum IAS, the needle 2 advances so that it penetrates through the septum, for example at the fossa ovalis FO or the foramen ovale into the left atrium LA. At this point, a guidewire replaces the needle 2 and the catheter 1 is withdrawn. FIG. 1 also shows the tricuspid valve TV between the right atrium RA and the right ventricle.



FIG. 2 illustrates a subsequent stage of a trans-septal approach in which guidewire 6 and guide catheter 4 pass through the inter-atrial septum IAS. The guide catheter 4 provides access to the mitral valve for implanting a valve replacement device in accordance with the technology.


In an alternative antegrade approach (not shown), surgical access may be obtained through an intercostal incision, preferably without removing ribs, and a small puncture or incision may be made in the left atrial wall. A guide catheter passes through this puncture or incision directly into the left atrium, sealed by a purse string-suture.


The antegrade or trans-septal approach to the mitral valve, as described above, can be advantageous in many respects. For example, antegrade approaches will usually enable more precise and effective centering and stabilization of the guide catheter and/or prosthetic valve device. The antegrade approach may also reduce the risk of damaging the chordae tendinae or other subvalvular structures with a catheter or other interventional tool. Additionally, the antegrade approach may decrease risks associated with crossing the aortic valve as in retrograde approaches. This can be particularly relevant to patients with prosthetic aortic valves, which cannot be crossed at all or without substantial risk of damage.



FIGS. 3 and 4 show examples of a retrograde approaches to access the mitral valve. Access to the mitral valve MV may be achieved from the aortic arch AA, across the aortic valve AV, and into the left ventricle LV below the mitral valve MV. The aortic arch AA may be accessed through a conventional femoral artery access route or through more direct approaches via the brachial artery, axillary artery, radial artery, or carotid artery. Such access may be achieved with the use of a guidewire 6. Once in place, a guide catheter 4 may be tracked over the guidewire 6. Alternatively, a surgical approach may be taken through an incision in the chest, preferably intercostally without removing ribs, and placing a guide catheter through a puncture in the aorta itself. The guide catheter 4 affords subsequent access to permit placement of the prosthetic valve device, as described in more detail herein. Retrograde approaches advantageously do not need a trans-septal puncture. Cardiologists also more commonly use retrograde approaches, and thus retrograde approaches are more familiar.



FIG. 5 shows a trans-apical approach via a trans-apical puncture. In this approach, access to the heart is via a thoracic incision, which can be a conventional open thoracotomy or sternotomy, or a smaller intercostal or sub-xyphoid incision or puncture. An access cannula is then placed through a puncture in the wall of the left ventricle at or near the apex of the heart. The catheters and prosthetic devices of the invention may then be introduced into the left ventricle through this access cannula. The trans-apical approach provides a shorter, straighter, and more direct path to the mitral or aortic valve. Further, because it does not involve intravascular access, the trans-apical approach does not require training in interventional cardiology to perform the catheterizations required in other percutaneous approaches.


Selected Embodiments of Delivery Systems for Prosthetic Heart Valve Devices



FIG. 6 is an isometric view of a hydraulic system 100 (“system 100”) for delivering a prosthetic heart valve device configured in accordance with an embodiment of the present technology. The system 100 includes a catheter 102 having an elongated catheter body 108 (“catheter body 108”) and a delivery capsule 106. The catheter body 108 can include a proximal portion 108a coupled to a hand held control unit 104 (“control unit 104”) and a distal portion 108b carrying the delivery capsule 106. The delivery capsule 106 can be configured to contain a prosthetic heart valve device 110 (shown schematically in broken lines). The control unit 104 can provide steering capability (e.g., 360 degree rotation of the delivery capsule 106, 180 degree rotation of the delivery capsule 106, 3-axis steering, 2-axis steering, etc.) used to deliver the delivery capsule 106 to a target site (e.g., to a native mitral valve) and deploy the prosthetic heart valve device 110 at the target site. The catheter 102 can be configured to travel over a guidewire 120, which can be used to guide the delivery capsule 106 into the native heart valve. The system 100 can also include a fluid assembly 112 configured to supply fluid to and receive fluid from the catheter 102 to hydraulically move the delivery capsule 106 and deploy the prosthetic heart valve device 110.


The fluid assembly 112 includes a fluid source 114 and a fluid line 116 fluidically coupling the fluid source 114 to the catheter 102. The fluid source 114 may contain a flowable substance (e.g., water, saline, etc.) in one or more reservoirs. The fluid line 116 can include one or more hoses, tubes, or other components (e.g., connectors, valves, etc.) through which the flowable substance can pass from the fluid source 114 to the catheter 102 and/or through which the flowable substance can drain from the catheter 102 to the fluid source 114. In other embodiments, the fluid line 116 can deliver the flowable substance to the catheter 102 from a first reservoir of the fluid source 114 and drain the flowable substance from the catheter 102 to a separate reservoir. The fluid assembly 112 can also include one or more pressurization devices (e.g., a pump), fluid connectors, fittings, valves, and/or other fluidic components that facilitate moving the fluid to and/or from the fluid source 114. As explained in further detail below, the movement of the flowable substance to and from the fluid assembly 112 can be used to deploy the prosthetic heart valve device 110 from the delivery capsule 106 and/or resheathe the prosthetic heart valve device 110 after at least partial deployment.


In certain embodiments, the fluid assembly 112 may comprise a controller 118 that controls the movement of fluid to and from the catheter 102. The controller 118 can include, without limitation, one or more computers, central processing units, processing devices, microprocessors, digital signal processors (DSPs), and/or application-specific integrated circuits (ASICs). To store information, for example, the controller 118 can include one or more storage elements, such as volatile memory, non-volatile memory, read-only memory (ROM), and/or random access memory (RAM). The stored information can include, pumping programs, patient information, and/or other executable programs. The controller 118 can further include a manual input device (e.g., a keyboard, a touch screen, etc.) and/or an automated input device (e.g., a computer, a data storage device, servers, network, etc.). In still other embodiments, the controller 118 may include different features and/or have a different arrangement for controlling the flow of fluid into and out of the fluid source 114.


The control unit 104 can include a control assembly 122 and a steering mechanism 124. For example, the control assembly 122 can include rotational elements, such as a knob, that can be rotated to rotate the delivery capsule 106 about its longitudinal axis 107. The control assembly 122 can also include features that allow a clinician to control the hydraulic deployment mechanisms of the delivery capsule 106 and/or the fluid assembly 112. For example, the control assembly 122 can include buttons, levers, and/or other actuators that initiate unsheathing and/or resheathing the prosthetic heart valve device 110. The steering mechanism 124 can be used to steer the catheter 102 through the anatomy by bending the distal portion 108b of the catheter body 108 about a transverse axis. In other embodiments, the control unit 104 may include additional and/or different features that facilitate delivering the prosthetic heart valve device 110 to the target site.


The delivery capsule 106 includes a housing 126 configured to carry the prosthetic heart valve device 110 in the containment configuration and, optionally, an end cap 128 that extends distally from the housing 126 and encloses the prosthetic heart valve device 110 in the housing 126. The end cap 128 can have an opening 130 at its distal end through which the guidewire 120 can be threaded to allow for guidewire delivery to the target site. As shown in FIG. 6, the end cap 128 can also have an atraumatic shape (e.g., a partially spherical shape, a frusto-conical shape, blunt configuration, rounded configuration, etc.) to facilitate atraumatic delivery of the delivery capsule 106 to the target site. In certain embodiments, the end cap 128 can also house a portion of the prosthetic heart valve device 110. The housing 126 and/or the end cap 128 can be made of metal, polymers, plastic, composites, combinations thereof, or other materials capable of holding the prosthetic heart valve device 110. As discussed in further detail below, the delivery capsule 106 is hydraulically driven via the control unit 104 and/or the fluid assembly 112 between a containment configuration for holding the prosthetic heart valve device 110 and a deployment configuration for at least partially deploying the prosthetic heart valve device 110 at the target site. The delivery capsule 106 also allows for resheathing of the prosthetic heart valve device 110 after it has been partially deployed.



FIG. 7A is a partially schematic illustration of a distal portion of the system 100 of FIG. 6 in the containment configuration positioned in a native mitral valve of a heart using a trans-apical delivery approach in accordance with embodiments of the present technology, and FIG. 7B is a partially schematic illustration of the system 100 in the deployment configuration. Referring to FIG. 7A, a guide catheter 140 can be positioned in a trans-apical opening 141 in the heart to provide access to the left ventricle LV, and the catheter 102 can extend through the guide catheter 140 such that the distal portion 108b of the catheter body 108 projects beyond the distal end of the guide catheter 140. The delivery capsule 106 is then positioned between a posterior leaflet PL and an anterior leaflet AL of a mitral valve MV. Using the control unit 104 (FIG. 6), the catheter body 108 can be moved in the superior direction (as indicated by arrow 149), the inferior direction (as indicated by arrow 151), and/or rotated along the longitudinal axis of the catheter body 108 to position the delivery capsule 106 at a desired location and orientation within the opening of the mitral valve MV.


Once at a target location, the delivery capsule 106 can be hydraulically driven from the containment configuration (FIG. 7A) towards the deployment configuration (FIG. 7B) to partially or fully deploy the prosthetic heart valve device 110 from the delivery capsule 106. For example, as explained in further detail below, the delivery capsule 106 can be hydraulically driven towards the deployment configuration by supplying a flowable liquid to a chamber of the delivery capsule 106 while also removing a flowable liquid from a separate chamber of the delivery capsule 106. The hydraulically controlled movement of the delivery capsule 106 is expected to reduce, limit, or substantially eliminate uncontrolled deployment of the prosthetic heart valve device 110 caused by forces associated with expansion of the prosthetic heart valve device 110, such as jumping, self-ejection, and/or other types of uncontrolled movement. For example, the delivery capsule 106 is expected to inhibit or prevent translation of the prosthetic heart valve device 110 relative to the catheter body 108 while at least a portion of the prosthetic heart valve device 110 expands.


Referring to FIG. 7B, in trans-apical delivery approaches, the prosthetic heart valve device 110 is deployed from the delivery capsule 106 by drawing the housing 126 proximally (i.e., further into the left ventricle LV) and, optionally, moving the end cap 128 distally (i.e., further into the left atrium LA). As the prosthetic heart valve device 110 exits the housing 126, the device 110 expands and presses against tissue on an inner surface of the annulus of the mitral valve MV to secure the device 110 in the mitral valve MV. The catheter 102 is also configured to partially or fully resheathe the prosthetic heart valve device 110 after partial deployment from the delivery capsule 106. For example, the delivery capsule 106 can be hydraulically driven back towards the containment configuration by transferring fluid into one chamber of the delivery capsule 106 and removing fluid from another chamber of the delivery capsule 106 in an opposite manner as that used for deployment. This resheathing ability allows the clinician to re-position the prosthetic heart valve device 110, in vivo, for redeployment within the mitral valve MV or remove the prosthetic heart valve device 110 from the patient after partial deployment. After full deployment of the prosthetic heart valve device 110, the end cap 128 can be drawn through the deployed prosthetic heart valve device 110 to again close the delivery capsule 106 and draw the catheter 102 proximally through the guide catheter 140 for removal from the patient. After removing the catheter 102, it can be cleaned and used to deliver additional prosthetic devices or it can be discarded.



FIGS. 8A and 8B are partially schematic cross-sectional views of the delivery system 100 of FIG. 6 in the containment configuration (FIG. 8A) and the deployment configuration (FIG. 8B) in accordance with an embodiment of the present technology. As shown in FIGS. 8A and 8B, the distal portion 108b of the elongated catheter body 108 carries the delivery capsule 106. The delivery capsule 106 includes the housing 126 and a platform 142 that together define, at least in part, a first chamber 144a and a second chamber 144b (referred to collectively as “the chambers 144”). The first chamber 144a and the second chamber 144b are fluidically sealed from each other and from a compartment 146 in the housing 126 that is configured to contain the prosthetic heart valve device 110. The chambers 144 can be filled and drained to hydraulically drive the delivery capsule 106 between the containment configuration (FIG. 8A) for holding the prosthetic heart valve device 110 and the deployment configuration (FIG. 8B) for at least partially deploying the prosthetic heart valve device 100. As shown in FIG. 8A, for example, the housing 126 of the delivery capsule 106 is urged proximally (in the direction of arrow 153) towards the deployment configuration when fluid is at least partially drained from the first chamber 144a (as indicated by arrow 159) while fluid is being delivered to the second chamber 144b (as indicated by arrow 157). The proximal translation of the housing 126 allows the prosthetic heart valve device 110 to at least partially deploy from the housing 126 (FIG. 8B) and expand such that it may engage surrounding tissue of a native mitral valve. As shown in FIG. 8B, the housing 126 is urged distally back towards the containment configuration to resheathe at least a portion of the prosthetic heart valve device 110 when fluid is at least partially drained from the second chamber 144b (as indicated by arrow 161) while fluid is being delivered into the first chamber 144b (as indicated by arrow 163).


The platform 142 extends at least partially between the inner wall of the housing 126 to divide the housing 126 into the first chamber 144a and the second chamber 144b. The platform 142 can be integrally formed as a part of the housing 126, such as an inwardly extending flange. Thus, the platform 142 can be made from the same material as the housing 126 (e.g., metal, polymers, plastic, composites, combinations thereof, or other). In other embodiments, the platform 142 may be a separate component that at least partially separates the two chambers 144 from each other.


As shown in FIGS. 8A and 8B, a fluid delivery shaft 148 (“shaft 148”) extends through the catheter body 108, into the housing 126 of the delivery capsule 106, and through the platform 142. At its proximal end (not shown), the shaft 148 is coupled to a fluid source (e.g., the fluid source 114 of FIG. 6) and includes one or more fluid lines 152 (identified individually as a first line 152a and a second line 152b) that can deliver and/or drain fluid to and/or from the chambers 144. The fluid lines 152 can be fluid passageways or lumens integrally formed within the shaft 148, such as channels through the shaft itself, or the fluid lines 152 may be tubes or hoses positioned within one or more hollow regions of the shaft 148. The first line 152a is in fluid communication with the first chamber 144a via a first opening 166a in the first fluid line 152a, and the second line 152b is in fluid communication with the second chamber 144b via a second opening 166b in the second fluid line 152b. In other embodiments, the first and second chambers 144a and 144b can be in fluid communication with more than one fluid line. For example, each chamber 144 may have a dedicated fluid delivery line and dedicated fluid drain line.


The shaft 148 can also include a first flange or pedestal 154a and a second flange or pedestal 154b (referred to together as “flanges 154”) that extend outwardly from the shaft 148 to define the proximal and distal ends of the first and second chambers 144a and 144b, respectively. Accordingly, the first chamber 144a is defined at a distal end by a proximal-facing surface of the platform 142, at a proximal end by a distally-facing surface of the first flange 154a, and by the interior wall of the housing 126 extending therebetween. The second chamber 144b is defined at a proximal end by a distal-facing surface of the platform 142, at a distal end by a proximally-facing surface of the second flange 154b, and by the interior wall of the housing 126 extending therebetween. The compartment 146 containing the prosthetic heart valve device 110 can be defined by a distal-facing surface of the second flange 154b, the end cap 128, and the interior wall of the housing 126 extending therebetween. The shaft 148 and the flanges 154 can be integrally formed or separate components, and can be made from metal, polymers, plastic, composites, combinations thereof, and/or other suitable materials for containing fluids. The flanges 148 are fixed with respect to the shaft 148. Sealing members 156 (identified individually as first through third sealing members 156a-c, respectively), such as O-rings, can be positioned around or within the flanges 154 and/or the platform 142 to fluidically seal the chambers 144 from other portions of the delivery capsule 106. For example, the first and second sealing members 156a and 156b can be positioned in recesses of the corresponding first and second flanges 154a and 154b to fluidically seal the flanges 154 against the interior wall of the housing 126, and the third sealing member 156c can be positioned within a recess of the platform 142 to fluidically seal the platform 142 to the shaft 148. In other embodiments, the system 100 can include additional and/or differently arranged sealing members to fluidically seal the chambers 144.


