The invention relates to a hydraulic valve brake for a hydraulically actuated, variable valve drive of an internal combustion engine. The hydraulic valve brake comprises a housing with a housing wall and a housing base, a piston that moves axially in the housing and whose one end surface defines, with the housing wall and the housing base, a hydraulic compression chamber and whose other end surface actuates a gas exchange valve, wherein the housing wall is perforated in the area of the compression chamber by one or more overflow openings whose opening cross sections are controlled by a control edge of the piston defining the compression chamber-side end surface.
The invention also relates to an internal combustion engine with a hydraulic valve drive that has such a hydraulic valve brake.
One essential component of hydraulically actuated, variable valve drives that operate according to the lost-motion principle and in which a so-called hydraulic linkage with variable reducible hydraulic volume runs between the drive side, usually the cam of a camshaft, and the driven side, i.e., the gas exchange valve, there is a hydraulic valve brake that controls the set-down rate of the closing gas exchange valve independent of the cam position and limits this to specified values that are acceptable acoustically and mechanically. Hydraulic valve drives each with a hydraulic valve brake according to the class are known, for example, from U.S. Pat. No. 6,550,433 B2 and from EP 0 507 521 A1. For such a valve brake, pressure is removed from the compression chamber that becomes smaller with the closing gas exchange valve by one or more overflow openings that extend at the side of the piston in the housing wall and whose opening cross sections are reduced increasingly by a compression-chamber-side control edge of the piston entering into the housing and possibly completely closed.
Because the components of the hydraulic valve brake cannot be produced economically with arbitrarily high precision, there are still component tolerances that produce different braking characteristics even within a single manufacturing batch. However, gas exchange cycle with gas exchange valves that close at the same operating point with different stroke profiles at different crank angles with respect to the piston dead center points negatively affect the power output and emissions behavior of the internal combustion engine.
The present invention is based on the objective of providing, with simple structural means, prerequisites for improved operational behavior of an internal combustion engine with a hydraulic valve drive and a hydraulic valve brake of the type specified above.
This object is achieved in that the axial distance that the control edge of the piston retracted completely in the housing is set apart from the housing base is adjusted by a spacer of predetermined thickness. By this adjustment, the effects of the component tolerances that significantly influence the braking characteristics of the valve brake are considerably reduced and ideally eliminated. This is because, shortly before the gas exchange valve is closed, its delay profile for constant hydraulic medium viscosity is highly dependent on the profile of the overlap of the opening cross sections controlled by the piston control edge in the housing wall. The axial distance adjusted at a reference point, i.e., for a piston retracted completely in the housing, between the piston control edge and the housing base (or a housing part fixed relative to the housing base) now causes a displacement of the overlap profile corresponding to the predetermined thickness of the spacer to the extent that all hydraulic valve brakes or batches of these valve brakes have the same or a sufficiently similar delay profile.
Valve brakes adjusted according to the invention are suitable not only for valve drives with (automatic) hydraulic valve clearance compensation, but also for valve drives with (manual) mechanical valve clearance compensation, wherein, in the latter case, in particular, large motors with hydraulically actuated, variable valve drives are the focus. For the mechanical valve clearance adjustment, the overlap profile of the piston control edge and opening cross section(s) has only an offset by the (uniformly adjusted) valve clearance. This is because, in this case, the piston and the housing base that is significant for the axial distance are set apart by the valve clearance when the gas exchange valve closes.
The adjustment of the axial distance between the piston control edge and the housing base can be realized in various ways. In particular, an adjustment in discrete thickness steps of the spacer is provided, wherein each thickness is predetermined as a result of a previous test or measurement of the delay profile of the non-adjusted valve brake and the spacer is taken from a group classification accordingly and paired with the valve brake. The spacer can be joined either rigidly to the housing or rigidly to the piston. The spacer has an effect in the displacement-time profile of the piston moving in the valve brake such that the cross sections of the overflow openings are overlapped by the piston control edge only for a larger piston displacement. Here, the valve brake becomes, so to speak, “faster.” The term “the spacer” is not necessarily limited to a single part, but can also comprise a group of two or more parts that are then added together as a stack with the predetermined thickness. Due to the multiple combination possibilities, in this case the group classification can be limited to a few individual thicknesses and in the limit case to a single thickness.
In an alternative construction, the spacer can also be constructed as a non-separate, integral part as a projection of the piston on its compression-chamber-side end surface or as a projection of the housing on its housing base. The axial distance can then be adjusted by changing the projection thickness. Relative to the previously mentioned embodiment with joined spacer, a shortening of the projection by the predetermined thickness has the effect that, in the displacement-time profile, the opening cross sections are already covered by the piston control edge for small piston displacements and the valve brake becomes, so to speak, “slower.”
Other features of the invention are given from the following description and from the drawings in which the invention is explained in principle and with reference to an example valve brake. If not mentioned otherwise, features or components that are identical or have identical functions are provided with identical reference symbols. Shown are:
A master piston 5 driven by the cam 4 of a camshaft,
A slave piston 6′ actuating the gas exchange valve,
An electromagnetic 2-2-path hydraulic valve 7,
A high-pressure chamber 8 that is defined by the master piston and by the slave piston and from which, when the hydraulic valve is open, hydraulic medium can flow out into a medium-pressure chamber 9,
A piston pressure accumulator 10 connected to the medium-pressure chamber,
A non-return valve 11 that opens in the direction of the medium-pressure chamber and by which the medium-pressure chamber is connected to the lubricant circuit of the internal combustion engine,
And a low-pressure chamber 12 that is used as a hydraulic medium reservoir and is connected to the medium-pressure chamber by a throttle 13 and whose contents are available immediately during the starting process of the internal combustion engine.
