The present invention relates to hydraulic lifters for activating valves in response to rotation of a camshaft in an internal combustion engine; more particularly, to the body of such lifters including a chamfered relief and a reduced body diameter with respect to a main body diameter of the lifter body to eliminate the need to remove a residual burr contained within the reduced body diameter portion after a wheel groove is cut for a cam follower.
Hydraulic lifter assemblies for actuating intake and exhaust valves in internal combustion engines are well known. A typical lifter assembly includes a lifter body supportive of cam follower such as a roller. In use, the body is disposed for reciprocal motion in a bore in an engine block for translating rotary motion of a cam lobe into reciprocal motion of a pushrod. A piston within a well in the lifter body defines a high-pressure chamber in the well between the piston and the bottom of the well. The piston includes a low-pressure reservoir supplied with engine oil, from which the high-pressure chamber is replenished via a check valve. A pushrod seat closes the low-pressure chamber and receives the pushrod. A spring within the high-pressure chamber urges the piston outwards, thus removing mechanical lash in the valve train. The low-pressure chamber is provided with oil via an axial passage in the pushrod in communication with an oil gallery in the engine rocker arm assembly, such that there are no air voids in the oil supply system during engine operation.
It is necessary to completely purge air from an engine oil supply system after assembly of the engine and before the first starting. Of necessity, when the rocker arm assembly is bolted to the engine head, some of the intake and exhaust valves are placed in an open position. In a relatively short time, those lifter assemblies associated with the open valves will leak oil from their high-pressure chambers in response to force exerted by the valve springs. When this happens during normal operation of an engine, as during periods of inoperation, it is of little consequence, as the lifter automatically refills from the low-pressure reservoir through the check valve as soon as the engine is re-started and the force is relieved from the lifter. However, upon first starting an engine after assembly, it is essential that the low-pressure reservoir have sufficient oil to refill the high-pressure chamber immediately. A failure to provide oil for filling of the high-pressure chamber immediately results in a noisy lifter, a false indication of lifter failure, a failure of the first-start-after-assembly engine test, and substantial engine rework costs.
To guard against this problem in the prior art, lifters are carefully filled with oil after assembly of the lifter and are shipped in a vertical position. However, engine assembly can require a lifter to be placed in an orientation wherein oil can drain from the lifter. In addition, some engines have normal lifter positions wherein oil can drain from the low-pressure reservoir during and after engine assembly.
Prior to starting a newly-assembled engine, oil is forced through the oil distribution system under pressure for a predetermined time period, typically on the order of one minute, to purge air from the system. A large amount of air is initially present in galleries in the rocker arm shaft, rocker arms, and pushrods, which air must be expelled from the pushrods at or through the hydraulic valve lifters. Because there is no lash between elements in the valve-open valve trains, air purging is difficult and frequently incomplete, resulting in a noisy lifter upon initial starting. Further, any lifter with residual air trapped in the low-pressure reservoir may suck that air into the high-pressure chamber upon start-up, producing a void therein resulting in prolonged lifter noise and test failure.
Another known problem in prior art hydraulic valve lifters is that a burr is formed at a lower edge of the lifter body when machining the lifter body to form a wheel groove for the cam follower. If not removed, the burr is known to cause undesirable scratching and wear of the surface of the engine bore during use. In the prior art, the burr is typically removed in a separate deburring operation, adding to the cost of manufacture of prior art hydraulic valve assemblies.
What is needed in the art of hydraulic valve lifters is an improvement that eliminates the need to remove a residual burr contained in a lifter body after a wheel groove is cut therein.
It is a principal object of the present invention to provide a lifter body that eliminates the need to remove a residual burr from the lifter body after a wheel groove is cut.
Briefly described, a hydraulic valve lifter assembly in accordance with the invention includes a lifter body and a cam follower. The cam follower is mounted to an end of the lifter body wherein the lifter body has a first diameter over a first body portion for engaging a wall of an engine bore. The lifter body also includes a second diameter smaller than the first diameter over a second body portion supportive of the cam follower. The hydraulic valve lifter assembly further includes a contiguous annular transitional chamfer between the first and second diameter portions of the lifter body.