The fluid lines 152 are in fluid communication with a manifold 158 at a proximal portion of the system 100 and in communication with the fluid assembly 112 (FIG. 6). The manifold 158 may be carried by the control unit 104 (FIG. 6) or it may be integrated with the fluid assembly 112 (FIG. 6). As shown in FIGS. 8A and 8B, the manifold 158 can include a fluid delivery lumen 160 that bifurcates to allow for delivery of fluid to the first and second fluid lines 152a and 152b and a drain lumen 162 that bifurcates to allow for removal of fluid from the first and second fluid lines 152a and 152b. The delivery lumen 160 and the drain lumen 162 can be placed in fluid communication with the fluid source 114 (FIG. 6) to allow fluid to move between the fluid source 114 to the chambers 144. In other embodiments, each fluid line 152 can have a dedicated delivery lumen and a dedicated drain lumen, which are in turn fluidly coupled to separate fluid reservoirs in the fluid source 114 (FIG. 6).


The manifold 158 further includes one or more valves 164 (referred to individually as a first valve 164a and a second valve 164b) that regulate fluid flow to and from the chambers 144. The first valve 164a is in fluid communication with the first fluid line 152a, the delivery lumen 160 (or a portion thereof), and the drain line 162 (or a portion thereof) to regulate fluid to and from the first chamber 144a. The second valve 164b is in fluid communication with the second fluid line 152b, the delivery lumen 160 (or a portion thereof), and the drain line 162 (or a portion thereof) to regulate fluid to and from the second chamber 144b. The valves 164 can be three-way valves and/or other suitable valves for regulating fluid to and from the fluid lines 152.


As shown in FIG. 8A, in the initial containment configuration, the first chamber 144a is at least partially filled with fluid and the second chamber 144b includes little to no fluid. To fully or partially unsheathe the prosthetic heart valve device 110, the second valve 164b opens the second fluid line 152b and closes the drain line 162. This allows fluid to flow from the delivery lumen 160, through the second fluid line 152b, and into the second chamber 144b via the second opening 166b (as indicated by arrows 157), while simultaneously blocking fluid from draining into the drain line 162. As fluid is delivered to the second chamber 144b, fluid also drains from the first chamber 144a. To do this, the first valve 164a closes the first line 152a proximal to the first valve 164a (i.e., such that the first line 152a is not in fluid communication with the delivery lumen 160) and opens the drain lumen 162 so that fluid exits the first chamber 144a via the first opening 166a, travels along the first fluid line 152a, and into the drain lumen 162 via the first valve 164a (as indicated by arrows 159). In certain embodiments, fluid is transferred to the second chamber 144b and from the first chamber 144a simultaneously and, optionally, in equal quantities so that the same amount of fluid transferred out of the first chamber 144a is transferred into the second chamber 144b. In other embodiments, different amounts of fluid are drained from and transferred to the chambers 144. This concurrent transfer of fluid into the second chamber 144b while draining fluid from the first chamber 144a drives the housing 126 proximally in the direction of arrow 153, which unsheathes the prosthetic heart valve device 110 and allows it to at least partially expand. As shown in FIG. 8B, this proximal movement of the housing 126 creates an open chamber 170 defined by the distal facing surface of the housing 126 and the proximal-facing surface of the flange 154a.


As shown in FIG. 8B, during deployment of the prosthetic heart valve device 110, the delivery capsule 106 axially restrains an outflow portion of the prosthetic heart valve device 110 while an inflow portion of the prosthetic heart valve device 110 is deployed from the delivery capsule 106. After at least partial deployment, the fluid chambers 144 can be pressurized and drained in an inverse manner to move the housing 126 distally (in the direction of arrow 155) back toward the containment configuration and at least partially resheathe the prosthetic heart valve device 110. For resheathing, the second valve 164b is placed in fluid communication with the drain lumen 162 and closes the second fluid line 152b proximal to the second valve 164b so that fluid drains from the second chamber 144b via the second opening 166b, through the second fluid line 152b, and into the drain lumen 162 (as indicated by arrows 161). As fluid exits the second chamber 144b, fluid is also delivered to the first chamber 144a. That is, the first valve 164a is placed in fluid communication with the delivery lumen 160 to deliver fluid into the first chamber 144a via the first opening 166a of the first fluid line 152a (as indicated by arrows 163). Again, the fluid can be transferred simultaneously and/or in equal proportions from the second chamber 144b and to the first chamber 144a. This transfer of fluid into the first chamber 144a and from the second chamber 144b drives the housing 126 distally in the direction of arrow 155 to controllably resheathe the prosthetic heart valve device 110 such that at least a portion of the prosthetic heart valve device 110 is again positioned within the compartment 146. This partial or full resheathing of the prosthetic heart valve device 110 allows a clinician to reposition or remove the prosthetic heart valve device 110 after partial deployment. The hydraulic movement of the housing 126 is expected to provide controlled deployment and resheathing of the prosthetic heart valve device 110.


As the delivery capsule 106 moves between the containment configuration and the deployment configuration, the housing 126 moves slideably with respect to the longitudinal axis of the shaft 148, while the prosthetic heart valve device 110 at least substantially maintains its longitudinal position relative to the catheter body 108. That is, the delivery capsule 106 can substantially prevent longitudinal translation of the prosthetic heart valve device 110 relative to the catheter body 108 while the prosthetic heart valve device 110 moves between the containment configuration (FIG. 8A) and the deployment configuration (FIG. 8B). This allows the clinician to position the sheathed prosthetic heart valve device 110 at the desired target site for deployment, and then deploy the device 110 at that target site without needing to compensate for any axial movement of the device 110 as it reaches full expansion (e.g., as would need to be taken into account if the device 110 was pushed distally from the housing 126).


As further shown in FIGS. 8A and 8B, the system 100 may also include a biasing device 168 that acts on the housing 126 to urge the housing 126 toward the containment configuration. The biasing device 168 compresses as the housing 126 moves to the deployment configuration (FIG. 8B) to apply more force on the housing 126 in a distal direction toward the containment configuration. In certain embodiments, the biasing device 168 acts continuously on the housing 126 urging it toward the containment configuration, and in other embodiments the biasing device 168 only acts on the housing 126 as it is compressed during deployment. In the illustrated embodiment, the biasing device 168 is a spring, but in other embodiments the biasing device can include other features that urge the housing 126 toward the containment configuration. The biasing device 168 limits or substantially prevents opening of the delivery capsule 106 attributable to the forces produced by the expanding prosthetic heart valve device 110. For example, an unsheathed portion of the prosthetic heart valve device 110 can expand outwardly from the partially opened delivery capsule 106 while the biasing device 168 inhibits further opening of the delivery capsule 106.


The system 100 shown in FIGS. 8A and 8B allows for delivery of the prosthetic heart valve device 110 to a mitral valve from the left ventricle (e.g., via a trans-apical approach shown in FIGS. 7A and 7B). For example, the hydraulic delivery mechanism moves the housing 126 proximally toward the distal portion 108b of the catheter body 108 to deploy the prosthetic heart valve device 110 (e.g., as shown in FIG. 7A), and once the prosthetic heart valve device 110 is fully deployed, the end cap 128 can be moved proximally from the left atrium and into the left ventricle through the deployed device 110.



FIGS. 9A and 9B are side cross-sectional views of a distal portion of a delivery system 200 for a prosthetic heart valve device 110 in a retained state (FIG. 9A) and in a fully deployed state (FIG. 9B) in accordance with another embodiment of the present technology. The delivery system 200 can include various features at least generally similar to the features of the system 100 described above with reference to FIGS. 6-8B. For example, the delivery system 200 can be hydraulically driven by moving fluid to and from two separate chambers 144 (only the second chamber 144b shown in FIGS. 9A and 9B) to move the housing 126 between deployment and containment configurations. The delivery system 200 also includes the fluid delivery shaft 148 with flanges 154 that define the outer bounds of the chambers 144.


The delivery system 200 of FIGS. 9A and 9B further includes an engagement device 272 that is configured to maintain engagement between the delivery capsule 106 and the prosthetic heart valve device 110 after the prosthetic heart valve device 110 has been at least partially expanded. The engagement device 272 includes a shaft 274 that extends through (e.g., coaxially within) or alongside at least a portion of the fluid delivery shaft 148 and is controllable by a clinician from a proximal portion of the delivery system 200 (e.g., via the control unit 104 of FIG. 6). The shaft 274 can be a central or engagement shaft that includes a distal region 273 having a pedestal 276 with one or more engagement or attachment elements 278 that releasably mate with corresponding attachment features 280 extending from the outflow region of the prosthetic heart valve device 110.


The attachment elements 278 can be recesses or pockets that retain correspondingly shaped attachment features 280 (e.g., pins or projections) on an outflow region of the prosthetic heart valve device 110. For example, the attachment elements 278 can be circular pockets that receive eyelet-shaped attachment features 280 extending from the outflow region of the prosthetic heart valve device 110 and/or the attachment elements 278 can be T-shaped recesses that receive corresponding T-shaped attachment features 280 extending from the outflow region of the prosthetic heart valve device 110.



FIG. 9C is a top view of the pedestal 276 illustrating one arrangement of the attachment elements 278. The illustrated pedestal 276 includes four T-shaped recesses 281 spaced 90° apart from each other around the periphery of the pedestal 276 and circular pockets 283 spaced between the T-shaped recesses 281. The T-shaped recesses 281 may extend deeper into the pedestal 276 than the circular pockets 283 (e.g., as shown in FIGS. 9A and 9B), or the attachment elements 278 can have similar depths. In other embodiments, the pedestal 276 has different quantities and/or arrangements of T-shaped recesses 281 and/or the circular pockets 283 across the face of the pedestal 276. In further embodiments, the pedestal 276 can include differently shaped recesses and pockets that releasably mate with correspondingly-shaped attachment features on the prosthetic heart valve device 110. In still further embodiments, the engagement device 272 includes other features that releasably attach the prosthetic heart valve device 110 to the delivery system 200 before final release from the delivery system 200.


In the embodiment illustrated in FIGS. 9A and 9B, the second flange 154b includes a projection 282 that forms a recess 284 facing the prosthetic heart valve device 110, and the recess 284 at least partially receives the pedestal 276 to retain the attachment features 280 with the attachment elements 278. The projection 282 may extend toward the prosthetic heart valve device 110 beyond the surface of the pedestal 276 positioned therein such that the projection 282 at least partially constrains an end region of the prosthetic heart valve device 110 before full deployment. In other embodiments, the second flange 154b does not include the projection 282, and the pedestal 276 abuts an end surface of the second flange 154b and/or other outward-facing feature of the delivery capsule 106.


In operation, a clinician moves the delivery capsule 106 to the target site (e.g., in a native mitral valve) and hydraulically moves the housing 126 to unsheathe and at least partially expand the prosthetic heart valve device 110. When the prosthetic heart valve device 110 is substantially expanded (FIG. 9A), the engagement device 272 holds the prosthetic heart valve device 110 to the delivery system 200 in case the device 110 needs to be resheathed for repositioning or redeployment. This allows the clinician to again partially or fully resheathe the prosthetic heart valve device 110 to adjust its position or orientation with respect to the native valve. Referring to FIG. 9B, after the prosthetic heart valve device 110 is partially deployed at the appropriate location, the clinician can move the engagement shaft 274 in the direction of arrow 285 away from the remainder of the delivery capsule 106 and out of the recess 284 (e.g., in a distal direction when deployed trans-apically). This movement releases the mateably received attachment features 280 on the prosthetic heart valve device 110 from the corresponding attachment elements 278 to fully release the prosthetic heart valve device 110 from the delivery system 200. For example, the expansion of the previously restrained proximal-most portion of the prosthetic heart valve device 110 (e.g., restrained by the projection 282 of the flange 154b) results in a force that disengages the attachment features 280 from the attachment elements 278 and allows the device 110 to fully expand. In other embodiments, the engagement shaft 274 can remain stationary with respect to the prosthetic heart valve device 110 and the delivery capsule 106 (e.g., the housing 126, the flange 154b, etc.) can be moved away from the prosthetic heart valve device 110 (e.g., in a proximal direction when the device is deployed trans-apically) to disengage the attachment features 280 from the attachment elements 278.



FIGS. 10A-10C are a series of partially schematic illustrations of a distal portion of a hydraulic delivery system 300 deploying a prosthetic a prosthetic heart valve device 310 within a native mitral valve of a heart using a trans-septal approach in accordance with further embodiments of the present technology. The hydraulic delivery system 300 can include certain features generally similar the delivery systems 100, 200 described above with reference to FIGS. 6-9C. For example, the delivery system 300 includes a catheter 302 having an elongated catheter body 308 and a delivery capsule 306 at a distal portion 308b of the catheter body 308. The proximal portion of the catheter 302 can be coupled to a fluid system (e.g., the fluid assembly 112 of FIG. 6) and/or a manifold (e.g., the manifold 158 of FIGS. 8A and 8B) to hydraulically move the delivery capsule 306 between a containment configuration and a deployment configuration. The delivery system 300 facilitates trans-septal delivery of the prosthetic heart valve device 310 to the native mitral valve MV.


Referring to FIG. 10A, a puncture or opening 341 can be formed in an atrial region of a septum of the heart to access the left atrium LA. A guide catheter 340 can be positioned through the opening 341, and a guidewire 320 can extend through the guide catheter 340, through the mitral valve MV, and into the left ventricle LV. A delivery capsule 306 at a distal portion 308b of the elongated catheter body 308 can then be delivered to the left atrium LA from the guide catheter 340, advanced along the guidewire 320, and positioned at a target site between the posterior and anterior leaflets PL and AL of the mitral valve MV.


As shown in FIG. 10B, once at the target site in the mitral valve MV, the prosthetic heart valve device 310 can be deployed by removing a proximally positioned end cap 328 and moving a housing 326 of the delivery capsule 306 in a distal direction (i.e., downstream further into the left ventricle LV). In certain embodiments, fluid can be delivered and removed to/from chambers (not shown) of the delivery capsule 306 to hydraulically move the housing 326 toward the deployment configuration. This distal movement unsheathes the upstream or inflow portion of the prosthetic heart valve device 310 while the downstream or ventricular end of the prosthetic heart valve device 310 remains constrained within the housing 326. The unsheathed inflow portion can expand outward to contact tissue of the mitral valve MV. If the clinician elects to adjust the positioning of the prosthetic heart valve device 310, fluid can be delivered to and removed from the delivery capsule chambers in an opposite manner to hydraulically move the housing 326 toward the containment configuration and at least partially resheathe the prosthetic heart valve device 310. After the deployed inflow portion of the prosthetic heart valve device 310 is appropriately seated in the mitral valve MV, fluid can again be delivered to and removed from the delivery capsule chambers to again move the housing 326 distally toward the deployment configuration. As shown in FIG. 10C, fluid can be delivered/removed until the housing 326 fully unsheathes the prosthetic heart valve device 310 and the prosthetic heart valve device 310 expands against the mitral valve MV. In the fully deployed state, the delivery capsule 306 can then be returned to the containment configuration (e.g., with the housing 326 and the end cap 328 joined together), pulled through the left atrium LA, and removed from the heart.


In other embodiments, the system 100 of FIGS. 6-8B can be reconfigured to allow for deployment from the left atrium (e.g., via the trans-septal approach shown in FIGS. 10A-10C) in which case the housing 126 with the first and second chambers 144a and 144b has the opposite orientation shown in FIGS. 8A and 8B. That is, the end cap 128 is positioned adjacent to the distal portion 108b of the catheter body 108 and the housing 126 is located distally from the end cap 128 with the shaft 148 extending through or adjacent to the device 110 to allow fluid delivery to the chambers 144. To deploy the prosthetic heart valve device 110, fluid is removed from the first fluid chamber 144a while fluid is delivered to the second fluid chamber 144b, which moves the housing 126 distally (further into the left ventricle) to at least partially unsheathe the prosthetic heart valve device 110. To resheathe the prosthetic heart valve device 110, fluid is removed from the second fluid chamber 144b while fluid is delivered to the first fluid chamber 144a, moving the housing 126 proximally (toward the catheter body 108) toward the containment configuration.



FIGS. 11A and 11B are enlarged, partially schematic cross-sectional views of a distal portion of the trans-septal delivery system 300 in a partially expanded deployment configuration (FIG. 11A) and a resheathing or containment configuration (FIG. 11B) in accordance with an embodiment of the present technology. As discussed above, the delivery system 300 includes the delivery capsule 306 coupled to the distal portion 308b of the catheter body 308. The delivery capsule 306 includes the housing 326 and a platform 342 that define, at least in part, a first or deployment chamber 344a. The delivery system 300 further includes expandable member 390 coupled to the catheter body 308 and distal to the delivery capsule 306. The interior of the expandable member 390 defines a second or resheathing chamber 344b. The expandable member 390 can be a balloon or other expandable component in which a fluid can be contained and removed. The delivery system 300 can also include sealing features 356 (identified individually as a first sealing features 356a and a second sealing feature 356b), such as O-rings, to fluidically seal the deployment chamber 344a from a containment compartment 346 (FIG. 11B) in the housing 326 that carries the prosthetic heart valve device 310 and the expandable member 390. In other embodiments, the delivery system 300 can include additional sealing features for fluidically sealing the deployment chamber 344a and the resheathing chamber 344b.


