Information
                
                    - 
                        
 Patent Grant
                     
                    - 
                        
 6412705
                     
                
             
         
    
    
        
            
                - 
                    
Patent Number
                    6,412,705
                 
                - 
                    
Date Filed
                    Tuesday, May 9, 200025 years ago
                 
                - 
                    
Date Issued
                    Tuesday, July 2, 200223 years ago
                 
            
         
     
    
        
            
                - 
                            
Inventors
        
                 
                - 
                            
Original Assignees
        
                 
                - 
                                
Examiners
            
                            Agents
        
                - Liell & McNeil
 
                - McNeil; Michael B.
 
        
                 
            
         
     
    
        
            
                - 
                            
CPC
        
                 
                - 
                            
US Classifications
        
                            Field of Search
        
                US
 
                    - 239 88
 
                    - 239 95
 
                    - 239 96
 
                    - 239 5334
 
                    - 239 5335
 
                    - 239 5338
 
                    - 239 124
 
                    - 123 446
 
                    - 123 496
 
                    - 123 506
 
                    
                 
                - 
                            
International Classifications
        
                 
                - 
                            
                
 
            
         
     
        
     
    
        
        
    
        
            
        Abstract
A hydraulically actuated fuel injection system according to the present invention comprises at least one hydraulically actuated fuel injector that includes an injector body that defines a fuel pressurization chamber. A pumping element having a stepped top is movably mounted in a pumping bore defined by the injector body, wherein the pumping element defines at least one internal passageway. The pumping element is movable a distance between a first position and a second position. A spill passage defined by the injector body is open to the fuel pressurization chamber via the at least one internal passageway over a portion of the distance.             
         
        
            
                    Description
  
    
      
        TECHNICAL FIELD
      
    
    
      
        The present invention relates generally to fuel injector rate shaping, and more particularly to front end rate shaping an injection event of a hydraulically actuated fuel injector utilizing a spill passage and a stepped pumping element.
      
    
    
      
        1. Background Art
      
    
    
      
        It has long been known in the art that injector performance can be increased, and undesirable emissions reduced, by controlling the mass flow rate of fuel injected into a combustion chamber during an injection event. It is also believed that the ability to front end rate shape an injection event can further reduce emissions and noise level while increasing injector performance. While a number of fuel injectors have been developed that have limited rate shaping capabilities, the ability to produce some front end rate shapes has not been possible. Therefore, a fuel injector having a broader range of front end rate shaping capabilities would allow engineers to further reduce undesirable emissions while increasing fuel injector performance.
      
    
    
      
        The present invention is directed to overcoming one or more of the problems set forth above and to increasing the ability of hydraulically actuated fuel injector to produce different front end rate shapes.
      
    
    
      
        2. Disclosure of the Invention
      
    
    
      
        A hydraulically actuated fuel injection system according to the present invention comprises at least one hydraulically actuated fuel injector that includes an injector body that defines a fuel pressurization chamber. A pumping element having a stepped top is movably mounted in a pumping bore defined by the injector body, wherein the pumping element defines at least one internal passageway. The pumping element is movable a distance between a first position and a second position. A spill passage defined by the injector body is open to the fuel pressurization chamber via the at least one internal passageway over a portion of the distance.
      
    
  
  
    
      
        BRIEF DESCRIPTION OF THE DRAWINGS
      
    
    
      
        
          FIG. 1
        
         is a schematic representation of a hydraulically-actuated fuel injection system according to the present invention.
      
    
    
      
        
          FIG. 2
        
         is a sectioned side diagrammatic view of a hydraulically-actuated fuel injector according to the present invention for use with the fuel injection system of FIG. 
        
          
            1
          
        
        .
      
    
    
      
        
          FIG. 3
        
         is sectioned side view of the pumping element portion of the fuel injector of FIG. 
        
          
            2
          
        
        .
      
    
    
      
        
          FIG. 4
        
         is a graph of injection pressure versus time for the 
        
          FIG. 3
        
         embodiment of the present invention.
      
    
    
      
        
          FIG. 5
        
         is a graph of injection rate versus time for the 
        
          FIG. 3
        
         embodiment of the present invention.
      
    
    
      
        
          FIG. 6
        
         is a graph of injection rate versus time for a fuel injector having a relatively small diameter spill passage and a fuel injector having a relatively large diameter spill passage.
      
    
    
      
        
          FIG. 7
        
         is a graph of injection rate versus time for a fuel injector having a fuel pressurization chamber open to the low pressure area for a relatively long duration and a fuel injector having a fuel pressurization chamber open to the low pressure area for a relatively short duration.
      
    
    
      
        
          FIG. 8
        
         is a graph of injection rate versus time for a fuel injector having a spill passage that opens to the fuel pressurization chamber relatively early in the injection event and a fuel injector having a spill passage that opens to the fuel pressurization chamber later in the injection event.
      
    
    
      
        
          FIG. 9
        
         is a graph of injection rate versus time for a fuel injector having a spill passage that opens to the fuel pressurization chamber after the stepped portion of the piston moves past the shoulder and a fuel injector having a spill passage that opens to the fuel pressurization chamber before the stepped portion of the piston moves past the shoulder.
      
    
  
  
    
      
        BEST MODE OF CARRYING OUT THE INVENTION
      
    
    
      
        Referring now to 
        
          FIG. 1
        
         there is shown a hydraulically-actuated fuel injection system 
        
          
            10
          
        
         according to the present invention. Fuel injection system 
        
          
            10
          
        
         includes at least one hydraulically actuated fuel injector 
        
          
            40
          
        
        , all of which are adapted to be positioned in a respective cylinder head bore of an engine. Fuel injection system 
        
          
            10
          
        
         includes a source of low pressure actuation fluid 
        
          
            12
          
        
         for supplying actuation fluid to each fuel injector 
        
          
            40
          
        
         at a device inlet 
        
          
            26
          
        
        , and a source of fuel 
        
          
            14
          
        
         for supplying fuel to each fuel injector 
        
          
            40
          
        
         at a fuel inlet 
        
          
            30
          
        
        . Fuel injection system 
        
          
            10
          
        
         also includes a means for recirculating actuation fluid 
        
          
            31
          
        
        , containing a hydraulic motor 
        
          
            32
          
        
        , which is capable of recovering hydraulic energy from oil exiting fuel injectors 
        
          
            40
          
        
        . A computer 
        
          
            18
          
        
         is also included in fuel injection system 
        
          
            10
          
        
         to control timing and duration of injection events. Computer 
        
          
            18
          
        
         includes an electronic control module 
        
          
            15
          
        
         which controls the timing and duration of injection events and pressure in a high pressure manifold 
        
          
            47
          
        
        . Based upon a variety of input parameters including temperature, throttle, engine load, etc. (S
        
          
            1
          
        
        -S
        
          
            8
          
        
        ) electronic control module 
        
          
            15
          
        
         can determine a desired injection timing and duration, and manifold pressure to produce some desired performance at the sensed operating conditions.
      
    
    
      
        Low pressure actuation fluid source 
        
          
            12
          
        
         preferably includes an oil pan 
        
          
            16
          
        
        , one or more actuation fluid filters 
        
          
            19
          
        
        , a high pressure pump 
        
          
            20
          
        
         for generating high pressure in the oil, and at least one high pressure manifold 
        
          
            47
          
        
        . While the actuation fluid used in the present invention is preferably oil, it should be appreciated that any other suitable actuation fluid could instead be used. A pump outlet of high pressure pump 
        
          
            20
          
        
         is arranged in fluid communication with high pressure manifold 
        
          
            47
          
        
         via supply passageway 
        
          
            23
          
        
        . A branch passage 
        
          
            29
          
        
         connects device inlet 
        
          
            26
          
        
         of each fuel injector 
        
          
            40
          
        
         to high pressure manifold 
        
          
            47
          
        
        . After performing work in each fuel injector 
        
          
            40
          
        
        , oil exits through device outlet 
        
          
            27
          
        
         and is returned to oil pan 
        
          
            16
          
        
         via recirculation line 
        
          
            33
          
        
        .
      