Therefore, when a wheel groove is cut for the cam follower, any residual burr is contained within the reduced diameter portion, cannot interface with an engine bore surface, and need not be removed.
The present invention will now be described, by way of example, with reference to the accompanying drawings, in which:
Referring to
Lifter assembly 10a is substantially identical to non-valve-deactivating hydraulic valve lifter assemblies, as are well known in the prior art of internal combustion engines.
Lifter assembly 10b is a valve-deactivating lifter assembly substantially as disclosed in U.S. Pat. No. 6,595,174 issued Jul. 22, 2003 to Schnell.
Lifter assembly 10c is a valve-deactivating lifter assembly substantially as disclosed in U.S. Pat. No. 6,606,972 issued Aug. 19, 2003 to Wenisch et al.
Lifter assembly 10d is a valve-deactivating lifter assembly substantially as disclosed in U.S. Pat. No. 6,578,535 issued Jun. 17, 2003 to Spath et al., the relevant disclosure of which is incorporated herein by reference.
Lifter assemblies 10b, 10c, 10d differ significantly from lifter assembly 10a only in their respective deactivating mechanisms 22b, 22c, 22d which are not immediately relevant to the present invention and need not be discussed in detail further. The purpose in showing a prior art non-valve-deactivating lifter assembly 10a along with three representative prior art valve-deactivating lifter assemblies 10b, 10c, 10d is to show that the upper end hydraulic valve lifter means 24a, 24b, 24c, 24d is substantially identical, functionally, in both non-valve-deactivating and valve-deactivating prior art lifter assemblies. As is shown below, the invention is useful when incorporated into either type of hydraulic valve lifter assembly.
Referring to
The HLA 24 as just described is common (24a, 24b, 24c, 24d) to all four exemplary lifter assemblies 10a, 10b, 10c, 10d.
Referring to
The relief patterning may also take the form of permanent patterns formed in socket surface 135 and/or mating surfaces 156,158. Some exemplary patterns, which may be either temporary or permanent, are offered in
The patterns shown herein are only exemplary; obviously, other patterns as may be conceived of by one of ordinary skill in the art are fully comprehended by the invention. Further, as may be determined by one of ordinary skill in the art without undue experimentation, the grooves or roughness should be sized in dimension and number to permit ready venting of air during purging thereof from the engine galleries but to inhibit significant passage of engine oil during normal operation of the lifter.
When air is vented across socket surface 135, in accordance with the invention, air escapes generally into the engine cavity via the top of assembly 110. When air is vented across either surface 156 or surface 158, in accordance with the invention, air escapes generally into the engine cavity via vent space 162 formed in bore 130 between seat 132 and the pin housing (shown as 26 in
Referring again to
Referring to
A less expensive solution to the problem is to add chamfered relief 170 and reduced body diameter as part of the machining operation of the outer surfaces of body 12, adding little if any cost to manufacture. Thus, when wheel groove 84 is cut, any residual burr is contained within the reduced diameter portion, cannot interface with bore surface 11, and need not be removed.
While the invention has been described by reference to various specific embodiments, it should be understood that numerous changes may be made within the spirit and scope of the inventive concepts described. Accordingly, it is intended that the invention not be limited to the described embodiments, but will have full scope defined by the language of the following claims.
This application is a continuation of U.S. application Ser. No. 10/977,071, which was filed on Oct. 29, 2004 now U.S. Pat. No. 7,117,833.
Number | Name | Date | Kind |
---|---|---|---|
4457270 | Kodama et al. | Jul 1984 | A |
4463714 | Nakamura | Aug 1984 | A |
6247433 | Faria et al. | Jun 2001 | B1 |
6578535 | Spath et al. | Jun 2003 | B2 |
6595174 | Schnell | Jul 2003 | B2 |
6606972 | Wenisch et al. | Aug 2003 | B2 |
6988474 | Itoafa | Jan 2006 | B2 |
20050056246 | Itoafa | Mar 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20060162684 A1 | Jul 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10977071 | Oct 2004 | US |
Child | 11390409 | US |