As further shown in FIGS. 11A and 11B, a fluid delivery shaft 348 extends through the housing 326 and into the expandable member 390. The fluid delivery shaft 348 includes at least a first fluid line 352a in fluid communication with the deployment chamber 344a via a first opening 366a and a second fluid line 352b in fluid communication with the resheathing chamber 344b via a second opening 366b. The proximal portions of the fluid lines 352 can be in fluid communication with a manifold (not shown; e.g., the manifold 158 of FIGS. 8A and 8B) and/or a fluid system (not shown; e.g., the fluid assembly 112 of FIG. 6) to allow fluid to be delivered to and removed from the deployment and resheathing chambers 344a and 344b. In other embodiments, the first fluid line 352a and the second fluid line 352b can be separate components, such as two fluid delivery/removal shafts, one in fluid communication with the deployment chamber 344a and one in fluid communication with the resheathing chamber 344b. The fluid delivery shaft 348 can extend through the catheter body 308, adjacent to the catheter body 308. In other embodiments, the fluid delivery shaft 348 is omitted and the fluid lines 352 can be separate components that extend through the catheter body 308.


In various embodiments, the delivery system 300 can further include a distal end cap 392 positioned distal to the expandable member 390 and coupled to the distal portion 308b of the catheter body 308 and/or the fluid delivery shaft 348. The distal end cap 392 can be configured to seal the distal end of the expandable member 390 and/or may have an atraumatic shape (e.g., frusto-conical, partially spherical, etc.) to facilitate atraumatic delivery of the delivery capsule 306 to the target site. As shown in FIGS. 11A and 11B, the distal end cap 392 can also include an opening 330 that allows for guidewire delivery of the delivery capsule 306 to the target site.


The delivery capsule 306 can be hydraulically driven between a containment configuration in which the prosthetic heart valve device 310 is held in the compartment 346 of the housing 326 and the deployment configuration in which at least a portion of the prosthetic heart valve device 310 expands from the compartment 346. More specifically, in an initial containment state (e.g., as the delivery capsule 306 is delivered to the target site), the prosthetic heart valve device 310 is held in the compartment 346 of the housing 326 and the expandable member 390 is at least substantially empty (e.g., the configuration of the expandable member 390 shown in FIG. 11A). To begin deployment, fluid is delivered to the deployment chamber 344a via the first line 352a (e.g., as indicated by arrows 391 in FIG. 11A). Providing fluid to the deployment chamber 344a increases the pressure therein, thereby moving the housing 326 distally relative to the platform 342 and unsheathing the prosthetic heart valve device 310 (beginning with the atrial or inflow portion of the device 310). This unsheathing mechanism at least substantially prevents translation of the prosthetic heart valve device 310 relative to the catheter body 308 and the surrounding anatomy to facilitate positioning and deployment of the device 310.


As shown in FIG. 11B, the prosthetic heart valve device 310 can be at least partially resheathed after at least partial deployment. To resheathe the device 310, fluid is drained or removed from deployment chamber 344a (as indicated by arrows 393), while fluid is delivered to the expandable member 390 via the second line 352b (as indicated by arrows 395). The expansion of the expandable member 390 urges the housing 326 towards the containment configuration such that the prosthetic heart valve device 310 is at least partially resheathed and again positioned at least partially in the compartment 346 of the housing 326 (FIG. 11B). Accordingly, the delivery system 300 provides for controlled, hydraulic delivery of the prosthetic heart valve device 310 via a trans-septal delivery approach and also inhibits translation of the prosthetic heart valve device 310 during deployment and resheathing to facilitate accurate delivery to the target site.


Selected Embodiments of Prosthetic Heart Valve Devices


The hydraulic delivery systems 100, 200, 300 described above with reference to FIGS. 6-11B can be configured to deliver various prosthetic heart valve devices, such as prosthetic valve devices for replacement of the mitral valve and/or other valves (e.g., a bicuspid or tricuspid valve) in the heart of the patient. Examples of these prosthetic heart valve devices, system components, and associated methods are described in this section with reference to FIGS. 12A-25. Specific elements, substructures, advantages, uses, and/or other features of the embodiments described with reference to FIGS. 12A-25 can be suitably interchanged, substituted or otherwise configured with one another. Furthermore, suitable elements of the embodiments described with reference to FIGS. 12A-25 can be used as stand-alone and/or self-contained devices.



FIG. 12A is a side cross-sectional view and FIG. 12B is a top plan view of a prosthetic heart valve device (“device”) 1100 in accordance with an embodiment of the present technology. The device 1100 includes a valve support 1110, an anchoring member 1120 attached to the valve support 1110, and a prosthetic valve assembly 1150 within the valve support 1110. Referring to FIG. 12A, the valve support 1110 has an inflow region 1112 and an outflow region 1114. The prosthetic valve assembly 1150 is arranged within the valve support 1110 to allow blood to flow from the inflow region 1112 through the outflow region 1114 (arrows BF), but prevent blood from flowing in a direction from the outflow region 1114 through the inflow region 1112.


In the embodiment shown in FIG. 12A, the anchoring member 1120 includes a base 1122 attached to the outflow region 1114 of the valve support 1110 and a plurality of arms 1124 projecting laterally outward from the base 1122. The anchoring member 1120 also includes a fixation structure 1130 extending from the arms 1124. The fixation structure 1130 can include a first portion 1132 and a second portion 1134. The first portion 1132 of the fixation structure 1130, for example, can be an upstream region of the fixation structure 1130 that, in a deployed configuration as shown in FIG. 12A, is spaced laterally outward apart from the inflow region 1112 of the valve support 1110 by a gap G. The second portion 1134 of the fixation structure 1130 can be a downstream-most portion of the fixation structure 1130. The fixation structure 1130 can be a cylindrical ring (e.g., straight cylinder or conical), and the outer surface of the fixation structure 1130 can define an annular engagement surface configured to press outwardly against a native annulus of a heart valve (e.g., a mitral valve). The fixation structure 1130 can further include a plurality of fixation elements 1136 that project radially outward and are inclined toward an upstream direction. The fixation elements 1136, for example, can be barbs, hooks, or other elements that are inclined only in the upstream direction (e.g., a direction extending away from the downstream portion of the device 1100).


Referring still to FIG. 12A, the anchoring member 1120 has a smooth bend 1140 between the arms 1124 and the fixation structure 1130. For example, the second portion 1134 of the fixation structure 1130 extends from the arms 1124 at the smooth bend 1140. The arms 1124 and the fixation structure 1130 can be formed integrally from a continuous strut or support element such that the smooth bend 1140 is a bent portion of the continuous strut. In other embodiments, the smooth bend 1140 can be a separate component with respect to either the arms 1124 or the fixation structure 1130. For example, the smooth bend 1140 can be attached to the arms 1124 and/or the fixation structure 1130 using a weld, adhesive or other technique that forms a smooth connection. The smooth bend 1140 is configured such that the device 1100 can be recaptured in a capsule or other container after the device 1100 has been at least partially deployed.


The device 1100 can further include a first sealing member 1162 on the valve support 1110 and a second sealing member 1164 on the anchoring member 1120. The first and second sealing members 1162, 1164 can be made from a flexible material, such as Dacron® or another type of polymeric material. The first sealing member 1162 can cover the interior and/or exterior surfaces of the valve support 1110. In the embodiment illustrated in FIG. 12A, the first sealing member 1162 is attached to the interior surface of the valve support 1110, and the prosthetic valve assembly 1150 is attached to the first sealing member 1162 and commissure portions of the valve support 1110. The second sealing member 1164 is attached to the inner surface of the anchoring member 1120. As a result, the outer annular engagement surface of the fixation structure 1130 is not covered by the second sealing member 1164 so that the outer annular engagement surface of the fixation structure 1130 directly contacts the tissue of the native annulus.


The device 1100 can further include an extension member 1170. The extension member 1170 can be an extension of the second sealing member 1164, or it can be a separate component attached to the second sealing member 1164 and/or the first portion 1132 of the fixation structure 1130. The extension member 1170 can be a flexible member that, in a deployed state (FIG. 12A), flexes relative to the first portion 1132 of the fixation structure 1130. In operation, the extension member 1170 provides tactile feedback or a visual indicator (e.g., on echocardiographic or fluoroscopic imaging systems) to guide the device 1100 during implantation such that the device 1100 is located at a desired elevation and centered relative to the native annulus. As described below, the extension member 1170 can include a support member, such as a metal wire or other structure, that can be visualized via fluoroscopy or other imaging techniques during implantation. For example, the support member can be a radiopaque wire.



FIGS. 13A and 13B are cross-sectional views illustrating an example of the operation of the smooth bend 1140 between the arms 1124 and the fixation structure 1130 in the recapturing of the device 1100 after partial deployment. FIG. 13A schematically shows the device 1100 loaded into a capsule 1700 of a delivery system in a delivery state, and FIG. 13B schematically shows the device 1100 in a partially deployed state. Referring to FIG. 13A, the capsule 1700 has a housing 1702, a pedestal or support 1704, and a top 1706. In the delivery state shown in FIG. 13A, the device 1100 is in a low-profile configuration suitable for delivery through a catheter or cannula to a target implant site at a native heart valve.


Referring to FIG. 13B, the housing 1702 of the capsule 1700 has been moved distally such that the extension member 1170, fixation structure 1130 and a portion of the arms 1124 have been released from the housing 1702 in a partially deployed state. This is useful for locating the fixation structure 1130 at the proper elevation relative to the native valve annulus A such that the fixation structure 1130 expands radially outward into contact the inner surface of the native annulus A. However, the device 1100 may need to be repositioned and/or removed from the patient after being partially deployed. To do this, the housing 1702 is retracted (arrow R) back toward the fixation structure 1130. As the housing 1702 slides along the arms 1124, the smooth bend 1140 between the arms 1124 and the fixation structure 1130 allows the edge 1708 of the housing 1702 to slide over the smooth bend 1140 and thereby recapture the fixation structure 1130 and the extension member 1170 within the housing 1702. The device 1100 can then be removed from the patient or repositioned for redeployment at a better location relative to the native annulus A. Further aspects of prosthetic heart valve devices in accordance with the present technology and their interaction with corresponding delivery devices are described below with reference to FIGS. 14-25.



FIG. 14 is a top isometric view of an example of the device 1100. In this embodiment, the valve support 1110 defines a first frame (e.g., an inner frame) and fixation structure 1130 of the anchoring member 1120 defines a second frame (e.g., an outer frame) that each include a plurality of structural elements. The fixation structure 1130, more specifically, includes structural elements 1137 arranged in diamond-shaped cells 1138 that together form at least a substantially cylindrical ring when freely and fully expanded as shown in FIG. 14. The structural elements 1137 can be struts or other structural features formed from metal, polymers, or other suitable materials that can self-expand or be expanded by a balloon or other type of mechanical expander.


In several embodiments, the fixation structure 1130 can be a generally cylindrical fixation ring having an outwardly facing engagement surface. For example, in the embodiment shown in FIG. 14, the outer surfaces of the structural elements 1137 define an annular engagement surface configured to press outwardly against the native annulus in the deployed state. In a fully expanded state without any restrictions, the walls of the fixation structure 1130 are at least substantially parallel to those of the valve support 1110. However, the fixation structure 1130 can flex inwardly (arrow I) in the deployed state when it presses radially outwardly against the inner surface of the native annulus of a heart valve.


The embodiment of the device 1100 shown in FIG. 14 includes the first sealing member 1162 lining the interior surface of the valve support 1110, and the second sealing member 1164 along the inner surface of the fixation structure 1130. The extension member 1170 has a flexible web 1172 (e.g., a fabric) and a support member 1174 (e.g., metal or polymeric strands) attached to the flexible web 1172. The flexible web 1172 can extend from the second sealing member 1164 without a metal-to-metal connection between the fixation structure 1130 and the support member 1174. For example, the extension member 1170 can be a continuation of the material of the second sealing member 1164. Several embodiments of the extension member 1170 are thus a malleable or floppy structure that can readily flex with respect to the fixation structure 1130. The support member 1174 can have a variety of configurations and be made from a variety of materials, such as a double-serpentine structure made from Nitinol.



FIG. 15 is a side view and FIG. 16 is a bottom isometric view of the device 1100 shown in FIG. 14. Referring to FIG. 15, the arms 1124 extend radially outward from the base portion 1122 at an angle α selected to position the fixation structure 1130 radially outward from the valve support 1110 (FIG. 14) by a desired distance in a deployed state. The angle α is also selected to allow the edge 1708 of the delivery system housing 1702 (FIG. 13B) to slide from the base portion 1122 toward the fixation structure 1130 during recapture. In many embodiments, the angle α is 15°-75°, or more specifically 15°-60°, or still more specifically 30°-45°. The arms 1124 and the structural elements 1137 of the fixation structure 1130 can be formed from the same struts (i.e., formed integrally with each other) such that the smooth bend 1140 is a continuous, smooth transition from the arms 1124 to the structural elements 1137. This is expected to enable the edge 1708 of the housing 1702 to more readily slide over the smooth bend 1140 in a manner that allows the fixation structure 1130 to be recaptured in the housing 1702 of the capsule 1700 (FIG. 13B). Additionally, by integrally forming the arms 1124 and the structural elements 1137 with each other, it inhibits damage to the device 1100 at a junction between the arms 1124 and the structural elements 1137 compared to a configuration in which the arms 1124 and structural elements 1137 are separate components and welded or otherwise fastened to each other.


Referring to FIGS. 15 and 16, the arms 1124 are also separated from each other along their entire length from where they are connected to the base portion 1122 through the smooth bend 1140 (FIG. 15) to the structural elements 1137 of the fixation structure 1130. The individual arms 1124 are thus able to readily flex as the edge 1708 of the housing 1702 (FIG. 13B) slides along the arms 1124 during recapture. This is expected to reduce the likelihood that the edge 1708 of the housing 1702 will catch on the arms 1124 and prevent the device 1100 from being recaptured in the housing 1702.


In one embodiment, the arms 1124 have a first length from the base 1122 to the smooth bend 1140, and the structural elements 1137 of the fixation structure 1130 at each side of a cell 1138 (FIG. 14) have a second length that is less than the first length of the arms 1124. The fixation structure 1130 is accordingly less flexible than the arms 1124. As a result, the fixation structure 1130 is able to press outwardly against the native annulus with sufficient force to secure the device 1100 to the native annulus, while the arms 1124 are sufficiently flexible to fold inwardly when the device is recaptured in a delivery device.


In the embodiment illustrated in FIGS. 14-16, the arms 1124 and the structural elements 1137 are configured such that each arm 1124 and the two structural elements 1137 extending from each arm 1124 formed a Y-shaped portion 1142 (FIG. 16) of the anchoring member 1120. Additionally, the right-hand structural element 1137 of each Y-shaped portion 1142 is coupled directly to a left-hand structural element 1137 of an immediately adjacent Y-shaped portion 1142. The Y-shaped portions 1142 and the smooth bends 1140 are expected to further enhance the ability to slide the housing 1702 along the arms 1124 and the fixation structure 1130 during recapture.



FIG. 17 is a side view and FIG. 18 is a bottom isometric view of a prosthetic heart valve device (“device”) 1200 in accordance with another embodiment of the present technology. The device 1200 is shown without the extension member 1170 (FIGS. 14-16), but the device 1200 can further include the extension member 1170 described above. The device 1200 further includes extended connectors 1210 projecting from the base 1122 of the anchoring member 1120. Alternatively, the extended connectors 1210 can extend from the valve support 1110 (FIGS. 12A-16) in addition to or in lieu of extending from the base 1122 of the anchoring member 1120. The extended connectors 1210 can include a first strut 1212a attached to one portion of the base 1122 and a second strut 1212b attached to another portion of the base 1122. The first and second struts 1212a-b are configured to form a V-shaped structure in which they extend toward each other in a downstream direction and are connected to each other at the bottom of the V-shaped structure. The V-shaped structure of the first and second struts 1212a-b causes the extension connector 1210 to elongate when the device 1200 is in a low-profile configuration within the capsule 1700 (FIG. 13A) during delivery or partial deployment. When the device 1200 is fully released from the capsule 1700 (FIG. 13A) the extension connectors 1210 foreshorten to avoid interfering with blood flow along the left ventricular outflow tract.