    
    
      
        The source of fuel 
        
          
            14
          
        
         preferably includes a fuel supply regulating valve 
        
          
            39
          
        
         and a fuel circulation and return passage 
        
          
            37
          
        
         arranged in fluid communication between the fuel injectors 
        
          
            40
          
        
         and a source of fuel 
        
          
            35
          
        
        . Fuel is supplied to the fuel injectors 
        
          
            40
          
        
         via a fuel supply passage 
        
          
            34
          
        
         arranged in fluid communication between fuel source 
        
          
            35
          
        
         and a fuel inlet 
        
          
            30
          
        
         of each fuel injector 
        
          
            40
          
        
        . Fuel being supplied through the fuel supply passage 
        
          
            34
          
        
         travels through a low pressure fuel transfer pump 
        
          
            36
          
        
         and one or more fuel filters 
        
          
            38
          
        
        .
      
    
    
      
        Referring now to 
        
          FIGS. 2-3
        
         there is shown a hydraulically-actuated fuel injector 
        
          
            40
          
        
         according to the present invention. Fuel injector 
        
          
            40
          
        
         includes an injector body 
        
          
            41
          
        
         made up of various components that are attached to one another in a manner well known in the art and a substantial number of internal movable components positioned as they would be just prior to an injection event. Actuation fluid, which is preferably high pressure oil, can flow into a high pressure actuation fluid passage that is defined by injector body 
        
          
            41
          
        
         via an actuation fluid inlet 
        
          
            26
          
        
         and high pressure supply line 
        
          
            65
          
        
         from high pressure manifold 
        
          
            47
          
        
        . At the end of an injection event, actuation fluid can flow out of a low pressure drain passage 
        
          
            57
          
        
         that is defined by injector body 
        
          
            41
          
        
         via an actuation fluid vent 
        
          
            27
          
        
         into low pressure fluid reservoir 
        
          
            12
          
        
        . While a number of different fluids could be used as actuation fluid, the present invention preferably utilizes engine lubricating oil.
      
    
    
      
        Fuel injector 
        
          
            40
          
        
         is controlled in operation by a control valve 
        
          
            50
          
        
         that includes an electrical actuator 
        
          
            51
          
        
         which is preferably a solenoid 
        
          
            52
          
        
        , but could also be another suitable device such as a piezoelectric actuator. Control valve 
        
          
            50
          
        
         is positioned in injector body 
        
          
            41
          
        
         and attached by fasteners 
        
          
            48
          
        
        , which are preferably bolts but could be another suitable attachment device. Solenoid 
        
          
            52
          
        
         includes a biasing spring 
        
          
            53
          
        
        , a coil 
        
          
            55
          
        
        , an armature 
        
          
            54
          
        
         and a pin 
        
          
            56
          
        
         that is operably coupled to a pilot valve member 
        
          
            58
          
        
        . Pilot valve member 
        
          
            58
          
        
         has been illustrated as a ball valve member and is moveable within injector body 
        
          
            41
          
        
         between a first position in which it closes a low pressure seat 
        
          
            61
          
        
         and a second position in which it closes a high pressure seat 
        
          
            60
          
        
        . While pilot valve member 
        
          
            58
          
        
         has been shown as a ball valve member, it should be appreciated that it could instead be a spool valve member or another suitable device, such as a poppet valve member. Injector body 
        
          
            41
          
        
         also defines a control passage 
        
          
            59
          
        
         that opens into a needle control passage 
        
          
            63
          
        
         and a spool control passage 
        
          
            64
          
        
        . Prior to an injection event when solenoid 
        
          
            52
          
        
         is de-energized, pilot valve member 
        
          
            58
          
        
         is positioned in its first position to close low pressure seat 
        
          
            61
          
        
        , against the action of biasing spring 
        
          
            53
          
        
        . When pilot valve member 
        
          
            58
          
        
         is in this position needle control passage 
        
          
            63
          
        
         and spool control passage 
        
          
            64
          
        
         are open to high pressure actuation fluid supply passage 
        
          
            65
          
        
         via control passage 
        
          
            59
          
        
         and blocked from fluid communication with low pressure passage 
        
          
            57
          
        
        . When solenoid 
        
          
            52
          
        
         is energized, armature 
        
          
            53
          
        
         pushes pin 
        
          
            56
          
        
         downward to move pilot valve member 
        
          
            58
          
        
         toward its second position to close high pressure seat 
        
          
            60
          
        
        , as shown. When pilot valve member 
        
          
            58
          
        
         is in the second position, needle control passage 
        
          
            63
          
        
         and spool control passage 
        
          
            64
          
        
         are closed to high pressure actuation fluid supply passage 
        
          
            65
          
        
         and open to low pressure passage 
        
          
            57
          
        
         via control passage 
        
          
            59
          
        
        .
      
    
    
      
        Needle control passage 
        
          
            63
          
        
         is fluidly connected to a needle control chamber 
        
          
            103
          
        
         while spool control passage 
        
          
            64
          
        
         is in fluid communication with a hydraulic surface 
        
          
            68
          
        
         of a control valve member 
        
          
            67
          
        
        . Control valve member 
        
          
            67
          
        
        , which is preferably a spool valve member, is positioned within injector body 
        
          
            41
          
        
         and is movable between an upward position and a downward position. Control valve member 
        
          
            67
          
        
         is biased toward its upward position by a biasing spring 
        
          
            69
          
        
        . When solenoid 
        
          
            52
          
        
         is de-energized, and pilot valve member 
        
          
            58
          
        
         is positioned to close low pressure seat 
        
          
            61
          
        
        , actuation fluid cavity 
        
          
            78
          
        
         is open to low pressure drain 
        
          
            27
          
        
        . When solenoid 
        
          
            52
          
        
         is energized and pilot valve member 
        
          
            58
          
        
         is moved to close high pressure seat 
        
          
            60
          
        
        , a control valve hydraulic surface 
        
          
            68
          
        
         becomes exposed to low pressure in drain 
        
          
            27
          
        
        , via spool control passage 
        
          
            64
          
        
        . This causes control valve member 
        
          
            67
          
        
         to become hydraulically imbalanced and allows it to move downward against the action of biasing spring 
        
          
            69
          
        
        . When control valve member 
        
          
            67
          
        
         is in its downward position, actuation fluid cavity 
        
          
            78
          
        
         is open to high pressure fluid inlet 
        
          
            26
          
        
         via radial openings 
        
          
            62
          
        
         defined by control valve member 
        
          
            67
          
        
        .
      
    
    
      
        Returning now to fuel injector 
        
          
            40
          
        
        , injector body 
        
          
            41
          
        
         also g includes a reciprocating pumping element, illustrated as a piston 
        
          
            80
          
        
         coupled to a plunger 
        
          
            90
          
        
        , which can move between an upward retracted position, as shown, and a downward advanced position. Piston 
        
          
            80
          
        
         includes a stepped portion 
        
          
            82
          
        
         and is biased toward its retracted position by a return spring 
        
          
            88
          
        
        . Piston 
        
          
            80
          
        
         begins to advance due to the hydraulic pressure force exerted on a first hydraulic surface 
        
          
            81
          
        
        , defined by stepped portion 
        
          
            82
          
        
        , which is exposed to fluid pressure in actuation fluid cavity 
        
          
            78
          
        
        . A second hydraulic surface 
        
          
            86
          
        
        , defined by piston 
        
          
            80
          
        
         is also fluidly connected to high pressure hydraulic fluid via a restricted side passage 
        
          
            76
          
        
         The flow restriction causes a pressure drop so that second hydraulic surface 
        
          
            86
          
        
         sees a relatively low pressure and provides an avenue to displace fluid into the volume or cavity above surface 
        
          
            86
          
        
         so that piston 
        
          
            80
          
        
         is not inhibited in its movement. With only first hydraulic surface 
        
          
            81
          
        
         exposed to high pressure in actuation fluid cavity 
        
          
            78
          
        
        , piston 
        
          
            80
          
        
         initially accelerates downward at a rate slower than it otherwise would if the fluid pressure were acting over the complete top surface of piston 
        
          
            80
          
        
         Once hydraulic surface 
        
          
            81
          
        
         advances past a shoulder 
        
          
            83
          
        
        , second hydraulic surface 
        
          
            86
          
        
         becomes fully exposed to fluid pressure in actuation fluid cavity 
        
          
            78
          
        
        .
      
