Claims
- 1. In a hydraulically operated vibration exciter for a vibratory compactor, which exciter includes a cylinder, a piston mounted in the cylinder for reciprocating movement therein and delimiting two cylinder chambers located at respectively opposite sides of the piston, a source of hydraulic fluid under pressure communicating with the chambers for causing a liquid column of variable volume to move to and fro between the source and each chamber, the source acting to produce a cyclic reversal in the direction of liquid flow between the source and each chamber and a cyclic variation in the pressure of the liquid between the source and each chamber, for causing the piston to undergo, relative to the cylinder, a reciprocating movement with a controllable stroke, the improvement comprising means for discharging from each chamber a quantity of heated hydraulic fluid proportional to the pressure in said chamber only when said piston is in the vicinity of the center of its stroke; and means for adding a corresponding quantity of fluid at a lower temperature to the fluid supplied by said source.
- 2. An arrangement as defined in claim 1 wherein said discharging means comprise means defining two ducts each leading from an associated side of said piston to a respective opening in the peripheral face of said piston, means defining an opening in the wall of said cylinder, said opening in said peripheral face of said piston coming intermittently into communication with said opening in said wall of said cylinder during said to and fro relative movement, a liquid reservoir, and liquid withdrawal line means communicating said opening in said wall of said cylinder with said reservoir.
- 3. An exciter as claimed in claim 2, wherein there are two said ducts each leading from a respective opposite side of said piston, and two separated openings in the peripheral face of said piston, each opening having the form of an annular groove in the peripheral face of said piston, with at least one said duct communicating with one of said annular grooves and the other said duct communicating with the other of said annular grooves.
- 4. An exciter as claimed in claim 2, further comprising at least one sleeve interposed between said cylinder and said piston, said sleeve including a wall, means defining an opening through said wall of said sleeve, means for adjusting said sleeve axially in position in said cylinder, means defining an axially extending groove in the other peripheral surface of said wall of said sleeve, said opening through said wall of said sleeve communicating with said groove in said wall of said sleeve and said groove in said wall of said sleeve being in communication with said opening in said wall of said cylinder in all axial positions into which said sleeve is adjustable by said adjusting means.
- 5. An exciter as claimed in claim 2, further comprising at least one sleeve interposed between said cylinder and said piston, said sleeve including a wall, means defining an opening through said wall of said sleeve, means for adjusting said sleeve in position axially in said cylinder and means defining an axially extending groove in the internal surface of said wall of said cylinder, said groove communicating with said opening in said wall of said cylinder and said groove remaining in communication with said opening in said wall of said sleeve in all positions into which said sleeve is adjusted axially in said cylinder by said adjusting means.
- 6. An exciter as claimed in claim 2, further comprising liquid flow control means in said liquid withdrawal line.
- 7. A method of cooling a hydraulically operated vibration exciter for a vibratory compactor, which exciter includes a cylinder, a piston mounted in the cylinder for reciprocating movement therein and delimiting two cylinder chambers located at respectively opposite sides of the piston, a source of hydraulic fluid under pressure communicating with the chambers for causing a liquid column of variable volume to move to and fro between the source and each chamber, the source acting to produce a cyclic reversal in the direction of liquid flow between the source and each chamber and a cyclic variation in the pressure of the liquid between the source and each chamber, for causing the piston to undergo, relative to the cylinder, a reciprocating movement with a controllable stroke, said method comprising discharging from each chamber a quantity of heated hydraulic fluid proportional to the presence in said chamber only when said piston is in the vicinity of the center of its stroke; and adding a corresponding quantity of fluid at a lower temperature to the fluid supplied by said source.
Priority Claims (1)
Number |
Date |
Country |
Kind |
2607190 |
Feb 1976 |
DEX |
|
CROSS REFERENCE TO RELATED APPLICATION
This application is a continuation of applicant's copending United States Application Ser. No. 769,925, Feb. 18th, 1977 now abandoned.
US Referenced Citations (7)
Continuations (1)
|
Number |
Date |
Country |
Parent |
769925 |
Feb 1977 |
|