The extended connectors 1210 further include an attachment element 1214 configured to releasably engage a delivery device. The attachment element 1214 can be a T-bar or other element that prevents the device 1200 from being released from the capsule 1700 (FIG. 13A) of a delivery device until desired. For example, a T-bar type attachment element 1214 can prevent the device 1200 from moving axially during deployment or partial deployment until the housing 1702 (FIG. 13A) moves beyond the portion of the delivery device engaged with the attachment elements 1214. This causes the attachment elements 1214 to disengage from the capsule 1700 (FIG. 13A) as the outflow region of the valve support 1110 and the base 1122 of the anchoring member 1120 fully expand to allow for full deployment of the device 1200.



FIG. 19 is a side view and FIG. 20 is a bottom isometric view of the device 1200 in a partially deployed state in which the device 1200 is still capable of being recaptured in the housing 1702 of the delivery device 1700. Referring to FIG. 19, the device 1200 is partially deployed with the fixation structure 1130 substantially expanded but the attachment elements 1214 (FIG. 17) still retained within the capsule 1700. This is useful for determining the accuracy of the position of the device 1200 and allowing blood to flow through the functioning replacement valve during implantation while retaining the ability to recapture the device 1200 in case it needs to be repositioned or removed from the patient. In this state of partial deployment, the elongated first and second struts 1212a-b of the extended connectors 1210 space the base 1122 of the anchoring member 1120 and the outflow region of the valve support 1110 (FIG. 12A) apart from the edge 1708 of the capsule 1700 by a gap G.


Referring to FIG. 20, the gap G enables blood to flow through the prosthetic valve assembly 1150 while the device 1200 is only partially deployed. As a result, the device 1200 can be partially deployed to determine (a) whether the device 1200 is positioned correctly with respect to the native heart valve anatomy and (b) whether proper blood flow passes through the prosthetic valve assembly 1150 while the device 1200 is still retained by the delivery system 1700. As such, the device 1200 can be recaptured if it is not in the desired location and/or if the prosthetic valve is not functioning properly. This additional functionality is expected to significantly enhance the ability to properly position the device 1200 and assess, in vivo, whether the device 1200 will operate as intended, while retaining the ability to reposition the device 1200 for redeployment or remove the device 1200 from the patient.



FIG. 21 is an isometric view of a valve support 1300 in accordance with an embodiment of the present technology. The valve support 1300 can be an embodiment of the valve support 1110 described above with respect to FIGS. 12A-20. The valve support 1300 has an outflow region 1302, an inflow region 1304, a first row 1310 of first hexagonal cells 1312 at the outflow region 1302, and a second row 1320 of second hexagonal cells 1322 at the inflow region 1304. For purposes of illustration, the valve support shown in FIG. 21 is inverted compared to the valve support 1110 shown in FIGS. 12A-20 such that the blood flows through the valve support 1300 in the direction of arrow BF. In mitral valve applications, the valve support 1300 would be positioned within the anchoring member 1120 (FIG. 12A) such that the inflow region 1304 would correspond to orientation of the inflow region 1112 in FIG. 12A and the outflow region 1302 would correspond to the orientation of the outflow region 1114 in FIG. 12A.


Each of the first hexagonal cells 1312 includes a pair of first longitudinal supports 1314, a downstream apex 1315, and an upstream apex 1316. Each of the second hexagonal cells 1322 can include a pair of second longitudinal supports 1324, a downstream apex 1325, and an upstream apex 1326. The first and second rows 1310 and 1312 of the first and second hexagonal cells 1312 and 1322 are directly adjacent to each other. In the illustrated embodiment, the first longitudinal supports 1314 extend directly from the downstream apexes 1325 of the second hexagonal cells 1322, and the second longitudinal supports 1324 extend directly from the upstream apexes 1316 of the first hexagonal cells 1312. As a result, the first hexagonal cells 1312 are offset from the second hexagonal cells 1322 around the circumference of the valve support 1300 by half of the cell width.


In the embodiment illustrated in FIG. 21, the valve support 1300 includes a plurality of first struts 1331 at the outflow region 1302, a plurality of second struts 1332 at the inflow region 1304, and a plurality of third struts 1333 between the first and second struts 1331 and 1332. Each of the first struts 1331 extends from a downstream end of the first longitudinal supports 1314, and pairs of the first struts 1331 are connected together to form first downstream V-struts defining the downstream apexes 1315 of the first hexagonal cells 1312. In a related sense, each of the second struts 1332 extends from an upstream end of the second longitudinal supports 1324, and pairs of the second struts 1332 are connected together to form second upstream V-struts defining the upstream apexes 1326 of the second hexagonal cells 1322. Each of the third struts 1333 has a downstream end connected to an upstream end of the first longitudinal supports 1314, and each of the third struts 1333 has an upstream end connected to a downstream end of one of the second longitudinal supports 1324. The downstream ends of the third struts 1333 accordingly define a second downstream V-strut arrangement that forms the downstream apexes 1325 of the second hexagonal cells 1322, and the upstream ends of the third struts 1333 define a first upstream V-strut arrangement that forms the upstream apexes 1316 of the first hexagonal cells 1312. The third struts 1333, therefore, define both the first upstream V-struts of the first hexagonal cells 1312 and the second downstream V-struts of the second hexagonal cells 1322.


The first longitudinal supports 1314 can include a plurality of holes 1336 through which sutures can pass to attach a prosthetic valve assembly and/or a sealing member. In the embodiment illustrated in FIG. 21, only the first longitudinal supports 1314 have holes 1336. However, in other embodiments the second longitudinal supports 1324 can also include holes either in addition to or in lieu of the holes 1336 in the first longitudinal supports 1314.



FIG. 22 is a side view and FIG. 23 is a bottom isometric view of the valve support 1300 with a first sealing member 1162 attached to the valve support 1300 and a prosthetic valve 1150 within the valve support 1300. The first sealing member 1162 can be attached to the valve support 1300 by a plurality of sutures 1360 coupled to the first longitudinal supports 1314 and the second longitudinal supports 1324. At least some of the sutures 1360 coupled to the first longitudinal supports 1314 pass through the holes 1336 to further secure the first sealing member 1162 to the valve support 1300.


Referring to FIG. 23, the prosthetic valve 1150 can be attached to the first sealing member 1162 and/or the first longitudinal supports 1314 of the valve support 1300. For example, the commissure portions of the prosthetic valve 1150 can be aligned with the first longitudinal supports 1314, and the sutures 1360 can pass through both the commissure portions of the prosthetic valve 1150 and the first sealing member 1162 where the commissure portions of the prosthetic valve 1150 are aligned with a first longitudinal support 1314. The inflow portion of the prosthetic valve 1150 can be sewn to the first sealing member 1162.


The valve support 1300 illustrated in FIGS. 21-23 is expected to be well suited for use with the device 1200 described above with reference to FIGS. 17-20. More specifically, the first struts 1331 cooperate with the extended connectors 1210 (FIGS. 17-20) of the device 1200 to separate the outflow portion of the prosthetic valve 1150 from the capsule 1700 (FIGS. 19-20) when the device 1200 is in a partially deployed state. The first struts 1331, for example, elongate when the valve support 1300 is not fully expanded (e.g., at least partially contained within the capsule 1700) and foreshorten when the valve support is fully expanded. This allows the outflow portion of the prosthetic valve 1150 to be spaced further apart from the capsule 1700 in a partially deployed state so that the prosthetic valve 1150 can at least partially function when the device 1200 (FIGS. 17-20) is in the partially deployed state. Therefore, the valve support 1300 is expected to enhance the ability to assess whether the prosthetic valve 1150 is fully operational in a partially deployed state.



FIGS. 24 and 25 are schematic side views of valve supports 1400 and 1500, respectively, in accordance with other embodiments of the present technology. Referring to FIG. 24, the valve support 1400 includes a first row 1410 of first of hexagonal cells 1412 and a second row 1420 of second hexagonal cells 1422. The valve 1400 can further include a first row 1430 of diamond-shaped cells extending from the first hexagonal cells 1412 and a second row 1440 of diamond-shaped cells extending from the second hexagonal cells 1422. The additional diamond-shaped cells elongate in the low-profile state, and thus they can further space the prosthetic valve 1150 (shown schematically) apart from a capsule of a delivery device. Referring to FIG. 25, the valve support 1500 includes a first row 1510 of first hexagonal cells 1512 at an outflow region 1502 and a second row 1520 of second hexagonal cells 1522 at an inflow region 1504. The valve support 1500 is shaped such that an intermediate region 1506 (between the inflow and outflow regions 1502 and 1504) has a smaller cross-sectional area than that of the outflow region 1502 and/or the inflow region 1504. As such, the first row 1510 of first hexagonal cells 1512 flares outwardly in the downstream direction and the second row 1520 of second hexagonal cells 1522 flares outwardly in the upstream direction.


EXAMPLES

Several aspects of the present technology are set forth in the following examples.


1. A system for delivering a prosthetic heart valve device into a heart of a patient, the system comprising:

    • an elongated catheter body; and
    • a delivery capsule carried by the elongated catheter body and configured to be hydraulically driven between a containment configuration for holding the prosthetic heart valve device and a deployment configuration for at least partially deploying the prosthetic heart valve device,
    • wherein the delivery capsule includes a housing and a platform, and wherein
      • the housing and the platform define, at least in part, a first chamber and a second chamber,
      • at least a portion of the delivery capsule is urged towards the deployment configuration when fluid is at least partially drained from the first chamber while fluid is delivered into the second chamber, and
      • at least a portion of the delivery capsule is urged towards the containment configuration to resheathe at least a portion of the prosthetic heart valve device when fluid is at least partially drained from the second chamber and delivered into the first chamber.


2. The system of example 1, further comprising a manifold at a proximal end region of the elongated catheter body and configured to receive the fluid for delivery to the first and/or second chambers, wherein the manifold comprises a first fluid lumen and first valve in fluid communication with the first chamber, and a second fluid lumen and a second valve in fluid communication with the second chamber.


3. The system of example 2 wherein the first and second valves are three-way valves.


4. The system of example 2 wherein the manifold is configured to be external to the patient during a implantation procedure.


5. The system of example 2 wherein the first fluid lumen is fluidly isolated from the second fluid lumen.


6. The system of any one of examples 1-5 wherein the delivery capsule is configured to axially restrain the prosthetic heart valve device while a first portion of the prosthetic heart valve device is deployed from the delivery capsule and to release an axially restrained portion of the prosthetic heart valve device while the first portion of the prosthetic heart valve device contacts tissue of a native valve of the heart of the patient.


7. The system of any one of examples 1-6 wherein the delivery capsule is configured to substantially prevent translation of the prosthetic heart valve device relative to the elongated catheter body while the prosthetic heart valve device moves between the containment configuration and the deployment configuration.


8. The system of any one of examples 1-7, further comprising a biasing device positioned along the catheter body and configured to urge the delivery capsule towards the containment configuration.


9. The system of example 8 wherein the biasing device comprises a spring positioned to be compressed as the delivery capsule moves towards the deployment configuration to deploy the prosthetic heart valve device when fluid is transferred to the first chamber.


10. The system of any one of examples 1-9, further comprising an engagement shaft extending through at least a portion of the elongated catheter body, wherein a distal end region of the engagement shaft is releasably coupled to the prosthetic heart valve device via one or more attachment elements, and wherein the one or attachment elements comprise pockets configured to mate with corresponding attachment features of the prosthetic heart valve device.


11. The system of example 10 wherein the attachment features comprise eyelet shaped projections configured to releasably engage corresponding pockets at the distal end region of the engagement shaft.


12. The system of example 10 wherein the attachment features comprise T-shaped projections configured to releasably mate with corresponding T-shaped pockets at the distal end region of the engagement shaft.


13. A system for delivering a prosthetic heart valve device for implantation at a native heart valve of a patient, the system comprising:

    • an elongated catheter body;
    • a delivery capsule coupled to the elongated catheter body and configured to contain the prosthetic heart valve device, wherein
      • the delivery capsule is configured to be hydraulically driven between a containment configuration for holding the prosthetic heart valve device and a deployment configuration for deploying at least a portion of the prosthetic heart valve device,
      • the delivery capsule includes a housing and a platform that define, at least in part, a deployment chamber; and
    • an expandable member coupled to the elongated catheter body and distal to the delivery capsule, wherein the expandable member is configured to urge the delivery capsule towards the containment configuration and resheathe at least a portion of the prosthetic heart valve device when fluid is at least partially drained from the deployment chamber while fluid is delivered to the expandable member.


14. The system of example 13 wherein the delivery capsule is configured to substantially prevent translation of the prosthetic heart valve device relative to the elongated catheter body while the prosthetic heart valve device is at least partially resheathed.


15. The system of example 13 or 14 wherein the delivery capsule further comprises a containment chamber configured to contain the prosthetic heart valve device, and wherein the containment chamber is fluidically sealed from the deployment chamber via the platform.


16. The system of any one of examples 13-15 wherein the expandable member is a balloon.


17. A method for delivering a prosthetic heart valve device to a native mitral valve of a heart of a human patient, the method comprising:

    • positioning a delivery capsule of an elongated catheter body within the heart, the delivery capsule carrying the prosthetic heart valve device;
    • delivering fluid to a first chamber within the delivery capsule to move the prosthetic heart valve device from a containment configuration within the delivery capsule to a deployment configuration, wherein the first chamber is proximal to the prosthetic heart valve device;
    • while fluid is delivered to the first chamber, draining fluid from a second chamber within the delivery capsule, wherein the second chamber is proximal to the prosthetic heart valve device; and
    • allowing the prosthetic heart valve device to radially expand to engage tissue of the native mitral valve when the delivery capsule moves from the containment configuration towards the deployment configuration.


18. The method of example 17, further comprising:

    • urging the delivery capsule toward the containment configuration to resheathe the prosthetic heart valve device after allowing the prosthetic heart valve device to at least partially radially expand, wherein urging the delivery capsule toward the containment configuration comprises
      • draining fluid from the first chamber; and
      • while draining fluid from the first chamber, delivering fluid to the second chamber.


19. The method of example 17 or 18 wherein:

    • delivering fluid to the first chamber comprises delivering fluid from a manifold at a proximal portion of the elongated catheter body via a first fluid lumen; and
    • draining fluid from the second chamber comprises removing fluid via a second fluid lumen to the manifold.


20. The method of any one of examples 17-19 wherein delivering fluid to the first chamber and draining fluid from the second chamber at least substantially prevents translation of the prosethetic heart valve device relative to the elongated catheter body while the prosthetic heart valve device moves from the containment configuration to the deployment configuration.


21. The method of any one of examples 17-20, further comprising restraining a distal portion of the prosthetic heart valve device as the prosthetic heart valve device moves between the containment and deployment configurations, wherein the distal portion of the prosthetic heart valve device comprises attachment elements that releasably couple to pockets at a distal end region of an engagement shaft that extends through the elongated catheter body.


22. The method of example 21, further comprising moving the engagement shaft distally relative to the delivery capsule to release the restrained distal portion of the distal end region of the engagement shaft and fully expand the prosthetic heart valve device.


CONCLUSION

The above detailed descriptions of embodiments of the technology are not intended to be exhaustive or to limit the technology to the precise form disclosed above. Although specific embodiments of, and examples for, the technology are described above for illustrative purposes, various equivalent modifications are possible within the scope of the technology as those skilled in the relevant art will recognize. For example, although steps are presented in a given order, alternative embodiments may perform steps in a different order. The various embodiments described herein may also be combined to provide further embodiments.


From the foregoing, it will be appreciated that specific embodiments of the technology have been described herein for purposes of illustration, but well-known structures and functions have not been shown or described in detail to avoid unnecessarily obscuring the description of the embodiments of the technology. Where the context permits, singular or plural terms may also include the plural or singular term, respectively.