    
    
      
        As illustrated in 
        
          FIGS. 2-3
        
        , second hydraulic surface 
        
          
            86
          
        
         and first hydraulic surface 
        
          
            81
          
        
         compose the complete top surface of piston 
        
          
            80
          
        
        . Because the surface area of piston 
        
          
            80
          
        
         that is exposed to fluid pressure in actuation fluid cavity 
        
          
            78
          
        
         has been increased, piston 
        
          
            80
          
        
         begins to accelerate more rapidly toward its advanced position. It should be appreciated that the greater the increase in surface area exposed to fluid pressure in actuation fluid cavity 
        
          
            78
          
        
        , the greater the increase in the speed of piston 
        
          
            80
          
        
         and plunger 
        
          
            90
          
        
         and the greater the maximum speed of piston 
        
          
            80
          
        
         and plunger 
        
          
            90
          
        
        . In addition, the greater the height of stepped portion 
        
          
            82
          
        
        , the greater the length of time before second hydraulic surface 
        
          
            86
          
        
         is exposed to fluid pressure in actuation fluid cavity 
        
          
            78
          
        
        . In other words, if the height of stepped portion 
        
          
            82
          
        
         is relatively large, piston 
        
          
            80
          
        
         and plunger 
        
          
            90
          
        
         will not experience an increase in their movement rate toward their advanced positions due to this feature of the present invention until later in the injection event than if the height of stepped portion 
        
          
            82
          
        
         is relatively small.
      
    
    
      
        When piston 
        
          
            80
          
        
         begins to advance, plunger 
        
          
            90
          
        
         advances in a corresponding fashion. Therefore, at the beginning of an injection event, when only first hydraulic surface 
        
          
            81
          
        
         is exposed to fluid pressure in actuation fluid cavity 
        
          
            78
          
        
        , plunger 
        
          
            90
          
        
         advances at a relatively slow rate. However, this slower rate should still be sufficient to pressurize fuel, and maintain that pressure, above the valve opening pressure. Once first hydraulic surface 
        
          
            81
          
        
         advances past shoulder 
        
          
            83
          
        
        , plunger 
        
          
            90
          
        
         begins to advance more rapidly, corresponding to the more rapid movement of piston 
        
          
            80
          
        
        . Plunger 
        
          
            90
          
        
         acts as the means for pressurizing fuel within a fuel pressurization chamber 
        
          
            98
          
        
         that is connected to a fuel inlet 
        
          
            30
          
        
         past a ball check valve 
        
          
            99
          
        
        . Fuel inlet 
        
          
            30
          
        
         is connected to fuel source 
        
          
            35
          
        
         via a fuel supply passage 
        
          
            34
          
        
        . When plunger 
        
          
            90
          
        
         is returning to its upward position, fuel is drawn into fuel pressurization chamber 
        
          
            98
          
        
         past check valve 
        
          
            99
          
        
        . During an injection event as plunger 
        
          
            90
          
        
         moves toward its downward position, check valve 
        
          
            99
          
        
         is closed and plunger 
        
          
            90
          
        
         can act to compress fuel within fuel pressurization chamber 
        
          
            98
          
        
        . Fuel pressurization chamber 
        
          
            98
          
        
         is fluidly connected to a nozzle outlet 
        
          
            110
          
        
         via a nozzle supply passage 
        
          
            106
          
        
        .
      
    
    
      
        As best illustrated in 
        
          FIG. 3
        
        , plunger 
        
          
            90
          
        
         preferably defines at least one internal passageway 
        
          
            96
          
        
         that includes an annulus 
        
          
            94
          
        
        . In addition, injector body 
        
          
            41
          
        
         defines a spill passage 
        
          
            92
          
        
         that can fluidly connect fuel pressurization chamber 
        
          
            98
          
        
         to a low pressure area via internal passageways 
        
          
            96
          
        
         when annulus 
        
          
            94
          
        
         is open to spill passage 
        
          
            92
          
        
        . When fuel pressurization chamber 
        
          
            98
          
        
         is open to the low pressure area, the pressure acting on the top surface of piston 
        
          
            80
          
        
         is greater that the pressure acting on plunger hydraulic surface 
        
          
            97
          
        
        . Therefore, plunger 
        
          
            90
          
        
         and piston 
        
          
            80
          
        
         move relatively quickly toward their advanced positions when annulus 
        
          
            94
          
        
         is open to spill passage 
        
          
            92
          
        
        . Once annulus 
        
          
            94
          
        
         is no longer open to spill passage 
        
          
            92
          
        
        , the advancing movement of plunger 
        
          
            90
          
        
         and piston 
        
          
            80
          
        
         slows. Note that while internal passageways 
        
          
            96
          
        
         have been shown as being fluidly connected to spill passage 
        
          
            92
          
        
         via annulus 
        
          
            94
          
        
        , an alternative means could be substituted. For instance, a radial passageway could be defined by plunger 
        
          
            90
          
        
         to connect internal passageways 
        
          
            96
          
        
         to spill passage 
        
          
            92
          
        
        . Therefore, it should be appreciated that the present invention contemplates any conventional means for fluidly connecting these passages.
      
    
    
      
        It should be appreciated that the height of annulus 
        
          
            94
          
        
         directly influences the duration of the drop in pressure in fuel pressurization chamber 
        
          
            98
          
        
        . For instance, if annulus 
        
          
            94
          
        
         is relatively small, or =short, fuel pressurization chamber 
        
          
            98
          
        
         will be open to spill passage 
        
          
            92
          
        
         for a relatively short duration, and therefore, piston 
        
          
            80
          
        
         and plunger 
        
          
            90
          
        
         will move at their quickened pace for a corresponding short time. However, if annulus 
        
          
            94
          
        
         is relatively large, or tall, fuel pressurization chamber 
        
          
            98
          
        
         will be open to spill passage 
        
          
            92
          
        
         for a relatively long duration, causing piston 
        
          
            80
          
        
         and plunger 
        
          
            90
          
        
         to rapidly advance for a corresponding relatively long time. It should also be appreciated that other factors influence the length, and speed, at which piston 
        
          
            80
          
        
         and plunger 
        
          
            90
          
        
         advance during this portion of their movement. For instance, the diameter of spill passage 
        
          
            92
          
        
         will also directly affect the movement of piston 
        
          
            80
          
        
         and plunger 
        
          
            90
          
        
         and the volume of fuel spilled. Therefore, if the diameter of spill passage 
        
          
            92
          
        
         is relatively small, a smaller amount of fuel will be able to spill from fuel pressurization chamber 
        
          
            98
          
        
        , resulting in a smaller decrease in the pressure in the same. This will result in less of an increase in the rate of movement of piston 
        
          
            80
          
        
         and plunger 
        
          
            90
          
        
         toward their advanced positions due to this feature. However, if the diameter of spill passage 
        
          
            92
          
        
         is relatively large, a greater amount of fuel will be able to spill from fuel pressurization chamber 
        
          
            98
          
        
         causing a more dramatic decrease in the pressure within the same. Therefore, it should be appreciated that the diameter of spill passage 
        
          
            92
          
        
         and the size of annulus 
        
          
            94
          
        
         should be taken into consideration when constructing fuel injector 
        
          
            40
          
        
         to achieve the desired front end rate shaping.
      