The variability of the valve stroke is generated such that the high-pressure chamber 8 between the master piston 5 and the slave piston 6′ acts as a so-called hydraulic linkage, wherein the hydraulic volume forced by the master piston—not taking into account any leakage—is split proportional to the stroke of the cam 4 as a function of the opening time and the opening period of the hydraulic valve 7 into a first partial volume loading the slave piston and into a second partial volume flowing out into the medium-pressure chamber 9 including the piston pressure accumulator 10 and into the low-pressure chamber 12. Through the movement of the gas exchange valve 2 decoupled from the movement of the cam, the stroke transfer of the master piston to the slave piston and consequently not only the control times, but also the stroke height of the gas exchange valve within the lift of the cam are completely variably adjustable.
The slave piston 6′ is equipped with a hydraulic valve brake 14′ that reduces the set-down speed of the closing gas exchange valve 2 decoupled from the movement of the cam 4 to a mechanically and acoustically acceptable level. In the illustrated principle construction, the valve brake is a throttle gap that is formed during the final closing phase of the gas exchange valve by the overlap of a cylindrical projection 15 on the compression-chamber-side end surface of the slave piston with an overflow opening 16 that extends concentric to the housing wall 17′ supporting the slave piston.
In the housing wall 17 there are overflow openings 23 and 24 by which the compression chamber 21 communicates with the master-side hydraulic system not shown here (see
The representation shows the piston 6 in the position moved completely in the housing 19 in which the piston is located during the valve clearance adjustment to the valve clearance L measured between the adjustment screw 22 and the valve-side end surface of the piston. In contrast, during the operating state of the internal combustion engine, the valve clearance is moved for the most part or completely toward the compression-chamber-side end surface. The axial distance between the piston control edge 25 and the housing base 20 is adjusted according to the invention by a spacer 26 that influences the delay profile of the piston moving into the housing so that all of the valve brakes of the internal combustion engine have essentially the same brake characteristics and accordingly all of the gas exchange valves 2 of the internal combustion engine close with approximately the same stroke profile.
The determination of the spacer thickness d required for the adjusted axial distance h is realized as explained below with reference to the schematic
The measurement result is shown greatly simplified in
The predetermination of the spacer thickness d, which is identical in the schematic representation according to
The housing wall 17 is perforated by four main flow openings 23 and throttle hole openings 24 in the form of drilled holes by means of which the compression chamber 21—as explained above—communicates with the master-side hydraulic system not shown here. The main flow openings run in a first transverse plane and the significantly smaller throttle flow openings run in a second transverse plane that is offset towards the first transverse plane in the retraction direction of the piston 6.
The valve holder 28 comprises an external ring collar 34 that is inserted in a pressurized-medium-tight way in a countersunk hole 35 of the housing wall 17 and is clamped against a shoulder 36 in the cylinder head 3 by the threaded connection 27 and a hollow cylindrical section 37 that projects relative to the ring collar in the direction of the recess 32. The non-return valve 29 comprises a valve carrier 38 similarly inserted in the valve holder 28 in a pressurized-medium-tight way and a valve ball 40 spring-loaded therein against a valve seat 39. This opens in the direction of the compression chamber 21 and controls another overflow opening 41 by means of which the compression chamber likewise communicates with the master-side hydraulic system in order to initialize the extension of the piston 6 for the opening of the gas exchange valve 2. When the adjustment disk 26 is completely on the valve holder, the hydraulic medium overflow into the compression chamber is realized initially via beads 42 on the ring end surface 43 of the hollow cylindrical section.
The opening cross sections of the main and throttle flow openings 23 and 24, respectively, are controlled by the control edge 25 of the piston 6 moving past this edge and are all closed both in the illustrated, completely retracted piston position and also in the piston position extended by the adjusted valve clearance L according to
Because when the piston 6 is retracted completely in the housing 19 the adjustment disk 26 is on the ring end surface 43, in this case the decisive reference for the adjusted axial distance h between the control edge 25 of the piston 6 retracted completely in the housing 19 and the housing base 20 is not the ring collar 34 but instead the ring edge side that is, like the ring collar, a fixed part of the valve holder 28. Accordingly, the non-adjusted valve brake 14 is provided with a—not shown—dummy adjustment disk of known thickness, so that for the basic measurement explained above (see
Analogous to
In
Number | Date | Country | Kind |
---|---|---|---|
102013223926.2 | Nov 2013 | DE | national |
This application incorporates the following documents by reference as if fully set forth herein: U.S. patent application Ser. No. 15/035,905, filed May 11, 2016, PCT/DE2014/200539, filed Oct. 8, 2014; and German Application No. 102013223926.2, filed Nov. 22, 2013.
Number | Date | Country | |
---|---|---|---|
Parent | 15035905 | May 2016 | US |
Child | 15933920 | US |