Moreover, unless the word “or” is expressly limited to mean only a single item exclusive from the other items in reference to a list of two or more items, then the use of “or” in such a list is to be interpreted as including (a) any single item in the list, (b) all of the items in the list, or (c) any combination of the items in the list. Additionally, the term “comprising” is used throughout to mean including at least the recited feature(s) such that any greater number of the same feature and/or additional types of other features are not precluded. It will also be appreciated that specific embodiments have been described herein for purposes of illustration, but that various modifications may be made without deviating from the technology. Further, while advantages associated with certain embodiments of the technology have been described in the context of those embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the technology. Accordingly, the disclosure and associated technology can encompass other embodiments not expressly shown or described herein.

Claims
  • 1. A system for delivering a prosthetic heart valve device into a heart of a patient, the system comprising: an elongated catheter body; anda delivery capsule carried by the elongated catheter body and configured to be hydraulically driven between a containment configuration for holding the prosthetic heart valve device and a deployment configuration for at least partially deploying the prosthetic heart valve device, wherein the delivery capsule includes a housing and a platform, wherein the housing and the platform define boundaries of a first chamber and a second chamber; anda manifold at a proximal end region of the elongated catheter body and configured to receive fluid for delivery to at least one of the first or second chambers, wherein the manifold comprises a first fluid lumen and first valve in fluid communication with the first chamber, and a second fluid lumen and a second valve in fluid communication with the second chamber,wherein at least a portion of the delivery capsule is urged proximally towards the deployment configuration when fluid is at least partially drained from the first chamber while fluid is delivered into the second chamber, andwherein at least a portion of the delivery capsule is urged distally towards the containment configuration to resheathe at least a portion of the prosthetic heart valve device when fluid is at least partially drained from the second chamber and delivered into the first chamber.
  • 2. The system of claim 1 wherein the first and second valves are three-way valves.
  • 3. The system of claim 1 wherein the manifold is configured to be external to the patient during an implantation procedure.
  • 4. The system of claim 1 wherein the first fluid lumen is fluidly isolated from the second fluid lumen.
  • 5. The system of claim 1 wherein the delivery capsule is configured to axially restrain the prosthetic heart valve device while a first portion of the prosthetic heart valve device is deployed from the delivery capsule and to release an axially restrained portion of the prosthetic heart valve device while the first portion of the prosthetic heart valve device contacts tissue of a native valve of the heart of the patient.
  • 6. The system of claim 1 wherein the delivery capsule is configured to substantially prevent translation of the prosthetic heart valve device relative to the elongated catheter body while the delivery capsule transitions between the containment configuration and the deployment configuration.
  • 7. The system of claim 1, further comprising a biasing device positioned along the elongated catheter body and configured to urge the delivery capsule towards the containment configuration.
  • 8. The system of claim 7 wherein the biasing device comprises a spring positioned to be compressed as the delivery capsule moves towards the deployment configuration to deploy the prosthetic heart valve device when fluid is transferred to the first chamber.
  • 9. The system of claim 1, further comprising an engagement shaft extending through at least a portion of the elongated catheter body, wherein a distal end region of the engagement shaft is releasably coupled to the prosthetic heart valve device via one or more attachment elements, and wherein the one or more attachment elements comprise pockets configured to mate with corresponding attachment features of the prosthetic heart valve device.
  • 10. The system of claim 9 wherein the attachment features comprise eyelet shaped projections configured to releasably engage corresponding pockets at the distal end region of the engagement shaft.
  • 11. The system of claim 9 wherein the attachment features comprise T-shaped projections configured to releasably mate with corresponding T-shaped pockets at the distal end region of the engagement shaft.
US Referenced Citations (780)
Number Name Date Kind
3526219 Balanmuth Sep 1970 A
3565062 Kuris Feb 1971 A
3589363 Banko et al. Jun 1971 A
3667474 Lapkin et al. Jun 1972 A
3823717 Pohlman et al. Jul 1974 A
3861391 Antonevich et al. Jan 1975 A
3896811 Storz Jul 1975 A
4042979 Angell Aug 1977 A
4188952 Loschilov et al. Feb 1980 A
4282882 Langham Aug 1981 A
4431006 Trimmer et al. Feb 1984 A
4445509 Auth May 1984 A
4484579 Meno et al. Nov 1984 A
4490859 Black et al. Jan 1985 A
4587958 Noguchi et al. May 1986 A
4589419 Laughlin et al. May 1986 A
4602911 Ahmadi et al. Jul 1986 A
4646736 Auth Mar 1987 A
4649922 Wiktor Mar 1987 A
4692139 Stiles Sep 1987 A
4747821 Kensey et al. May 1988 A
4750902 Wuchinich et al. Jun 1988 A
4777951 Cribier et al. Oct 1988 A
4787388 Hofmann Nov 1988 A
4796629 Grayzel Jan 1989 A
4808153 Parisi Feb 1989 A
4819751 Shimada et al. Apr 1989 A
4841977 Griffith et al. Jun 1989 A
4870953 DonMicheal et al. Oct 1989 A
4878495 Grayzel Nov 1989 A
4898575 Fischell et al. Feb 1990 A
4909252 Goldberger Mar 1990 A
4919133 Chiang Apr 1990 A
4920954 Alliger et al. May 1990 A
4936281 Stasz Jun 1990 A
4960411 Buchbinder Oct 1990 A
4986830 Owens et al. Jan 1991 A
4990134 Auth Feb 1991 A
5058570 Idemoto et al. Oct 1991 A
5069664 Guess et al. Dec 1991 A
5076276 Sakurai et al. Dec 1991 A
5106302 Farzin-Nia et al. Apr 1992 A
5248296 Alliger Sep 1993 A
5267954 Nita Dec 1993 A
5269291 Carter Dec 1993 A
5295958 Shturman Mar 1994 A
5304115 Pflueger et al. Apr 1994 A
5314407 Auth et al. May 1994 A
5318014 Carter Jun 1994 A
5332402 Teitelbaum Jul 1994 A
5344426 Lau et al. Sep 1994 A
5352199 Tower Oct 1994 A
5356418 Shturman Oct 1994 A
5397293 Alliger et al. Mar 1995 A
5411025 Webster, Jr. May 1995 A
5411552 Andersen et al. May 1995 A
5443446 Shturman Aug 1995 A
5449373 Pinchasik et al. Sep 1995 A
5489297 Duran Feb 1996 A
5584879 Reimold et al. Dec 1996 A
5609151 Mulier et al. Mar 1997 A
5626603 Venturelli et al. May 1997 A
5656036 Palmaz Aug 1997 A
5662671 Barbut et al. Sep 1997 A
5681336 Clement et al. Oct 1997 A
5695507 Auth et al. Dec 1997 A
5725494 Brisken Mar 1998 A
5782931 Yang et al. Jul 1998 A
5817101 Fiedler Oct 1998 A
5827229 Auth et al. Oct 1998 A
5827321 Roubin et al. Oct 1998 A
5840081 Andersen et al. Nov 1998 A
5853422 Huebsch et al. Dec 1998 A
5855601 Bessler et al. Jan 1999 A
5868781 Killion Feb 1999 A
5873811 Wang et al. Feb 1999 A
5904679 Clayman May 1999 A
5910129 Koblish et al. Jun 1999 A
5957882 Nita et al. Sep 1999 A
5972004 Williamson, IV et al. Oct 1999 A
5989208 Nita Nov 1999 A
5989280 Euteneuer et al. Nov 1999 A
6047700 Eggers et al. Apr 2000 A
6056759 Fiedler May 2000 A
6085754 Alferness et al. Jul 2000 A
6113608 Monroe et al. Sep 2000 A
RE36939 Tachibana et al. Oct 2000 E
6129734 Shturman et al. Oct 2000 A
6132444 Shturman et al. Oct 2000 A
6159139 Chiu Dec 2000 A
6168579 Tsugita Jan 2001 B1
6217595 Shturman et al. Apr 2001 B1
6254635 Schroeder et al. Jul 2001 B1
6295712 Shturman et al. Oct 2001 B1
6306414 Koike Oct 2001 B1
6321109 Ben-Haim et al. Nov 2001 B2
6402679 Mortier et al. Jun 2002 B1
6423032 Parodi Jul 2002 B2
6425916 Garrison et al. Jul 2002 B1
6440164 DiMatteo et al. Aug 2002 B1
6454737 Nita et al. Sep 2002 B1
6454757 Nita et al. Sep 2002 B1
6454799 Schreck Sep 2002 B1
6458153 Bailey et al. Oct 2002 B1
6461382 Cao Oct 2002 B1
6494890 Shturman et al. Dec 2002 B1
6494891 Cornish et al. Dec 2002 B1
6505080 Sutton Jan 2003 B1
6514261 Randall Feb 2003 B1
6530952 Vesely Mar 2003 B2
6540782 Snyders Apr 2003 B1
6562067 Mathis May 2003 B2
6565588 Clement et al. May 2003 B1
6569196 Vesely May 2003 B1
6579308 Jansen et al. Jun 2003 B1
6582460 Cryer Jun 2003 B1
6582462 Andersen et al. Jun 2003 B1
6595912 Lau et al. Jul 2003 B2
6605109 Fiedler Aug 2003 B2
6616689 Ainsworth et al. Sep 2003 B1
6623452 Chien et al. Sep 2003 B2
6638288 Shturman et al. Oct 2003 B1
6648854 Patterson et al. Nov 2003 B1
6689086 Nita et al. Feb 2004 B1
6702748 Nita et al. Mar 2004 B1
6730121 Ortiz et al. May 2004 B2
6746463 Schwartz Jun 2004 B1
6811801 Nguyen et al. Nov 2004 B2
6818001 Wulfman et al. Nov 2004 B2
6843797 Nash et al. Jan 2005 B2
6852118 Shturman et al. Feb 2005 B2
6855123 Nita Feb 2005 B2
6869439 White et al. Mar 2005 B2
6951571 Srivastava Oct 2005 B1
6986775 Morales et al. Jan 2006 B2
7018404 Holmberg et al. Mar 2006 B2
7052487 Cohn et al. May 2006 B2
7077861 Spence Jul 2006 B2
7125420 Rourke et al. Oct 2006 B2
7163552 Diaz Jan 2007 B2
7186264 Liddicoat et al. Mar 2007 B2
7261732 Justino Aug 2007 B2
7296577 Lashinski et al. Nov 2007 B2
7381218 Schreck Jun 2008 B2
7404824 Webler et al. Jul 2008 B1
7442204 Schwammenthal et al. Oct 2008 B2
7473275 Marquez Jan 2009 B2
7510575 Spenser et al. Mar 2009 B2
7585321 Cribier Sep 2009 B2
7588582 Starksen et al. Sep 2009 B2
7621948 Herrmann et al. Nov 2009 B2
7708775 Rowe et al. May 2010 B2
7748389 Salahieh et al. Jul 2010 B2
7753922 Starksen Jul 2010 B2
7753949 Lamphere et al. Jul 2010 B2
7803168 Gifford et al. Sep 2010 B2
7857845 Stacchino et al. Dec 2010 B2
7896915 Guyenot et al. Mar 2011 B2
7942928 Webler et al. May 2011 B2
7985238 Balgobin et al. Jul 2011 B2
8002826 Seguin Aug 2011 B2
8052750 Tuval et al. Nov 2011 B2
8062355 Figulla et al. Nov 2011 B2
8109996 Stacchino et al. Feb 2012 B2
8114154 Righini et al. Feb 2012 B2
8252051 Chau et al. Aug 2012 B2
8398704 Straubinger et al. Mar 2013 B2
8403981 Forster et al. Mar 2013 B2
8403983 Quadri et al. Mar 2013 B2
8414643 Tuval et al. Apr 2013 B2
8449599 Chau et al. May 2013 B2
8496671 Hausen Jul 2013 B1
8512252 Ludomirsky et al. Aug 2013 B2
8518107 Tsukashima et al. Aug 2013 B2
8523883 Saadat Sep 2013 B2
8532352 Ionasec et al. Sep 2013 B2
8540767 Zhang Sep 2013 B2
8545551 Loulmet Oct 2013 B2
8551161 Dolan Oct 2013 B2
8579788 Orejola Nov 2013 B2
8579964 Lane et al. Nov 2013 B2
8585755 Chau et al. Nov 2013 B2
8597347 Maurer et al. Dec 2013 B2
8597348 Rowe et al. Dec 2013 B2
8608796 Matheny Dec 2013 B2
8608797 Gross et al. Dec 2013 B2
8623077 Cohn Jan 2014 B2
8628566 Eberhardt et al. Jan 2014 B2
8632585 Seguin et al. Jan 2014 B2
8632586 Spenser et al. Jan 2014 B2
8634935 Gaudiani Jan 2014 B2
8647254 Callas et al. Feb 2014 B2
8652203 Quadri et al. Feb 2014 B2
8652204 Quill et al. Feb 2014 B2
8657872 Seguin Feb 2014 B2
8672998 Lichtenstein et al. Mar 2014 B2
8673001 Cartledge et al. Mar 2014 B2
8679176 Matheny Mar 2014 B2
8685086 Navia et al. Apr 2014 B2
8688234 Zhu et al. Apr 2014 B2
8690858 Machold et al. Apr 2014 B2
8709074 Solem et al. Apr 2014 B2
8712133 Guhring et al. Apr 2014 B2
8715160 Raman et al. May 2014 B2
8721665 Oz et al. May 2014 B2
8721718 Kassab May 2014 B2
8740918 Seguin Jun 2014 B2
8747460 Tuval et al. Jun 2014 B2
8758431 Orlov et al. Jun 2014 B2
8758432 Solem Jun 2014 B2
8771292 Allen et al. Jul 2014 B2
8771345 Tuval et al. Jul 2014 B2
8771346 Tuval et al. Jul 2014 B2
8777991 Zarbatany et al. Jul 2014 B2
8778016 Janovsky et al. Jul 2014 B2
8781580 Hedberg et al. Jul 2014 B2
8784482 Rahdert et al. Jul 2014 B2
8792699 Guetter et al. Jul 2014 B2
8795356 Quadri et al. Aug 2014 B2