    
    
      
        Returning now to fuel injector 
        
          
            40
          
        
        , a pressure relief valve 
        
          
            73
          
        
         is movably positioned in injector body 
        
          
            41
          
        
         to prevent pressure spikes and vent fluid pressure from actuation fluid cavity 
        
          
            78
          
        
         and piston bore 
        
          
            87
          
        
         toward the end of an injection event. Pressure spikes can be created when piston 
        
          
            80
          
        
         and plunger 
        
          
            90
          
        
         abruptly stop their downward movement due to the abrupt closure of nozzle outlet 
        
          
            110
          
        
        . Pressure spikes can sometimes cause an undesirable secondary injection due to an interaction of components and passageways over a brief instant after main injection has ended. Therefore, injector body 
        
          
            41
          
        
         also defines a pressure relief passage 
        
          
            70
          
        
         that opens to low pressure drain 
        
          
            27
          
        
         via a low pressure passage 
        
          
            74
          
        
        . When control valve member 
        
          
            67
          
        
         is in its downward position, such as during an injection event, a pin 
        
          
            72
          
        
         holds pressure relief valve 
        
          
            73
          
        
         downward to close pressure relief passage 
        
          
            70
          
        
        . At the end of an injection event, when ball valve member 
        
          
            58
          
        
         opens high pressure seat 
        
          
            60
          
        
        , control valve member 
        
          
            67
          
        
         moves away from its downward position due to the high pressure acting on hydraulic surface 
        
          
            68
          
        
        . At this time, residual high pressure acting on pressure relief valve 
        
          
            73
          
        
         will open pressure relief passage 
        
          
            70
          
        
         to drain 
        
          
            27
          
        
        . Movement of pressure relief valve 
        
          
            73
          
        
         toward its upward position will also provide a boost to control valve member 
        
          
            67
          
        
        , to quicken movement of the same to its upward position. This is accomplished via contact of control valve member 
        
          
            67
          
        
         and pressure relief valve 
        
          
            73
          
        
         with pin 
        
          
            72
          
        
        .
      
    
    
      
        Also included in fuel injector 
        
          
            40
          
        
         is a direct control needle valve 
        
          
            100
          
        
         that is positioned in injector body 
        
          
            41
          
        
         and includes a needle valve member 
        
          
            101
          
        
         that is movable between a first position, in which nozzle outlet 
        
          
            110
          
        
         is open, and a downward second position in which nozzle outlet 
        
          
            110
          
        
         is blocked. Needle valve member 
        
          
            101
          
        
         is mechanically biased toward its downward closed position by a biasing spring 
        
          
            104
          
        
        . Needle valve member 
        
          
            101
          
        
         includes opening hydraulic surfaces 
        
          
            108
          
        
         that are exposed to fluid pressure within a nozzle chamber 
        
          
            105
          
        
         and a closing hydraulic surface 
        
          
            102
          
        
         that is exposed to fluid pressure within a needle control chamber 
        
          
            103
          
        
        . As illustrated in 
        
          FIG. 2
        
        , closing hydraulic surface 
        
          
            102
          
        
         is exposed to high pressure passage 
        
          
            65
          
        
         when solenoid 
        
          
            52
          
        
         is de-energized and pilot valve member 
        
          
            58
          
        
         is positioned to close low pressure seat 
        
          
            61
          
        
        . Similarly, closing hydraulic surface 
        
          
            102
          
        
         is exposed to low pressure passage 
        
          
            57
          
        
         when solenoid 
        
          
            52
          
        
         is energized and pilot valve member 
        
          
            58
          
        
         is positioned to close high pressure seat 
        
          
            60
          
        
        .
      
    
    
      
        Closing hydraulic surface 
        
          
            102
          
        
         and opening hydraulic surfaces 
        
          
            108
          
        
         are sized such that even when a valve opening pressure is attained in nozzle chamber 
        
          
            105
          
        
        , needle valve member 
        
          
            101
          
        
         will not move against the action of biasing spring 
        
          
            104
          
        
         when needle control chamber 
        
          
            103
          
        
         is exposed to high pressure in needle control passage 
        
          
            63
          
        
        . In a similar manner, once solenoid 
        
          
            52
          
        
         is de-energized at the end of an injection event, the high pressure in needle control chamber 
        
          
            103
          
        
         will act to quickly move needle valve member 
        
          
            101
          
        
         to close nozzle outlet 
        
          
            110
          
        
         and end the injection event. Additionally, because closing hydraulic surface 
        
          
            102
          
        
         has a larger effective area than opening hydraulic surfaces 
        
          
            108
          
        
        , once solenoid 
        
          
            52
          
        
         is de-energized, the high pressure acting on closing hydraulic surface 
        
          
            102
          
        
         will prevent needle valve member 
        
          
            101
          
        
         from re-opening nozzle outlet 
        
          
            110
          
        
         and injecting additional fuel into the combustion space. However, it should be appreciated that the relative sizes of closing hydraulic surface 
        
          
            102
          
        
         and opening hydraulic surfaces 
        
          
            108
          
        
         and the strength of biasing spring 
        
          
            104
          
        
         should be such that when closing hydraulic surface 
        
          
            102
          
        
         is exposed to low pressure in needle control passage 
        
          
            63
          
        
        , the high pressure acting on opening hydraulic surfaces 
        
          
            108
          
        
         should be sufficient to move needle valve member 
        
          
            101
          
        
         upward against the force of biasing spring 
        
          
            104
          
        
         to open nozzle outlet 
        
          
            110
          
        
        .
      
    
    
      
        INDUSTRIAL APPLICABILITY
      
    
    
      
        Prior to the start of an injection event, low pressure in fuel pressurization chamber 
        
          
            98
          
        
         prevails, piston 
        
          
            80
          
        
         and plunger 
        
          
            90
          
        
         are in their retracted positions, pilot valve member 
        
          
            58
          
        
         is positioned to close low pressure seat 
        
          
            60
          
        
         by the force of biasing spring 
        
          
            53
          
        
         and high pressure fluid in high pressure actuation fluid supply passage 
        
          
            65
          
        
        , needle valve member 
        
          
            101
          
        
         is in its biased position closing nozzle outlet 
        
          
            110
          
        
        , and actuation fluid cavity 
        
          
            78
          
        
         is in fluid communication with low pressure passage 
        
          
            66
          
        
        . The injection event is initiated by activation of solenoid 
        
          
            52
          
        
        , which causes armature 
        
          
            53
          
        
         to push pin 
        
          
            56
          
        
         downward to move pilot valve member 
        
          
            58
          
        
         to close high pressure seat 
        
          
            60
          
        
        .
      
    
    
      
        When pilot valve member 
        
          
            58
          
        
         closes high pressure seat 
        
          
            60
          
        
        , needle control passage 
        
          
            63
          
        
         and spool control passage 
        
          
            64
          
        
         become fluidly connected to low pressure passage 
        
          
            57
          
        
         via control passage 
        
          
            59
          
        
        . This causes a dramatic drop in the pressure acting on control valve hydraulic surface 
        
          
            68
          
        
         and closing hydraulic surface 
        
          
            102
          
        
        . The drop in pressure acting on control valve hydraulic surface 
        
          
            68
          
        
         allows control valve 
        
          
            67
          
        
         to move toward its downward position against the action of biasing spring 
        
          
            69
          
        
        . As control valve 
        
          
            67
          
        
         returns to its downward position, actuation fluid cavity 
        
          
            78
          
        
         becomes blocked from fluid communication with low pressure drain passage 
        
          
            66
          
        
         and fluidly connected to high pressure supply passage 
        
          
            69
          
        
         via radial openings 
        
          
            62
          
        
        . Piston 
        
          
            80
          
        
         and plunger 
        
          
            90
          
        
         begin to move toward their advanced positions as first hydraulic surface 
        
          
            81
          
        
         is exposed to high pressure in actuation fluid cavity 
        
          
            78
          
        
        . Recall that second hydraulic surface 
        
          
            86
          
        
         is also exposed to a fluid pressure via restricted side passage 
        
          
            76
          
        
        , but the pressure is preferably relatively low due to the flow restriction and the rate at which the fluid volume above surface 
        
          
            86
          
        
         grows. This initial movement is relatively slow because less than the complete top surface of piston 
        
          
            80
          
        
         is exposed to high pressure in actuation fluid cavity 
        
          
            78
          
        
         at this time.
      
    
    
      
        Recall that low pressure is acting on closing hydraulic surface 
        
          
            102
          
        
         because needle control chamber 
        
          
            103
          
        
         is fluidly connected to low pressure passage 
        
          
            57
          
        
         via needle control passage 
        
          
            63
          
        
        . As piston 
        
          
            80
          
        
         and plunger 
        
          
            90
          
        
         begin to advance, fuel pressure within fuel pressurization chamber 
        
          
            98
          
        
         increases. This results in an increase in fuel pressure within nozzle chamber 
        
          
            105
          
        
         because needle valve member 
        
          
            101
          
        
         is still in a downward position closing nozzle outlet 
        
          
            110
          
        
        . The increasing pressure of the fuel within nozzle chamber 
        
          
            105
          
        
         acts on opening hydraulic surfaces 
        
          
            108
          
        
         of needle valve member 
        
          
            101
          
        
        . When the pressure exerted on opening hydraulic surfaces 
        
          
            108
          
        
         exceeds a valve opening pressure, needle valve member 
        
          
            101
          
        
         is lifted against the action of biasing spring 
        
          
            104
          
        
        , and fuel is allowed to spray into the combustion chamber from nozzle outlet 
        
          
            110
          
        
        .
      
    
    
      
        As the injection event continues, piston 
        
          
            80
          
        
         and plunger 
        
          
            90
          
        
         advance to allow annulus 
        
          
            94
          
        
         to open fuel pressurization chamber 
        
          
            98
          
        
         to spill passage 
        
          
            92
          
        
        . Note that in the fuel injector illustrated in 
        
          FIGS. 2-3
        
        , fuel pressurization chamber 
        
          
            98
          
        
         is opened to spill passage 
        
          
            92
          
        
         just prior to first hydraulic surface 
        
          
            81
          
        
         passing shoulder 
        
          
            83
          
        
        . The pressure within fuel pressurization chamber 
        
          
            98
          
        
        , which has been steadily increasing with the advancing movement of plunger 
        
          
            90
          
        
        , drops suddenly as fuel within fuel pressurization chamber 
        
          
            98
          
        
         can flow into a low pressure area via internal passageways 
        
          
            96
          
        
         and spill passage 
        
          
            92
          
        
        . A combination of the high pressure acting on the top of the pumping element in actuation fluid cavity 
        
          
            78
          
        
         and the drop in pressure below the pumping element allows piston 
        
          
            80
          
        
         and plunger 
        
          
            90
          
        
         to move very rapidly toward their advanced positions.
      
    
    
      
        It is during this period of rapid downward movement that first hydraulic surface 
        
          
            81
          
        
         passes shoulder 
        
          
            83
          
        
        , and second hydraulic surface 
        
          
            86
          
        
         becomes exposed to high pressure in actuation fluid cavity 
        
          
            78
          
        
        . After top hat portion 
        
          
            82
          
        
         has completely moved past shoulder 
        
          
            83
          
        
        , annulus 
        
          
            94
          
        
         moves past spill passage 
        
          
            92
          
        
         to close fuel pressurization chamber 
        
          
            98
          
        
         from the low pressure area. It should be appreciated that movement of piston 
        
          
            80
          
        
         and plunger 
        
          
            90
          
        
         toward their advanced position achieves its maximum speed as spill passage 
        
          
            92
          
        
         is being closed from fuel pressurization chamber 
        
          
            98
          
        
        . The combination of exposure of both first hydraulic surface 
        
          
            81
          
        
         and second hydraulic surface 
        
          
            86
          
        
         to high pressure in actuation fluid cavity 
        
          
            78
          
        
        , in addition to the momentum of piston 
        
          
            80
          
        
         and plunger 
        
          
            90
          
        
         causes fuel injection pressure to peak.
      
    
    
      
        Shortly before the desired amount of fuel has been injected into the combustion space, current to solenoid 
        
          
            52
          
        
         is ended to end the injection event. Solenoid 
        
          
            52
          
        
         is de-energized and pilot valve member 
        
          
            58
          
        
         moves under the hydraulic force of high pressure actuation fluid in high pressure actuation fluid supply passage 
        
          
            65
          
        
         to close low pressure seat 
        
          
            61
          
        
         which in turn closes needle control passage 
        
          
            63
          
        
         and spool control passage 
        
          
            64
          
        
         from fluid communication with low pressure passage 
        
          
            57
          
        
         and fluidly connects it to the high pressure manifold 
        
          
            47
          
        
        . High pressure within needle control chamber 
        
          
            103
          
        
         then acts on closing hydraulic surface 
        
          
            102
          
        
         and causes needle valve member 
        
          
            101
          
        
         to move to its downward, closed position to close nozzle outlet 
        
          
            110
          
        
        . Control valve hydraulic surface 
        
          
            68
          
        
         and closing hydraulic surface 
        
          
            102
          
        
         are now exposed to high pressure actuation fluid via spool control passage 
        
          
            64
          
        
         and needle control passage 
        
          
            63
          
        
        , respectively. Because high pressure is now acting on hydraulic surface 
        
          
            68
          
        
        , control valve 
        
          
            67
          
        
         is once again hydraulically balanced and begins to move toward its upward position.
      
    
    
      
        As control valve 
        
          
            67
          
        
         moves toward its upward position, ball valve member 
        
          
            73
          
        
         can move upward to open pressure relief passage 
        
          
            70
          
        
         to low pressure drain 
        
          
            67
          
        
        . This allows high pressure actuation fluid in actuation fluid cavity 
        
          
            78
          
        
         and piston bore 
        
          
            87
          
        
         to be vented, thus preventing any secondary injection events. Additionally, upward movement of pressure relief valve 
        
          
            73
          
        
         gives control valve 
        
          
            67
          
        
         a boost toward its upward position. As control valve 
        
          
            67
          
        
         continues to move upward, actuation fluid cavity 
        
          
            78
          
        
         is fluidly connected to low pressure passage 
        
          
            66
          
        
         while being blocked from fluid communication with high pressure passage 
        
          
            69
          
        
        .
      
    
    
      
        Just prior to the opening of actuation fluid cavity 
        
          
            78
          
        
         to low pressure passage 
        
          
            66
          
        
        , the downward descent of piston 
        
          
            80
          
        
         and plunger 
        
          
            90
          
        
         ends. Once actuation fluid cavity 
        
          
            78
          
        
         is open to low pressure passage 
        
          
            66
          
        
        , first hydraulic surface 
        
          
            81
          
        
         and second hydraulic surface 
        
          
            86
          
        
         are exposed to low pressure in actuation fluid cavity 
        
          
            78
          
        
         and piston 
        
          
            80
          
        
         and plunger 
        
          
            90
          
        
         begin to move toward their upward, biased positions under the action of biasing spring 
        
          
            88
          
        
        . This upward movement of plunger 
        
          
            90
          
        
         relieves the pressure of fuel within fuel pressurization chamber 
        
          
            98
          
        
         and causes a corresponding drop in pressure in nozzle supply passage 
        
          
            106
          
        
         and nozzle chamber 
        
          
            105
          
        
        . In addition, the retracting movement of plunger 
        
          
            90
          
        
         causes fuel from fuel inlet 
        
          
            30
          
        
         to be pulled into fuel pressurization chamber 
        
          
            98
          
        
         via fuel supply passage 
        
          
            34
          
        
        .
      
    
    
      
        Referring now to 
        
          FIGS. 4 and 5
        
        , injection pressure and injection rate have been graphed versus time for fuel injector 
        
          
            40
          
        
         at a single operating condition, which in this case corresponds to a rated condition and high rail pressure. In addition, injection pressure and injection rate for a fuel injector having a stepped portion but no spill passage has been included on the 
        
          FIGS. 4 and 5
        
         graphs for comparison. At the beginning of an injection event, the fuel injector of the present invention and the comparison fuel injector perform virtually the same. Because piston 
        
          
            80
          
        
         and plunger 
        
          
            90
          
        
         are moving at a reduced speed, injection pressure is low but steadily increasing during this initial period, as seen in FIG. 
        