8801779 Seguin et al. Aug 2014 B2
8808356 Braido et al. Aug 2014 B2
8808366 Braido et al. Aug 2014 B2
8812431 Voigt et al. Aug 2014 B2
8828043 Chambers Sep 2014 B2
8845717 Khairkhahan et al. Sep 2014 B2
8845723 Spence et al. Sep 2014 B2
8852213 Gammie et al. Oct 2014 B2
8852272 Gross et al. Oct 2014 B2
8858622 Machold et al. Oct 2014 B2
8859724 Meier et al. Oct 2014 B2
8864822 Spence et al. Oct 2014 B2
8870936 Rowe Oct 2014 B2
8870948 Erzberger et al. Oct 2014 B1
8870949 Rowe Oct 2014 B2
8894702 Quadri et al. Nov 2014 B2
8900214 Nance et al. Dec 2014 B2
8900295 Migliazza et al. Dec 2014 B2
8926694 Costello Jan 2015 B2
8932348 Solem et al. Jan 2015 B2
8951285 Sugimoto et al. Feb 2015 B2
8961597 Subramanian et al. Feb 2015 B2
8968393 Rothstein Mar 2015 B2
8968395 Hauser et al. Mar 2015 B2
8974445 Warnking et al. Mar 2015 B2
8979922 Jayasinghe et al. Mar 2015 B2
8979923 Spence et al. Mar 2015 B2
8986370 Annest Mar 2015 B2
8986376 Solem Mar 2015 B2
8992604 Gross et al. Mar 2015 B2
9011522 Annest Apr 2015 B2
9011523 Seguin Apr 2015 B2
9017399 Gross et al. Apr 2015 B2
9023098 Kuehn May 2015 B2
9023100 Quadri et al. May 2015 B2
9023101 Krahbichler May 2015 B2
9050188 Schweich, Jr. et al. Jun 2015 B2
9066800 Clague et al. Jun 2015 B2
9084676 Chau et al. Jul 2015 B2
9095433 Lutter et al. Aug 2015 B2
9119713 Board et al. Sep 2015 B2
9132009 Hacohen et al. Sep 2015 B2
9138312 Tuval et al. Sep 2015 B2
9138313 McGuckin, Jr. et al. Sep 2015 B2
9180005 Lashinski et al. Nov 2015 B1
9192466 Kovalsky et al. Nov 2015 B2
9192471 Bolling Nov 2015 B2
9226825 Starksen et al. Jan 2016 B2
9232942 Seguin et al. Jan 2016 B2
9232998 Wilson et al. Jan 2016 B2
9232999 Maurer et al. Jan 2016 B2
9241790 Lane et al. Jan 2016 B2
9248014 Lane et al. Feb 2016 B2
9254192 Lutter et al. Feb 2016 B2
9259317 Wilson et al. Feb 2016 B2
9271833 Kim et al. Mar 2016 B2
9289291 Gorman, III et al. Mar 2016 B2
9289297 Wilson et al. Mar 2016 B2
9289927 Weber et al. Mar 2016 B2
9295547 Costello et al. Mar 2016 B2
9301836 Buchbinder et al. Apr 2016 B2
9308087 Lane et al. Apr 2016 B2
9326850 Venkatasubramanian May 2016 B2
9326852 Spenser May 2016 B2
9333073 Quadri et al. May 2016 B2
9333074 Quadri et al. May 2016 B2
9339378 Quadri et al. May 2016 B2
9339379 Quadri et al. May 2016 B2
9339380 Quadri et al. May 2016 B2
9339382 Tabor et al. May 2016 B2
9358108 Bortlein et al. Jun 2016 B2
9387075 Bortlein et al. Jul 2016 B2
9387078 Gross et al. Jul 2016 B2
9393111 Ma et al. Jul 2016 B2
9425916 Nakao et al. Aug 2016 B2
9579198 Deem et al. Feb 2017 B2
9629719 Rothstein et al. Apr 2017 B2
9675454 Vidlund et al. Jun 2017 B2
9681951 Ratz et al. Jun 2017 B2
9687342 Figulla et al. Jun 2017 B2
9687343 Bortlein et al. Jun 2017 B2
9693859 Braido et al. Jul 2017 B2
9693862 Campbell et al. Jul 2017 B2
9694121 Alexander et al. Jul 2017 B2
9700409 Braido et al. Jul 2017 B2
9700411 Klima et al. Jul 2017 B2
9730791 Ratz et al. Aug 2017 B2
9730794 Carpentier et al. Aug 2017 B2
9750605 Ganesan et al. Sep 2017 B2
9750606 Ganesan et al. Sep 2017 B2
9750607 Ganesan et al. Sep 2017 B2
9763657 Hacohen et al. Sep 2017 B2
9763658 Eigler et al. Sep 2017 B2
9763782 Solem et al. Sep 2017 B2
9770328 Macoviak et al. Sep 2017 B2
9788931 Giordano et al. Oct 2017 B2
9801717 Edquist et al. Oct 2017 B2
9827092 Vidlund et al. Nov 2017 B2
9827101 Solem et al. Nov 2017 B2
9833313 Board et al. Dec 2017 B2
9833315 Vidlund et al. Dec 2017 B2
9839511 Ma et al. Dec 2017 B2
9844435 Eidenschink Dec 2017 B2
9848880 Coleman et al. Dec 2017 B2
9848983 Lashinski et al. Dec 2017 B2
9861477 Backus et al. Jan 2018 B2
9861480 Zakai et al. Jan 2018 B2
10258468 Deem et al. Apr 2019 B2
20010021872 Bailey et al. Sep 2001 A1
20010049492 Frazier et al. Dec 2001 A1
20020007219 Merrill et al. Jan 2002 A1
20020013571 Goldfarb et al. Jan 2002 A1
20020072792 Burgermeister et al. Jun 2002 A1
20020077627 Johnson et al. Jun 2002 A1
20020082637 Lumauig Jun 2002 A1
20020099439 Schwartz et al. Jul 2002 A1
20020138138 Yang Sep 2002 A1
20020151970 Garrison et al. Oct 2002 A1
20020173841 Ortiz et al. Nov 2002 A1
20030120340 Liska et al. Jun 2003 A1
20030139689 Shturman et al. Jul 2003 A1
20040006358 Wulfman et al. Jan 2004 A1
20040039412 Isshiki et al. Feb 2004 A1
20040044350 Martin et al. Mar 2004 A1
20040057955 O'Brien et al. Mar 2004 A1
20040082910 Constantz et al. Apr 2004 A1
20040092858 Wilson et al. May 2004 A1
20040092962 Thornton et al. May 2004 A1
20040092989 Wilson et al. May 2004 A1
20040106989 Wilson et al. Jun 2004 A1
20040117009 Cali et al. Jun 2004 A1
20040122510 Sarac Jun 2004 A1
20040127979 Wilson et al. Jul 2004 A1
20040127982 Machold et al. Jul 2004 A1
20040186558 Pavcnik et al. Sep 2004 A1
20040199191 Schwartz Oct 2004 A1
20040230117 Tosaya et al. Nov 2004 A1
20040230212 Wulfman Nov 2004 A1
20040230213 Wulfman et al. Nov 2004 A1
20040243162 Wulfman et al. Dec 2004 A1
20050007219 Ma et al. Jan 2005 A1
20050075662 Pedersen et al. Apr 2005 A1
20050075720 Nguyen et al. Apr 2005 A1
20050075727 Wheatley Apr 2005 A1
20050096647 Steinke et al. May 2005 A1
20050107661 Lau et al. May 2005 A1
20050137682 Justino Jun 2005 A1
20050137690 Salahieh et al. Jun 2005 A1
20050137691 Salahieh et al. Jun 2005 A1
20050137695 Salahieh et al. Jun 2005 A1
20050137697 Salahieh et al. Jun 2005 A1
20050137698 Salahieh et al. Jun 2005 A1
20050137700 Spence et al. Jun 2005 A1
20050137701 Salahieh et al. Jun 2005 A1
20050137702 Haug et al. Jun 2005 A1
20050267523 Devellian et al. Dec 2005 A1
20060058872 Salahieh et al. Mar 2006 A1
20060106456 Machold et al. May 2006 A9
20060142833 Von Oepen Jun 2006 A1
20060149360 Schwammenthal et al. Jul 2006 A1
20060167543 Bailey et al. Jul 2006 A1
20060195183 Navia et al. Aug 2006 A1
20060253191 Salahieh et al. Nov 2006 A1
20060287719 Rowe et al. Dec 2006 A1
20070056346 Spenser et al. Mar 2007 A1
20070061010 Hauser et al. Mar 2007 A1
20070073391 Bourang et al. Mar 2007 A1
20070088431 Bourang et al. Apr 2007 A1
20070142906 Figulla et al. Jun 2007 A1
20070173932 Cali et al. Jul 2007 A1
20070203561 Forster et al. Aug 2007 A1
20080071369 Tuval et al. Mar 2008 A1
20080082166 Styrc et al. Apr 2008 A1
20080103586 Styrc et al. May 2008 A1
20080140189 Nguyen et al. Jun 2008 A1
20080208332 Lamphere et al. Aug 2008 A1
20080221672 Lamphere et al. Sep 2008 A1
20080234728 Starksen et al. Sep 2008 A1
20080243245 Thambar et al. Oct 2008 A1
20080243246 Ryan et al. Oct 2008 A1
20090024137 Chuter Jan 2009 A1
20090054969 Salahieh et al. Feb 2009 A1
20090076586 Hauser et al. Mar 2009 A1
20090076598 Salahieh et al. Mar 2009 A1
20090093670 Annest et al. Apr 2009 A1
20090157174 Yoganathan et al. Jun 2009 A1
20090164006 Seguin et al. Jun 2009 A1
20090198315 Boudjemline Aug 2009 A1
20090216312 Straubinger et al. Aug 2009 A1
20090240320 Tuval et al. Sep 2009 A1
20090259292 Bonhoeffer Oct 2009 A1
20090259306 Rowe Oct 2009 A1
20090264997 Salahieh et al. Oct 2009 A1
20090276040 Rowe et al. Nov 2009 A1
20090281609 Benichou et al. Nov 2009 A1
20090281618 Hill et al. Nov 2009 A1
20090292350 Eberhardt et al. Nov 2009 A1
20090306768 Quadri Dec 2009 A1
20090319037 Rowe et al. Dec 2009 A1
20090319038 Gurskis et al. Dec 2009 A1
20100016958 St. Goar et al. Jan 2010 A1
20100023117 Yoganathan et al. Jan 2010 A1
20100030330 Bobo et al. Feb 2010 A1
20100035703 Ishikawa et al. Feb 2010 A1
20100049313 Alon et al. Feb 2010 A1
20100076548 Konno Mar 2010 A1
20100082094 Quadri et al. Apr 2010 A1
20100094411 Tuval et al. Apr 2010 A1
20100121436 Tuval et al. May 2010 A1
20100160931 Karpiel et al. Jun 2010 A1
20100185275 Richter et al. Jul 2010 A1
20100217382 Chau et al. Aug 2010 A1
20100249915 Zhang Sep 2010 A1
20100249923 Alkhatib et al. Sep 2010 A1
20100286768 Alkhatib Nov 2010 A1
20100298929 Thornton et al. Nov 2010 A1
20100298931 Quadri et al. Nov 2010 A1
20100312333 Navia et al. Dec 2010 A1
20100324554 Gifford et al. Dec 2010 A1
20110004296 Lutter et al. Jan 2011 A1
20110015722 Hauser et al. Jan 2011 A1
20110022166 Dahlgren et al. Jan 2011 A1
20110029071 Zlotnick et al. Feb 2011 A1
20110029072 Gabbay Feb 2011 A1
20110040374 Goetz et al. Feb 2011 A1
20110040375 Letac et al. Feb 2011 A1
20110066231 Cartledge et al. Mar 2011 A1
20110066233 Thornton et al. Mar 2011 A1
20110112632 Chau et al. May 2011 A1
20110137397 Chau et al. Jun 2011 A1
20110137409 Yang et al. Jun 2011 A1
20110137410 Hacohen Jun 2011 A1
20110153008 Marchand et al. Jun 2011 A1
20110172784 Richter et al. Jul 2011 A1
20110184512 Webler et al. Jul 2011 A1
20110201874 Birk Aug 2011 A1
20110208293 Tabor Aug 2011 A1
20110224785 Hacohen Sep 2011 A1
20110319988 Schankereli et al. Dec 2011 A1
20120022639 Hacohen et al. Jan 2012 A1
20120035703 Lutter et al. Feb 2012 A1
20120035713 Lutter et al. Feb 2012 A1
20120053680 Bolling et al. Mar 2012 A1
20120053682 Kovalsky et al. Mar 2012 A1
20120078347 Braido et al. Mar 2012 A1
20120078360 Rafiee Mar 2012 A1
20120101571 Thambar et al. Apr 2012 A1
20120165930 Gifford, III et al. Jun 2012 A1
20120179239 Quadri Jul 2012 A1
20120179244 Schankereli et al. Jul 2012 A1
20120203336 Annest Aug 2012 A1
20120283824 Lutter et al. Nov 2012 A1
20130035628 Garrison Feb 2013 A1
20130138090 Fargahi May 2013 A1
20130172978 Vidlund et al. Jul 2013 A1
20130190860 Sundt, III Jul 2013 A1
20130190861 Chau et al. Jul 2013 A1
20130197354 Maschke et al. Aug 2013 A1
20130197630 Azarnoush Aug 2013 A1
20130204356 Dwork et al. Aug 2013 A1
20130204358 Matheny Aug 2013 A1
20130226289 Shaolian et al. Aug 2013 A1
20130226290 Yellin et al. Aug 2013 A1
20130231735 Deem et al. Sep 2013 A1
20130238089 Lichtenstein et al. Sep 2013 A1
20130244927 Lal et al. Sep 2013 A1
20130253641 Lattouf Sep 2013 A1
20130253642 Brecker Sep 2013 A1
20130253643 Rolando et al. Sep 2013 A1
20130259337 Guhring et al. Oct 2013 A1
20130261737 Costello Oct 2013 A1
20130261738 Clague et al. Oct 2013 A1
20130261739 Kuehn Oct 2013 A1
20130261741 Accola Oct 2013 A1
20130268066 Rowe Oct 2013 A1
20130274870 Lombardi et al. Oct 2013 A1
20130282059 Ketai et al. Oct 2013 A1
20130282060 Tuval Oct 2013 A1
20130282110 Schweich, Jr. et al. Oct 2013 A1
20130289642 Hedberg et al. Oct 2013 A1
20130289717 Solem Oct 2013 A1
20130289718 Tsukashima et al. Oct 2013 A1
20130296851 Boronyak et al. Nov 2013 A1
20130296999 Burriesci et al. Nov 2013 A1
20130304180 Green et al. Nov 2013 A1
20130304181 Green et al. Nov 2013 A1
20130304197 Buchbinder et al. Nov 2013 A1
20130304198 Solem Nov 2013 A1
20130304200 Mclean et al. Nov 2013 A1
20130309292 Andersen Nov 2013 A1
20130310436 Lowes et al. Nov 2013 A1
20130310925 Eliasen et al. Nov 2013 A1
20130310928 Morriss et al. Nov 2013 A1
20130317603 Mclean et al. Nov 2013 A1
20130325110 Khalil et al. Dec 2013 A1
20130325114 Mclean et al. Dec 2013 A1
20130331864 Jelich et al. Dec 2013 A1
20130338684 Hausen Dec 2013 A1
20130338763 Rowe et al. Dec 2013 A1
20130345797 Dahlgren et al. Dec 2013 A1
20130345803 Bergheim, III Dec 2013 A1
20140005778 Buchbinder et al. Jan 2014 A1
20140018906 Rafiee Jan 2014 A1
20140018913 Cartledge et al. Jan 2014 A1
20140023261 Watanabe et al. Jan 2014 A1
20140025164 Montorfano et al. Jan 2014 A1
20140031928 Murphy et al. Jan 2014 A1
20140046219 Sauter et al. Feb 2014 A1
20140046436 Kheradvar Feb 2014 A1
20140052237 Lane et al. Feb 2014 A1
20140052240 Zhang Feb 2014 A1
20140056906 Yue et al. Feb 2014 A1
20140066895 Kipperman Mar 2014 A1
20140067048 Chau et al. Mar 2014 A1
20140067052 Chau et al. Mar 2014 A1
20140067054 Chau et al. Mar 2014 A1
20140088071 Nakai et al. Mar 2014 A1
20140088680 Costello et al. Mar 2014 A1
20140088693 Seguin et al. Mar 2014 A1
20140088695 Figulla et al. Mar 2014 A1
20140094906 Spence et al. Apr 2014 A1
20140107775 Hjelle et al. Apr 2014 A1
20140114404 Gammie et al. Apr 2014 A1
20140114407 Rajamannan Apr 2014 A1
20140121763 Duffy et al. May 2014 A1
20140128965 Rafiee May 2014 A1
20140135913 Lichtenstein et al. May 2014 A1
20140163652 Witzel et al. Jun 2014 A1
20140163668 Rafiee Jun 2014 A1