          
            4
          
        
        . This corresponds to a slow ramp injection at the beginning of the injection event, as shown in FIG. 
        
          
            5
          
        
        .
      
    
    
      
        Once annulus 
        
          
            94
          
        
         opens fuel pressurization chamber 
        
          
            98
          
        
         to spill passage 
        
          
            92
          
        
        , the injection characteristics of the present invention begin to differ from those of the comparison fuel injector. The sudden drop in pressure within fuel pressurization chamber 
        
          
            98
          
        
         of the present invention results in a drop in injection pressure that can be seen in FIG. 
        
          
            4
          
        
        . This sudden drop in injection pressure corresponds to a sudden drop in injection rate, as shown in FIG. 
        
          
            5
          
        
        . Note that injection pressure for the comparison fuel injector, which does not have a spill passage, begins to level off as piston 
        
          
            80
          
        
         and plunger 
        
          
            90
          
        
         continue to advance. Similarly, injection rate for the comparison injector begins to level off.
      
    
    
      
        Referring again to the fuel injector of the present invention, once fuel pressurization chamber 
        
          
            98
          
        
         is closed to spill passage 
        
          
            92
          
        
        , and second hydraulic surface is fully exposed to high pressure actuation fluid in actuation fluid cavity 
        
          
            78
          
        
        , injection pressure begins to increase once again. As shown in 
        
          FIG. 4
        
        , a dramatic increase in injection pressure occurs because of the high velocity of piston 
        
          
            80
          
        
         and plunger 
        
          
            90
          
        
        . As 
        
          FIG. 4
        
         illustrates, the added momentum of piston 
        
          
            80
          
        
         and plunger 
        
          
            90
          
        
        , which resulted from the lower pressure in fuel pressurization chamber 
        
          
            98
          
        
         when it was open to spill passage 
        
          
            92
          
        
        , will allow injector 
        
          
            40
          
        
         to achieve a higher peak injection pressure than that of the comparison fuel injector. This is due to the of build-up of momentum of piston 
        
          
            80
          
        
         and plunger 
        
          
            90
          
        
         when fuel pressurization chamber 
        
          
            98
          
        
         is open to the low pressure area combined with exposure of both first hydraulic surface 
        
          
            81
          
        
         and second hydraulic surface 
        
          
            86
          
        
         to high pressure in actuation fluid cavity 
        
          
            78
          
        
        . Finally, the injection rate for the fuel injector of the present invention steadily increases once again until it reaches its peak for the injection event, as shown in FIG. 
        
          
            5
          
        
        .
      
    
    
      
        The present invention utilizes both a spill passage that can open the fuel pressurization chamber to a low pressure area and a piston having a stepped portion to change the front end rate shape for an injection event. However, it should be appreciated that each of these elements results in a different phenomenon during the injection event. For instance, referring now to stepped portion 
        
          
            82
          
        
        , first hydraulic surface 
        
          
            81
          
        
         and second hydraulic surface 
        
          
            86
          
        
        , it should be appreciated that changes in the structure and orientation of these features will alter the manner in which the stepped portion of the piston effects the injection event. It should be further appreciated that different rail pressures will change the manner in which this feature of the present invention affects injection pressure. For a given rail pressure, the greater the surface area of first hydraulic surface 
        
          
            81
          
        
        , the greater the initial speed of piston 
        
          
            80
          
        
         and plunger 
        
          
            90
          
        
         toward their advanced positions. For the range of rail pressures over which fuel injector 
        
          
            40
          
        
         operates, surface area of first hydraulic surface 
        
          
            81
          
        
         should be large enough that piston 
        
          
            80
          
        
         can move toward its advanced position to allow an injection event to begin when only first hydraulic surface 
        
          
            81
          
        
         is exposed to fluid pressure in actuation fluid cavity 
        
          
            78
          
        
        . However, first hydraulic surface 
        
          
            81
          
        
         should have a small enough surface area that the desired injection pressure and rate shape is achieved at the beginning of the injection event. With respect to the other extreme, it should be appreciated that the surface area of first hydraulic surface 
        
          
            81
          
        
         could be so large that stepped portion 
        
          
            82
          
        
         would have no measurable effect on the injection event for a given rail pressure within the injectors operating range.
      
    
    
      
        It should also be appreciated that the shape of first hydraulic surface 
        
          
            81
          
        
         and second hydraulic surface 
        
          
            86
          
        
         will also have an effect on injection rate shape and injection pressure for an injection event. For instance, if fuel injector 
        
          
            40
          
        
         did not include spill passage 
        
          
            92
          
        
        , the present invention would yield either a ramp-square or a boot shaped injection rate trace. At the start of the injection event, when piston 
        
          
            80
          
        
         and plunger 
        
          
            90
          
        
         are beginning to advance, the injection rate would increase steadily. However, once an equilibrium is achieved between the hydraulic force acting on the top of piston 
        
          
            80
          
        
         and on plunger hydraulic surface 
        
          
            97
          
        
        , injection rate would level off. Injection rate would remain steady until second hydraulic surface 
        
          
            86
          
        
         became exposed to fluid pressure in actuation fluid cavity 
        
          
            78
          
        
        . At that time, injection rate would again increase with the increased speed of piston 
        
          
            80
          
        
         and plunger 
        
          
            90
          
        
         due to exposure of a greater surface area on top of piston 
        
          
            80
          
        
         to high pressure. As the speed of piston 
        
          
            80
          
        
         and plunger 
        
          
            90
          
        
         again neared a constant rate, so would the injection pressure, and therefore injection rate, for the remainder of an injection event. However, it should be appreciated that other rate shapes could be possible if first hydraulic surface 
        
          
            81
          
        
         and second hydraulic surface 
        
          
            86
          
        
         have different geometries. For instance, addition of an annular taper to first hydraulic surface 
        
          
            81
          
        
         would result in a steady increase in injection pressure, and therefore injection rate, until second hydraulic surface 
        
          
            86
          
        
         was fully exposed to fluid pressure within actuation fluid cavity 
        
          
            78
          
        
         because piston 
        
          
            80
          
        
         would be experiencing a steady increase in speed until hydraulic surface 
        
          
            86
          
        
         was fully exposed to fluid pressure.
      
    
    
      
        Returning now to fuel injector 
        
          
            40
          
        
        , it should be appreciated that opening fuel pressurization chamber 
        
          
            98
          
        
         to a low pressure area via spill passage 
        
          
            92
          
        
         has a different effect on injection pressure and injection rate shape than the previous element of the present invention. For instance, the smaller the diameter of spill passage 
        
          
            92
          
        
        , the smaller the decrease in the pressure within fuel pressurization chamber 
        
          
            98
          
        
        . Referring now to 
        
          FIG. 6
        
        , this corresponds to a relatively small reduction in injection rate trace while spill passage 
        
          
            92
          
        
         is open to fuel pressurization chamber 
        
          
            98
          
        
        . However, if the diameter of spill passage 
        
          
            92
          
        
         is relatively large, pressure within fuel pressurization chamber 
        
          
            98
          
        
         will experience a more dramatic reduction. This will correspond to a greater reduction in injection rate, and can even result in a split injection if the diameter of spill passage 
        
          
            92
          
        
         is large enough, or if rail pressure is low enough.
      
    
    
      
        Additionally, the longer that fuel pressurization chamber 
        
          
            98
          
        
         is open to the low pressure area, the greater the build-up of momentum of piston 
        
          
            80
          
        
         and plunger 
        
          
            90
          
        
        . This will result in a higher peak injection pressure for the injection event. Referring now to 
        
          FIG. 7
        
        , injection rate has been shown versus time for a fuel injector having fuel pressurization chamber 
        
          
            98
          
        
         open to the low pressure area for both a relatively short period of time and a relatively long period of time. Note that when fuel pressurization chamber 
        
          
            98
          
        
         is open to the low pressure area for a relatively short period of time, the boot portion of the injection event is shorter. However, if fuel pressurization chamber 
        
          
            98
          
        
         is open to the low pressure area for a relatively long period of time, the boot portion of the injection event is longer, and the injection rate could level off. The length of time that fuel pressurization chamber 
        
          
            98
          
        
         is open to the low pressure area is dependent upon not only the height of annulus 
        
          
            94
          
        
        , but also the rail pressure for the injection event. Therefore, if the rail pressure for the injection event is relatively high, fuel pressurization chamber 
        
          
            98
          
        
         will be open to the low pressure area a relatively short amount of time. This is because of the relatively high fluid pressure acting on the top surface of piston 
        
          
            80
          
        
        . However, if the rail pressure for the injection event is relatively low, fuel pressurization chamber 
        
          
            98
          
        
         will be open to the low pressure area a relatively long amount of time due to the lower pressure acting on the top surface of piston 
        
          
            80
          
        
        .
      
    
    
      
        In addition to those properties of spill passage 
        
          
            92
          
        
         that are discussed above, the length of time before spill passage 
        
          
            92
          
        
         is open to fuel pressurization chamber 
        
          
            98
          
        
         can also influence the injection rate trace for an injection event. Referring now to 
        
          FIG. 8
        
        , injection rate has been graphed versus time for a fuel injector having a relatively long time before spill passage 
        
          
            92
          
        
         is open to fuel pressurization chamber 
        
          
            98
          
        
         and a relatively short time before spill passage 
        
          
            92
          
        
         is open to fuel pressurization chamber 
        
          
            98
          
        
        . Note that when spill passage 
        
          
            92
          
        
         opens fuel pressurization chamber 
        
          
            98
          
        
         to the low pressure area later in the injection event, injection rate will peak at a higher amount than when spill passage 
        
          
            92
          
        
         is opened to fuel pressurization chamber 
        
          
            98
          
        
         at an earlier point in the injection event. This should correspond to a higher peak injection pressure in fuel injectors having a relatively long time during the injection event before spill passage 
        
          
            92
          
        
         is opened to fuel pressurization chamber 
        
          
            98
          
        
         than for those when spill passage 
        
          
            92
          
        
         opens to fuel pressurization chamber 
        
          
            98
          
        
         earlier in the injection event.
      
    
    
      
        In addition to stepped portion 
        
          
            82
          
        
         and spill passage 
        
          
            92
          
        
        , injection pressure and rate for fuel injector 
        
          
            40
          
        
         are also influenced by direct control needle valve 
        
          
            100
          
        
        . Recall that movement of needle valve member 
        
          
            101
          
        
         is directly influenced by fuel pressure in fuel pressurization chamber 
        
          
            98
          
        
        . Therefore, effects on fuel pressure in fuel pressurization chamber 
        
          
            98
          
        
         from spill passage 
        
          
            92
          
        
         and rail pressure influence the movement of needle valve member 
        
          
            101
          
        
        . For instance, when rail pressure is relatively low, it is possible to create split injections with spill passage 
        
          
            92
          
        
        . If fuel injector 
        
          
            40
          
        
         is operating at idle operating conditions, piston 
        
          
            80
          
        
         and plunger 
        
          
            90
          
        
         advance more slowly at the beginning of an injection event due to the lower pressure acting on first hydraulic surface 
        
          
            83
          
        
        . This will result in a lower injection pressure having been reached when spill passage 
        
          
            92
          
        
         is opened to fuel pressurization chamber 
        
          
            98
          
        
        , than would be reached at a rated operating condition. Therefore, if injection pressure is low enough, the drop in pressure created by opening fuel pressurization chamber 
        
          
            98
          
        
         to spill passage 
        
          
            92
          
        
         could result in the pressure acting on opening hydraulic surface 
        
          
            108
          
        
         dropping below the valve closing pressure, thus allowing needle valve member 
        
          
            101
          
        
         to briefly close. Once stepped portion 
        
          
            82
          
        
         moves past shoulder 
        
          
            83
          
        
         and spill passage 
        
          
            92
          
        
         is closed to fuel pressurization chamber 
        
          
            98
          
        
        , pressure acting on opening hydraulic surface 
        
          
            108
          
        
         will once again surpass a valve opening pressure, and needle valve member 
        
          
            101
          
        
         will reopen for the second part of the split injection. It should be appreciated that split injections are also possible at rated operating conditions with the present invention, however, size of stepped portion 
        
          
            82
          
        
         and annulus 
        
          
            94
          
        
         must be sufficiently small that pressure acting on opening hydraulic surface 
        
          
            108
          
        
         will fall below valve closing pressure when spill passage 
        
          
            92
          
        
         is opened to fuel pressurization chamber 
        
          
            98
          
        
        .
      
    
    
      
        It should be appreciated that a number of modifications could be made to piston 
        
          
            80
          
        
        , plunger 
        
          
            90
          
        
         and injector body 
        
          
            41
          
        
         without departing from the spirit of the present invention. For instance, while the present invention has been shown and described for a fuel injector having a spill passage 
        
          
            92
          
        
         that is open to the fuel pressurization chamber 
        
          
            98
          
        
         only prior to second hydraulic surface 
        
          
            86
          
        
         of piston 
        
          
            80
          
        
         being exposed to fluid pressure in actuation fluid cavity 
        
          
            78
          
        
        , it should be appreciated that other alternatives are possible. Fuel injector 
        
          
            40
          
        
         could be modified such that spill passage 
        
          
            92
          
        
         is opened to fuel pressurization chamber 
        
          
            98
          
        
         prior to second hydraulic surface 
        
          
            86
          
        
         being exposed to fluid pressure in actuation fluid cavity 
        
          
            78
          
        
         and closed to fuel pressurization chamber 
        
          
            98
          
        
         before stepped portion 
        
          
            82
          
        
         moves past shoulder 
        
          
            83
          
        
        . Conversely, fuel injector 
        
          
            40
          
        
         could be modified such that spill passage 
        
          
            92
          
        
         is not opened to fuel pressurization chamber 
        
          
            98
          
        
         until after second hydraulic surface 
        
          
            86
          
        
         is opened to actuation fluid cavity 
        
          
            78
          
        
        . Referring now to 
        
          FIG. 9
        
        , injection rate trace has been graphed versus time for the present fuel injector and a fuel injector having a spill passage that does not open until after the second hydraulic surface is opened to the actuation fluid cavity. Note that for fuel injectors having a spill passage that opens after the entire top surface of the piston is exposed to fluid pressure in the actuation fluid cavity, an injection rate trace having multiple boot portions can be created. In other words, injection rate will initially increase and then level off prior to the second hydraulic surface being exposed to fluid pressure in the actuation fluid cavity. At that point, injection rate will increase until the spill passage is opened to the fuel pressurization chamber. This will result in a decrease in injection rate corresponding to the length of time-that the spill passage is open to the fuel pressurization chamber. Finally, when the spill passage is closed to the fuel pressurization chamber, injection rate will increase until it peaks for the injection event.
      
    
    
      
        Additionally, while piston 
        
          
            80
          
        
         has been illustrated having a single stepped portion, it could instead include additional stepped portions. Further, fuel injector 
        
          
            40
          
        
         could be modified by altering the location of the annulus 
        
          
            94
          
        
        , such that the fuel pressurization chamber opened to the spill passage over a different portion of the movement of the piston and the plunger. Finally, recall that the diameter of the spill passage could be altered to affect the drop in fuel pressure within the fuel pressurization chamber. In other words, an increase in the diameter of the spill passage will result in a greater drop in pressure in the fuel pressurization chamber, while a decrease in the diameter of the spill passage will result in a reduced drop in pressure in the fuel pressurization chamber.
      
    
    
      
        The present invention finds application in any hydraulically actuated fuel injector for which front end rate shaping is desired. By modifying a conventional pumping element to include a piston having one or more stepped portions and/or a plunger that defines at least one passageway that can connect the fuel pressurization chamber to a spill passage, engineers have a greater flexibility in injection rate shapes. This flexibility is increased further by the addition of a direct control needle valve. This in turn will allow engineers to create a number of different front end rate shapes that were previously not possible. For instance, while the stepped portion of the fuel injector of the present invention has only been shown producing a ramp shape injection, it can also be used to produce a boot shaped injection as well. Once engineers have the ability to manipulate all aspects of injection rate profiles, including the front end rate shaping described herein, they will have a greater ability to decrease undesirable emissions and to increase injector performance.
      