20140172076 Jonsson et al. Jun 2014 A1
20140172084 Callas et al. Jun 2014 A1
20140172085 Quadri et al. Jun 2014 A1
20140172086 Quadri et al. Jun 2014 A1
20140179993 Alexander et al. Jun 2014 A1
20140180401 Quill et al. Jun 2014 A1
20140188108 Goodine et al. Jul 2014 A1
20140188215 Hlavka et al. Jul 2014 A1
20140194920 Krahbichler Jul 2014 A1
20140194969 Headley Jul 2014 A1
20140194976 Starksen et al. Jul 2014 A1
20140200397 Raman et al. Jul 2014 A1
20140200649 Essinger et al. Jul 2014 A1
20140200657 Maurer et al. Jul 2014 A1
20140200662 Eftel et al. Jul 2014 A1
20140214159 Vidlund et al. Jul 2014 A1
20140219524 Takeguchi et al. Aug 2014 A1
20140222040 Park et al. Aug 2014 A1
20140222138 Machold et al. Aug 2014 A1
20140228942 Krahbichler et al. Aug 2014 A1
20140228946 Chau et al. Aug 2014 A1
20140242086 Lai et al. Aug 2014 A1
20140243860 Morris et al. Aug 2014 A1
20140243954 Shannon Aug 2014 A1
20140243964 Venkatasubramanian Aug 2014 A1
20140249621 Eidenschink Sep 2014 A1
20140257101 Gaudiani Sep 2014 A1
20140257466 Board et al. Sep 2014 A1
20140257467 Lane et al. Sep 2014 A1
20140257473 Rajamannan Sep 2014 A1
20140257475 Gross et al. Sep 2014 A1
20140275757 Goodwin et al. Sep 2014 A1
20140276395 Wilson et al. Sep 2014 A1
20140276609 Magee et al. Sep 2014 A1
20140276782 Paskar Sep 2014 A1
20140276971 Kovach Sep 2014 A1
20140277119 Akpinar Sep 2014 A1
20140277390 Ratz et al. Sep 2014 A1
20140277404 Wilson et al. Sep 2014 A1
20140277405 Wilson et al. Sep 2014 A1
20140277406 Arcidi Sep 2014 A1
20140277407 Dale et al. Sep 2014 A1
20140277408 Folan Sep 2014 A1
20140277409 Bortlein et al. Sep 2014 A1
20140277410 Bortlein et al. Sep 2014 A1
20140277411 Bortlein et al. Sep 2014 A1
20140277412 Bortlein et al. Sep 2014 A1
20140277420 Migliazza et al. Sep 2014 A1
20140277422 Ratz et al. Sep 2014 A1
20140288480 Zimmerman et al. Sep 2014 A1
20140296878 Oz et al. Oct 2014 A1
20140296969 Tegels et al. Oct 2014 A1
20140296970 Ekvall et al. Oct 2014 A1
20140296971 Tegels et al. Oct 2014 A1
20140296975 Tegels et al. Oct 2014 A1
20140303719 Cox et al. Oct 2014 A1
20140303721 Fung et al. Oct 2014 A1
20140309727 Lamelas et al. Oct 2014 A1
20140309730 Alon et al. Oct 2014 A1
20140309731 Quadri et al. Oct 2014 A1
20140309732 Solem Oct 2014 A1
20140316516 Vidlund et al. Oct 2014 A1
20140324164 Gross et al. Oct 2014 A1
20140358222 Gorman, III et al. Dec 2014 A1
20140358224 Tegels et al. Dec 2014 A1
20140364944 Lutter et al. Dec 2014 A1
20140371843 Wilson et al. Dec 2014 A1
20140371844 Dale et al. Dec 2014 A1
20140371846 Wilson et al. Dec 2014 A1
20140379074 Spence et al. Dec 2014 A1
20140379076 Vidlund et al. Dec 2014 A1
20150004165 Yue et al. Jan 2015 A1
20150005874 Vidlund et al. Jan 2015 A1
20150005875 Tuval et al. Jan 2015 A1
20150012069 Puskas Jan 2015 A1
20150018353 Kim et al. Jan 2015 A1
20150018940 Quill et al. Jan 2015 A1
20150025311 Kadan Jan 2015 A1
20150025623 Granada et al. Jan 2015 A1
20150032127 Gammie et al. Jan 2015 A1
20150045878 Rowe Feb 2015 A1
20150057738 Hepke Feb 2015 A1
20150066138 Alexander et al. Mar 2015 A1
20150066140 Quadri et al. Mar 2015 A1
20150094802 Buchbinder et al. Apr 2015 A1
20150094803 Navia Apr 2015 A1
20150100116 Mohl et al. Apr 2015 A1
20150112427 Schweich, Jr. et al. Apr 2015 A1
20150112429 Khairkhahan et al. Apr 2015 A1
20150112433 Schweich, Jr. et al. Apr 2015 A1
20150119978 Tegels et al. Apr 2015 A1
20150119981 Khairkhahan et al. Apr 2015 A1
20150119982 Quill et al. Apr 2015 A1
20150127091 Cecere et al. May 2015 A1
20150127096 Rowe et al. May 2015 A1
20150134055 Spence et al. May 2015 A1
20150139911 Santamore et al. May 2015 A1
20150141855 Inoue May 2015 A1
20150142101 Coleman et al. May 2015 A1
20150142103 Vidlund May 2015 A1
20150142105 Bolling et al. May 2015 A1
20150150678 Brecker Jun 2015 A1
20150157458 Thambar et al. Jun 2015 A1
20150157459 Macoviak et al. Jun 2015 A1
20150164637 Khairkhahan et al. Jun 2015 A1
20150164639 Starksen et al. Jun 2015 A1
20150164641 Annest Jun 2015 A1
20150173897 Raanani et al. Jun 2015 A1
20150173898 Drasler et al. Jun 2015 A1
20150173900 Hauser et al. Jun 2015 A1
20150190229 Seguin Jul 2015 A1
20150196390 Ma et al. Jul 2015 A1
20150196393 Vidlund et al. Jul 2015 A1
20150202043 Zakai et al. Jul 2015 A1
20150209137 Quadri et al. Jul 2015 A1
20150209139 Granada et al. Jul 2015 A1
20150216655 Lane et al. Aug 2015 A1
20150216661 Hacohen et al. Aug 2015 A1
20150223802 Tegzes Aug 2015 A1
20150223934 Vidlund et al. Aug 2015 A1
20150223935 Subramanian et al. Aug 2015 A1
20150230920 Alfieri et al. Aug 2015 A1
20150230921 Chau et al. Aug 2015 A1
20150238312 Lashinski Aug 2015 A1
20150238313 Spence et al. Aug 2015 A1
20150238314 Börtlein et al. Aug 2015 A1
20150238729 Jenson et al. Aug 2015 A1
20150250590 Gries et al. Sep 2015 A1
20150257877 Hernandez Sep 2015 A1
20150257878 Lane et al. Sep 2015 A1
20150257879 Bortlein et al. Sep 2015 A1
20150257881 Bortlein et al. Sep 2015 A1
20150257882 Bortlein et al. Sep 2015 A1
20150272734 Sheps et al. Oct 2015 A1
20150272737 Dale et al. Oct 2015 A1
20150305861 Annest Oct 2015 A1
20150305864 Quadri et al. Oct 2015 A1
20150313739 Hummen et al. Nov 2015 A1
20150320553 Chau et al. Nov 2015 A1
20150327999 Board et al. Nov 2015 A1
20150328000 Ratz et al. Nov 2015 A1
20150342733 Alkhatib et al. Dec 2015 A1
20150351906 Hammer et al. Dec 2015 A1
20150351908 Keranen et al. Dec 2015 A1
20150359628 Keranen Dec 2015 A1
20150359629 Ganesan et al. Dec 2015 A1
20150359631 Sheahan et al. Dec 2015 A1
20150366666 Khairkhahan et al. Dec 2015 A1
20150374495 Ruyra Baliarda et al. Dec 2015 A1
20160000562 Siegel Jan 2016 A1
20160000564 Buchbinder Jan 2016 A1
20160000983 Mohl et al. Jan 2016 A1
20160008129 Siegel Jan 2016 A1
20160015513 Lashinski et al. Jan 2016 A1
20160015514 Lashinski et al. Jan 2016 A1
20160015515 Lashinski et al. Jan 2016 A1
20160030171 Quijano et al. Feb 2016 A1
20160038246 Wang et al. Feb 2016 A1
20160038280 Morriss et al. Feb 2016 A1
20160038283 Divekar Feb 2016 A1
20160038286 Yellin et al. Feb 2016 A1
20160074160 Christianson et al. Mar 2016 A1
20160106539 Buchbinder et al. Apr 2016 A1
20160113764 Sheahan et al. Apr 2016 A1
20160113765 Ganesan et al. Apr 2016 A1
20160113766 Ganesan et al. Apr 2016 A1
20160113768 Ganesan et al. Apr 2016 A1
20160120643 Kupumbati May 2016 A1
20160143730 Kheradvar May 2016 A1
20160151154 Gorman, III et al. Jun 2016 A1
20160151156 Seguin et al. Jun 2016 A1
20160151552 Solem Jun 2016 A1
20160157999 Lane et al. Jun 2016 A1
20160158000 Granada et al. Jun 2016 A1
20160158001 Wallace et al. Jun 2016 A1
20160158002 Wallace et al. Jun 2016 A1
20160158003 Wallace et al. Jun 2016 A1
20160184095 Spence et al. Jun 2016 A1
20160206280 Vidlund et al. Jul 2016 A1
20160206424 Al-Jilaihawi et al. Jul 2016 A1
20160262881 Schankereli et al. Sep 2016 A1
20160317290 Chau et al. Nov 2016 A1
20170079790 Vidlund et al. Mar 2017 A1
20170100248 Tegels et al. Apr 2017 A1
20170100250 Marsot et al. Apr 2017 A1
20170119526 Luong et al. May 2017 A1
20170128198 Cartledge et al. May 2017 A1
20170128205 Tamir et al. May 2017 A1
20170128206 Rafiee et al. May 2017 A1
20170128208 Christianson et al. May 2017 A1
20170156860 Lashinski Jun 2017 A1
20170165054 Benson et al. Jun 2017 A1
20170165055 Hauser et al. Jun 2017 A1
20170165064 Nyuli et al. Jun 2017 A1
20170172737 Kuetting et al. Jun 2017 A1
20170181851 Annest Jun 2017 A1
20170189177 Schweich, Jr. et al. Jul 2017 A1
20170189179 Ratz et al. Jul 2017 A1
20170189180 Alkhatib et al. Jul 2017 A1
20170189181 Alkhatib et al. Jul 2017 A1
20170196688 Christianson et al. Jul 2017 A1
20170231762 Quadri et al. Aug 2017 A1
20170231763 Yellin et al. Aug 2017 A1
20170258585 Marquez et al. Sep 2017 A1
20170266001 Vidlund et al. Sep 2017 A1
20170281345 Yang et al. Oct 2017 A1
20170290659 Ulmer et al. Oct 2017 A1
20170296338 Cambell et al. Oct 2017 A1
20170296339 Thambar et al. Oct 2017 A1
20170319333 Tegels et al. Nov 2017 A1
20170325842 Siegel Nov 2017 A1
20170325941 Wallace et al. Nov 2017 A1
20170325945 Dale et al. Nov 2017 A1
20170325948 Wallace et al. Nov 2017 A1
20170325949 Rodgers et al. Nov 2017 A1
20170325953 Klima et al. Nov 2017 A1
20170325954 Perszyk Nov 2017 A1
20170333186 Spargias Nov 2017 A1
20170333188 Carpentier et al. Nov 2017 A1
20170340440 Ratz et al. Nov 2017 A1
20170348097 Taft et al. Dec 2017 A1
20170348098 Rowe et al. Dec 2017 A1
20170348100 Lane et al. Dec 2017 A1
20170354496 Quadri et al. Dec 2017 A1
20170354497 Quadri et al. Dec 2017 A1
20170354499 Granada et al. Dec 2017 A1
20170360426 Hacohen et al. Dec 2017 A1
20170360549 Lashinski et al. Dec 2017 A1
20170360558 Ma Dec 2017 A1
20170360585 White Dec 2017 A1
20170361065 Legaspi et al. Dec 2017 A1
20180344454 Mauch et al. Dec 2018 A1
Foreign Referenced Citations (364)
Number Date Country
1440261 Sep 2003 CN
101076290 Nov 2007 CN
101291637 Oct 2008 CN
103491900 Jan 2014 CN
19605042 Jan 1998 DE
102006052564 Dec 2007 DE
186104 Jul 1986 EP
1512383 Mar 2005 EP
1545371 Jun 2005 EP
1551274 Jul 2005 EP
1629794 Mar 2006 EP
1646332 Apr 2006 EP
1702247 Sep 2006 EP
1734903 Dec 2006 EP
1891914 Feb 2008 EP
2026280 Feb 2009 EP
2037829 Mar 2009 EP
2081519 Jul 2009 EP
2111190 Oct 2009 EP
2142143 Jan 2010 EP
2167742 Mar 2010 EP
2278944 Feb 2011 EP
2306821 Apr 2011 EP
2327429 Jun 2011 EP
2400924 Jan 2012 EP
2400926 Jan 2012 EP
2410947 Feb 2012 EP
2416739 Feb 2012 EP
2419050 Feb 2012 EP
2444031 Apr 2012 EP
2488126 Aug 2012 EP
2509538 Oct 2012 EP
2549955 Jan 2013 EP
2549956 Jan 2013 EP
2566416 Mar 2013 EP
2586492 May 2013 EP
2618784 Jul 2013 EP
2623068 Aug 2013 EP
2626013 Aug 2013 EP
2629699 Aug 2013 EP
2633457 Sep 2013 EP
2637659 Sep 2013 EP
2641569 Sep 2013 EP
2644158 Oct 2013 EP
2654624 Oct 2013 EP
2656794 Oct 2013 EP
2656795 Oct 2013 EP
2656796 Oct 2013 EP
2667823 Dec 2013 EP
2670358 Dec 2013 EP
2676640 Dec 2013 EP
2688041 Jan 2014 EP
2697721 Feb 2014 EP
2713953 Apr 2014 EP
2714068 Apr 2014 EP
2723272 Apr 2014 EP
2723273 Apr 2014 EP
2723277 Apr 2014 EP
2739214 Jun 2014 EP
2741711 Jun 2014 EP
2750630 Jul 2014 EP
2750631 Jul 2014 EP
2755562 Jul 2014 EP
2755602 Jul 2014 EP
2757962 Jul 2014 EP
2777616 Sep 2014 EP
2777617 Sep 2014 EP
2782523 Oct 2014 EP
2785282 Oct 2014 EP
2786817 Oct 2014 EP
2790609 Oct 2014 EP
2793751 Oct 2014 EP
2809263 Dec 2014 EP
2810620 Dec 2014 EP
2814428 Dec 2014 EP
2814429 Dec 2014 EP
2819617 Jan 2015 EP
2819618 Jan 2015 EP
2819619 Jan 2015 EP
2717803 Feb 2015 EP
2833836 Feb 2015 EP
2838475 Feb 2015 EP
2839815 Feb 2015 EP
2844190 Mar 2015 EP
2849680 Mar 2015 EP
2849681 Mar 2015 EP
2852354 Apr 2015 EP
2854719 Apr 2015 EP
2870933 May 2015 EP
2873011 May 2015 EP
2875797 May 2015 EP
2760375 Jun 2015 EP
2882374 Jun 2015 EP
2886082 Jun 2015 EP
2886083 Jun 2015 EP
2886084 Jun 2015 EP
2895111 Jul 2015 EP
2901966 Aug 2015 EP
2907479 Aug 2015 EP
2945572 Nov 2015 EP
2948094 Dec 2015 EP
2948102 Dec 2015 EP
2964152 Jan 2016 EP
2967859 Jan 2016 EP
2967860 Jan 2016 EP
2967866 Jan 2016 EP
2968847 Jan 2016 EP
2981208 Feb 2016 EP
2982336 Feb 2016 EP
2999433 Mar 2016 EP
3003187 Apr 2016 EP
3003219 Apr 2016 EP
3003220 Apr 2016 EP
3010447 Apr 2016 EP
3013281 May 2016 EP
3017792 May 2016 EP
3021792 May 2016 EP
3023117 May 2016 EP
3027143 Jun 2016 EP
3033048 Jun 2016 EP
3037064 Jun 2016 EP
3079633 Oct 2016 EP
3229736 Nov 2016 EP
2470119 May 2017 EP
2999436 May 2017 EP
3184081 Jun 2017 EP
3191027 Jul 2017 EP
2611389 Aug 2017 EP
3082656 Aug 2017 EP
3206628 Aug 2017 EP
2010103 Sep 2017 EP
2509538 Sep 2017 EP
3223751 Oct 2017 EP
3027144 Nov 2017 EP
3110368 Nov 2017 EP
3110369 Nov 2017 EP
3132773 Nov 2017 EP
3245980 Nov 2017 EP
3250154 Dec 2017 EP
3256074 Dec 2017 EP
3256077 Dec 2017 EP
3258883 Dec 2017 EP
3270825 Jan 2018 EP
3273910 Jan 2018 EP
6504516 May 1994 JP
H10258124 Sep 1998 JP
2002509756 Apr 2002 JP
2005280917 Oct 2005 JP
2008528117 Jul 2008 JP
2008541863 Nov 2008 JP
2009195712 Sep 2009 JP
2010518947 Jun 2010 JP
5219518 Jun 2013 JP
WO-1992017118 Oct 1992 WO
WO-1995016407 Jun 1995 WO
WO-1999004730 Feb 1999 WO