    
    
      
        It should be understood that the above description is intended for illustrative purposes only, and is not intended to limit the scope of the present invention in any way. For instance, while only one spill passage has been illustrated as defined by the injector body, it should be appreciated that two or more spill passages could be included that open the fuel pressurization chamber to a low pressure area at different times during the movement of the pumping element. Further, while the present invention has been illustrated as opening the spill passage to the fuel pressurization chamber prior to the second hydraulic surface being exposed to fluid pressure in the actuation fluid cavity and closing the fuel pressurization chamber to the low pressure area after the second hydraulic surface is exposed to fluid pressure in the actuation fluid cavity, this need not be the case. In other words, the various portions of the pumping element could be sized and positioned such that the fuel pressurization chamber is opened to the low pressure area by the spill passage and then closed to the low pressure area prior to the second hydraulic surface being exposed to fluid pressure in the actuation fluid cavity. Thus, those skilled in the art will appreciate that various modifications could be made to the disclosed embodiments without departing from the intended scope of the present invention, which is defined in terms of the claims set forth below.
      
    
  
             
            
                        Claims
        
                - 1. A hydraulically actuated fuel injection system comprising:at least one hydraulically actuated fuel injector including an injector body defining a fuel pressurization chamber; a pumping element having a stepped top being movably mounted in a pumping bore defined by said injector body and defining at least one internal passageway, and said stepped top including a first hydraulic surface and a second hydraulic surface; said pumping element being movable a distance between a first position and a second position; said first hydraulic surface being exposed to fluid pressure in a first cavity, and said second hydraulic surface being exposed to fluid pressure in a second cavity when said pumping element is in said first position; and a spill passage defined by said injector body being open to said fuel pressurization chamber via said at least one internal passageway over a portion of said distance.
 
                - 2. The hydraulically actuated fuel injection system of claim 1 wherein said first cavity is fluidly connected to a restricted passage, and said second cavity is an unrestricted actuation fluid cavity; andsaid spill passage is open to said at least one internal passageway when said first hydraulic surface is exposed to high pressure in said actuation fluid cavity.
 
                - 3. The hydraulically actuated fuel injection system of claim 1 wherein said pumping element further defines an annulus that opens said spill passage to said at least one internal passageway.
 
                - 4. The hydraulically actuated fuel injection system of claim 1 wherein said injector body defines an actuation fluid inlet fluidly connected to a source of high pressure actuation fluid and an actuation fluid outlet fluidly connected to a low pressure actuation fluid reservoir; andsaid injector body defines a fuel inlet fluidly connected to a source of medium pressure fuel.
 
                - 5. The hydraulically actuated fuel injection system of claim 1 wherein said at least one fuel injector further includes a needle control passage and a nozzle supply passage defined by said injector body;a direct control needle valve member is movably positioned within said at least one fuel injector and includes a closing hydraulic surface exposed to fluid pressure in said needle control passage and an opening hydraulic surface exposed to fluid pressure in said nozzle supply passage; and said needle control passage is alternately connectable to one of a high pressure source and a low pressure source.
 
                - 6. The hydraulically actuated fuel injection system of claim 1 wherein said at least one internal passageway fluidly connects said fuel pressurization chamber to a low pressure area when said at least one internal passageway is open to said spill passage.
 
                - 7. The hydraulically actuated fuel injection system of claim 1 wherein said pumping element includes a plunger coupled to a piston having said stepped top.
 
                - 8. A hydraulically actuated fuel injector comprising:an injector body; a pumping element having a stepped top being positioned in a pumping bore defined by said injector body and defining at least one internal passageway, said pumping element being moveable a distance between a first position and a second position; said at least one internal passageway opening into a fuel pressurization chamber defined by at least one of said injector body and said pumping element; a first hydraulic surface of said stepped top being exposed to fluid pressure in a first cavity, and a second hydraulic surface being exposed to fluid pressure in a second cavity when said pumping element is in said first position; and a spill passage being defined by said injector body and being open to said at least one internal passageway over a portion of said distance.
 
                - 9. The hydraulically actuated fuel injector of claim 8 wherein said at least one internal passageway fluidly connects said fuel pressurization chamber to a low pressure area when said at least one internal passageway is open to said spill passage.
 
                - 10. The hydraulically actuated fuel injector of claim 8 wherein said pumping element further defines an annulus that opens said spill passage to said at least one internal passageway.
 
                - 11. The hydraulically actuated fuel injector of claim 8 wherein said first cavity is fluidly connected to a restricted passage, and said second cavity is an unrestricted actuation fluid cavity; andsaid spill passage is open to said at least one internal passageway when said first hydraulic surface is exposed to high pressure in said actuation fluid cavity.
 
                - 12. The hydraulically actuated fuel injector of claim 8 wherein said injector body defines a needle control passage and a nozzle supply passage;a direct control needle valve remember is movably positioned within said fuel injector and includes a closing hydraulic surface exposed to fluid pressure in said needle control passage and an opening hydraulic surface exposed to fluid pressure in said nozzle supply passage; and said needle control passage is alternately connectable to one of a high pressure source and a low pressure source.
 
                - 13. The hydraulically actuated fuel injector of claim 8 wherein said injector body further defines a nozzle outlet;a direct control needle valve member is positioned in said fuel injector and is movable between a first position in which said nozzle outlet is open to said fuel pressurization chamber and a second position in which said nozzle outlet is closed from said fuel pressurization chamber; and said needle control passage is alternately connectable to one of a high pressure source and a low pressure source.
 
                - 14. The hydraulically actuated fuel injector of claim 8 wherein said pumping element includes a piston having said stepped top coupled to a plunger.
 
                - 15. The hydraulically actuated fuel injector of claim 8 wherein said injector body defines an actuation fluid inlet fluidly connected to a source of high pressure actuation fluid and an actuation fluid outlet fluidly connected to a low pressure actuation fluid reservoir; andsaid injector body defines a fuel inlet fluidly connected to a source of medium pressure fuel.
 
                - 16. A hydraulically actuated fuel injector comprising:an injector body defining a needle control passage and a nozzle supply passage; a pumping element having a stepped top being positioned in a pumping bore defined by said injector body and defining at least one internal passageway, said pumping element being moveable a distance between a first position and a second position; said at least one internal passageway opening into a fuel pressurization chamber defined in part by said injector body and said pumping element; a spill passage being defined by said injector body and being open to a fuel pressurization chamber via said at least one internal passageway over a portion of said distance; a first hydraulic surface of said stepped top being exposed to fluid pressure in a first cavity, and a second hydraulic surface being exposed to fluid pressure in a second cavity when said pumping element is in said first position; and a direct control needle valve member including a closing hydraulic surface exposed to fluid pressure in said needle control passage and an opening hydraulic surface exposed to fluid pressure in said nozzle supply passage; and said needle control passage is alternately connectable to one of a high pressure source and a low pressure source.
 
                - 17. The hydraulically actuated fuel injector of claim 16 said at least one internal passageway fluidly connects said fuel pressurization chamber to a low pressure area when said at least one internal passageway is open to said spill passage.
 
                - 18. The hydraulically actuated fuel injector of claim 17 wherein said injector body defines an actuation fluid inlet fluidly connected to a source of high pressure actuation fluid and an actuation fluid outlet fluidly connected to a low pressure actuation fluid reservoir; andsaid injector body defines a fuel inlet fluidly connected to a source of medium pressure fuel.
 
                - 19. The hydraulically actuated fuel injector of claim 18 wherein said pumping element includes a piston having said stepped top coupled to a plunger.
 
                - 20. The hydraulically actuated fuel injector of claim 19 wherein said spill passage is open to said at least one internal passageway when one of said first hydraulic surface and said second hydraulic surface is exposed to high pressure in said actuation fluid cavity.
 
        
                
                
                
                
                
                            US Referenced Citations (16)