WO-1999039648 Aug 1999 WO
WO-1999049799 Oct 1999 WO
WO-2001010343 Feb 2001 WO
WO-2002003892 Jan 2002 WO
WO-2002028421 Apr 2002 WO
WO-2002039908 May 2002 WO
WO-2003043685 May 2003 WO
WO-2004084746 Oct 2004 WO
WO-2004093728 Nov 2004 WO
WO-2004096097 Nov 2004 WO
WO-2004112657 Dec 2004 WO
WO-2005002466 Jan 2005 WO
WO-2005007219 Jan 2005 WO
WO-2005009285 Feb 2005 WO
WO-2005009506 Feb 2005 WO
WO-2005087140 Sep 2005 WO
WO-2006041877 Apr 2006 WO
WO-2006063199 Jun 2006 WO
WO-2007008371 Jan 2007 WO
WO-2007067820 Jun 2007 WO
2007098232 Aug 2007 WO
WO-2008022077 Feb 2008 WO
WO-2008028569 Mar 2008 WO
WO-2008035337 Mar 2008 WO
2008046593 Apr 2008 WO
2008103722 Aug 2008 WO
WO-2008103497 Aug 2008 WO
WO-2008129405 Oct 2008 WO
WO-2009045338 Apr 2009 WO
2009091509 Jul 2009 WO
WO-2010006627 Jan 2010 WO
WO-2010008549 Jan 2010 WO
WO-2010057262 May 2010 WO
WO-2010080594 Jul 2010 WO
WO-2010098857 Sep 2010 WO
WO-2010099032 Sep 2010 WO
2010121076 Oct 2010 WO
WO-2010117680 Oct 2010 WO
2011025981 Mar 2011 WO
WO-2011047168 Apr 2011 WO
WO-2011051043 May 2011 WO
WO-2011057087 May 2011 WO
WO-2011072084 Jun 2011 WO
WO-2011106137 Sep 2011 WO
WO-2011106544 Sep 2011 WO
WO-2011111047 Sep 2011 WO
WO-2011137531 Nov 2011 WO
WO-2011139747 Nov 2011 WO
WO-2012011018 Jan 2012 WO
WO-2012011108 Jan 2012 WO
WO-2012027487 Mar 2012 WO
WO-2012035279 Mar 2012 WO
WO-2012040655 Mar 2012 WO
2012052718 Apr 2012 WO
WO-2012047644 Apr 2012 WO
WO-2012055498 May 2012 WO
WO-2012087842 Jun 2012 WO
WO-2012095455 Jul 2012 WO
WO-2012102928 Aug 2012 WO
WO-2012106602 Aug 2012 WO
WO-2012118508 Sep 2012 WO
WO-2012118816 Sep 2012 WO
WO-2012118894 Sep 2012 WO
WO-2012177942 Dec 2012 WO
WO-2013021374 Feb 2013 WO
WO-2013021375 Feb 2013 WO
WO-2013028387 Feb 2013 WO
WO-2013059743 Apr 2013 WO
WO-2013059747 Apr 2013 WO
WO-2013114214 Aug 2013 WO
WO-2013120181 Aug 2013 WO
WO-2013123059 Aug 2013 WO
WO-2013128432 Sep 2013 WO
WO-2013130641 Sep 2013 WO
WO-2013131925 Sep 2013 WO
WO-2013140318 Sep 2013 WO
WO-2013148017 Oct 2013 WO
WO-2013148018 Oct 2013 WO
WO-2013148019 Oct 2013 WO
WO-2013150512 Oct 2013 WO
WO-2013152161 Oct 2013 WO
WO-2013158613 Oct 2013 WO
WO-2013169448 Nov 2013 WO
WO-2013175468 Nov 2013 WO
WO-2013176583 Nov 2013 WO
WO-2013188077 Dec 2013 WO
WO-2013192107 Dec 2013 WO
WO-2014036113 Mar 2014 WO
WO-2014043527 Mar 2014 WO
WO-2014047111 Mar 2014 WO
WO-2014047325 Mar 2014 WO
WO-2014055981 Apr 2014 WO
WO-2014059432 Apr 2014 WO
WO-2014064694 May 2014 WO
WO-2014066365 May 2014 WO
WO-2014089424 Jun 2014 WO
WO-2014093861 Jun 2014 WO
WO-2014111918 Jul 2014 WO
WO-2014114794 Jul 2014 WO
WO-2014114795 Jul 2014 WO
WO-2014114796 Jul 2014 WO
WO-2014114798 Jul 2014 WO
WO-2014116502 Jul 2014 WO
WO-2014121280 Aug 2014 WO
WO-2014128705 Aug 2014 WO
WO-2014134277 Sep 2014 WO
WO-2014138194 Sep 2014 WO
WO-2014138284 Sep 2014 WO
WO-2014138482 Sep 2014 WO
WO-2014138868 Sep 2014 WO
WO-2014144100 Sep 2014 WO
WO-2014144937 Sep 2014 WO
WO-2014145338 Sep 2014 WO
WO-2014147336 Sep 2014 WO
WO-2014152306 Sep 2014 WO
WO-2014152375 Sep 2014 WO
WO-2014152503 Sep 2014 WO
WO-2014153544 Sep 2014 WO
WO-2014158617 Oct 2014 WO
WO-2014162181 Oct 2014 WO
WO-2014162306 Oct 2014 WO
WO-2014163705 Oct 2014 WO
WO-2014168655 Oct 2014 WO
WO-2014179391 Nov 2014 WO
WO-2014181336 Nov 2014 WO
WO-2014189974 Nov 2014 WO
2014200764 Dec 2014 WO
WO-2014191994 Dec 2014 WO
WO-2014194178 Dec 2014 WO
WO-2014201384 Dec 2014 WO
WO-2014201452 Dec 2014 WO
WO-2014205064 Dec 2014 WO
WO-2014207699 Dec 2014 WO
WO-2014210124 Dec 2014 WO
WO-2014210299 Dec 2014 WO
WO-2015009503 Jan 2015 WO
WO-2015020971 Feb 2015 WO
2015031898 Mar 2015 WO
WO-2015028986 Mar 2015 WO
2015061558 Apr 2015 WO
WO-2015051430 Apr 2015 WO
WO-2015052663 Apr 2015 WO
WO-2015057407 Apr 2015 WO
WO-2015057735 Apr 2015 WO
WO-2015057995 Apr 2015 WO
WO-2015061378 Apr 2015 WO
WO-2015061431 Apr 2015 WO
WO-2015061463 Apr 2015 WO
WO-2015061533 Apr 2015 WO
WO-2015075128 May 2015 WO
WO-2015081775 Jun 2015 WO
WO-2015089334 Jun 2015 WO
WO-2015092554 Jun 2015 WO
WO-2015120122 Aug 2015 WO
WO-2015125024 Aug 2015 WO
WO-2015127264 Aug 2015 WO
WO-2015127283 Aug 2015 WO
WO-2015128739 Sep 2015 WO
WO-2015128741 Sep 2015 WO
WO-2015128747 Sep 2015 WO
WO-2015132667 Sep 2015 WO
WO-2015132668 Sep 2015 WO
WO-2015135050 Sep 2015 WO
WO-2015142648 Sep 2015 WO
WO-2015142834 Sep 2015 WO
WO-2015148241 Oct 2015 WO
2015179181 Nov 2015 WO
WO-2015171190 Nov 2015 WO
WO-2015171743 Nov 2015 WO
WO-2015191604 Dec 2015 WO
WO-2015191839 Dec 2015 WO
WO-2015195823 Dec 2015 WO
2016005803 Jan 2016 WO
WO-2016011185 Jan 2016 WO
WO-2016020918 Feb 2016 WO
WO-2016027272 Feb 2016 WO
WO-2016059533 Apr 2016 WO
WO-2016065158 Apr 2016 WO
WO-2016073741 May 2016 WO
WO-2016083551 Jun 2016 WO
WO-2016093877 Jun 2016 WO
WO-2016097337 Jun 2016 WO
WO-2016108181 Jul 2016 WO
2016133950 Aug 2016 WO
2017062640 Apr 2017 WO
WO-2017062640 Apr 2017 WO
2017087701 May 2017 WO
2017096157 Jun 2017 WO
2017101232 Jun 2017 WO
WO-2017096157 Jun 2017 WO
WO-2017100927 Jun 2017 WO
WO-2017101232 Jun 2017 WO
2017117388 Jul 2017 WO
2017127939 Aug 2017 WO
2017136287 Aug 2017 WO
2017136596 Aug 2017 WO
WO-2017127939 Aug 2017 WO
WO-2017136596 Aug 2017 WO
2017165810 Sep 2017 WO
2017192960 Nov 2017 WO
2017196511 Nov 2017 WO
2017196909 Nov 2017 WO
2017196977 Nov 2017 WO
2017197064 Nov 2017 WO
2017197065 Nov 2017 WO
2017189040 Dec 2017 WO
2017218671 Dec 2017 WO
2018017886 Jan 2018 WO
Non-Patent Literature Citations (47)
Entry
US 9,265,606 B2, 02/2016, Buchbinder et al. (withdrawn)
Bernard et al., “Aortic Valve Area Evolution After Percutaneous Aortic Valvuloplasty,” European Heart Journal, Jul. 1990, vol. 11 (2), pp. 98-107.
BlueCross BlueShield of Northern Carolina Corporate Medical Policy “Balloon valvuloplasty, Percutaneous”, (Jun. 1994).
Cimino et al., “Physics of Ultrasonic Surgery Using Tissue Fragmentation: Part I and Part II”, Ultrasound in Medicine and Biologyl, Jun. 1996, vol. 22 (1), pp. 89-100, and pp. 101-117.
Cimino, “Ultrasonic Surgery: Power Quantification and Efficiency Optimization”, Aesthetic Surgery Journal, Feb. 2001, pp. 233-241.
Cowell et al., “A Randomized Trial of Intensive Lipid-Lowering Therapy in Calcific Aortic Stenosis,” NEJM, Jun. 2005, vol. 352 (23), pp. 2389-2397.
De Korte et al., “Characterization of Plaque Components and Vulnerability with Intravascular Ultrasound Elastography”, Phys. Med. Biol., Feb. 2000, vol. 45, pp. 1465-1475.
European Search Report dated Mar. 13, 2015 for European Application. No. 05853460.3.
Feldman, “Restenosis Following Successful Balloon Valvuloplasty: Bone Formation in Aortic Valve Leaflets”, Cathet Cardiovasc Diagn, May 1993, vol. 29 (1), pp. 1-7.
Fitzgerald et al., “Intravascular Sonotherapy Decreased Neointimal Hyperplasia After Stent Implantation in Swine”, Circulation, Feb. 2001, vol. 103, pp. 1828-1831.
Freeman et al., “Ultrasonic Aortic Valve Decalcification: Serial Doppler Echocardiographic Follow Up”, J Am Coll Cardiol., Sep. 1990, vol. 16 (3), pp. 623-630.
Greenleaf et al., “Selected Methods for Imaging Elastic Properties of Biological Tissues”, Annu. Rev. Biomed. Eng., Apr. 2003, vol. 5, pp. 57-78.
Gunn et al., “New Developments in Therapeutic Ultrasound-Assisted Coronary Angioplasty”, Curr Interv Cardiol Rep., Dec. 1990, vol. 1 (4), pp. 281-290.
Guzman et al., “Bioeffects Caused by Changes in Acoustic Cavitation Bubble Density and Cell Concentration: A Unified Explanation Based on Cell-to-Bubble Ratio and Blast Radius”, Ultrasound in Med. & Biol., Mar. 2003, vol. 29 (8), pp. 1211-1222.
Hallgrimsson et al., “Chronic Non-Rheumatic Aortic Valvular Disease: a Population Study Based on Autopsies”, J Chronic Dis., Jun. 1979, vol. 32 (5), pp. 355-363.
Isner et al., “Contrasting Histoarchitecture of Calcified Leaflets from Stenotic Bicuspid Versus Stenotic Tricuspid Aortic Valves”, J Am Coll Cardiol., Apr. 1990, vol. 15 (5), p. 1104-1108.
Lung et al., “A Prospective Survey of Patients with Valvular Heart Disease in Europe: The Euro Heart Survey on Valvular Heart Disease”, Euro Heart Journal, Mar. 2003, vol. 24, pp. 1231-1243.
McBride et al “Aortic Valve Decalcification”, J Thorac Cardiovas-Surg, Jul. 1990, vol. 100, pp. 36-42.
Miller et al., “Lysis and Sonoporation of Epidermoid and Phagocytic Monolayer Cells by Diagnostic Ultrasound Activation of Contrast Agent Gas Bodies”, Ultrasound in Med. & Biol., May 2007, vol. 27 (8), pp. 1107-1113.
Mohler, “Mechanisms of Aortic Valve Calcificaion”, Am J Cardiol, Dec. 2004, vol. 94 (11), pp. 1396-1402.
Otto et al., “Three-Year Outcome After Balloon Aortic Valvuloplasty. Insights into Prognosis of Valvular Aortic Stenosis”, Circulation, Feb. 1994, vol. 89, pp. 642-650.
Passik et al., “Temporal Changes in the Causes of Aortic Stenosis: A Surgical Pathologic Study of 646 Cases”, Mayo Clin Proc, Feb. 1987, vol. 62, pp. 19-123.
Quaden et al., “Percutaneous Aortic Valve Replacement: Resection Before Implantation”, Eur J Cardiothorac Surg, Jan. 2005, vol. 27, pp. 836-840.
Riebman et al., “New Concepts in the Management of Patients with Aortic Valve Disease”, Abstract, Valvular Heart Disease, JACC, Mar. 2004, p. 34A.
Rosenschein et al., “Percutaneous Transluminal Therapy of Occluded Saphenous Vein Grafts” Circulation, Jan. 1999, vol. 99, pp. 26-29.
Sakata et al., “Percutaneous Balloon Aortic Valvuloplasty: Antegrade Transseptal vs. Conventional Retrograde Transarterial Approach”, Catheter Cardiovasc Interv., Mar. 2005, vol. 64 (3), pp. 314-321.
Sasaki et al., “Scanning Electron Microscopy and Fourier Transformed Infrared Spectroscopy Analysis of Bone Removal Using Er:YAG and CO2 Lasers”, J Periodontol., Jun. 2002, vol. 73 (6), pp. 643-652.
Search Report and Written Opinion dated Dec. 10, 2012 for PCT Application No. PCT/US2012/043636.
Search Report and Written Opinion dated Dec. 6, 2016 for PCT Application No. PCT/US2016/047831.
Search Report and Written Opinion dated Apr. 19, 2014 PCT Application No. PCT/US2012/061215.
Search Report and Written Opinion dated Apr. 19, 2014 PCT Application No. PCT/US2012/061219.
Search Report and Written Opinion dated Mar. 2, 2015 for PCT Application No. PCT/US2014/029549.
Search Report and Written Opinion dated May 1, 2012 for PCT Application No. PCT/US2011/065627.
Search Report and Written Opinion dated May 22, 2007 for PCT Application No. PCT/US2005/044543.
Search Report and Written Opinion dated Oct. 20, 2014 for PCT Application No. PCT/US2014/038849.
Search Report and Written Opinion dated Sep. 4, 2014 for PCT Application No. PCT/US2014/014704.
The CoreValve System Medtronic, 2012, 4 Pages.
Van Den Brand et al., “Histological Changes in the Aortic Valve after Balloon Dilation: Evidence for a Delayed Healing Process”, Br Heart J, Jun. 1992,vol. 67, pp. 445-459.
Verdaadadonk et al., “The Mechanism of Action of the Ultrasonic Tissue Resectors Disclosed Using High-Speed and Thermal Imaging Techniques”, SPIE, Jan. 1999, vol. 3594, pp. 221-231.
Voelker et al., “Inoperative Valvuloplasty in Calcific Aortic Stenosis: a Study Comparing the Mechanism of a Novel Expandable Device with Conventional Balloon Dilation”, Am Heart J., Nov. 1991, vol. 122 (5), pp. 1327-1333.
Waller et al., “Catheter Balloon Valvuloplasty of Stenotic Aortic Valves. Part II: Balloon Valvuloplasty During Life Subsequent Tissue Examination”, Clin Cardiol., Nov. 1991, vol. 14 (11), pp. 924-930.
Wang, “Balloon Aortic Valvuloplasty”, Prog Cardiovasc Dis., Jul.-Aug. 1997, vol. 40 (1), pp. 27-36.
Wilson et al., “Elastography—The movement Begins”, Phys. Med. Biol., Jun. 2000, vol. 45, pp. 1409-1421.
Yock et al, “Catheter-Based Ultrasound Thrombolysis”, Circulation, Mar. 1997, vol. 95 (6), pp. 1411-1416.
Search Report and Written Opinion dated Jul. 11, 2018 for PCT Application No. PCT/US2018/027990, 15 pages.
Search Report and Written Opinion dated Jun. 28, 2018 for PCT Application No. PCT/US2018/027983, 15 pages.
U.S. Appl. No. 16/288,679, filed Feb. 28, 2019, naming inventor Deem et al.
Related Publications (1)
Number Date Country
20180296325 A1 Oct 2018 US