Claims
- 1. A valve deactivator assembly for an internal combustion engine of the type having valve means for controlling the flow to and from a combustion chamber, drive means for providing cyclical motion for opening and closing said valve means in timed relationship to the events in said combustion chamber, and valve gear means operative in response to said cyclical motion to effect cyclical opening and closing of said valve means; said valve deactivator assembly comprising part of said valve gear means and including an outer body member and an inner body member disposed within said outer body member and being reciprocable relative thereto, and a spring biasing said inner body member toward an axially extended position relative to said outer body member; a latch assembly wholly disposed within said inner body member when said outer and inner body members are in an unlatched condition, said latch assembly including a radially moveable latch member and spring means biasing said latch member toward a latched condition; a source of pressurized fluid operably associated with said latch assembly and operable to bias said latch member toward said unlatched condition; characterized by:
(a) said latch assembly further comprises said outer body member defining a generally annular, internal groove including an annular latch surface and at least one fluid port disposed in open fluid communication with said annular, internal groove and in fluid communication with said source of pressurized fluid; (b) said latch member defining a generally planar stop surface oriented generally parallel to said annular latch surface and disposed for face-to-face engagement therewith when said latch member is in said latched condition, whereby said inner body member may have any rotational orientation relative to said outer body member.
- 2. A valve deactivator assembly as claimed in claim 1, characterized by said latch assembly including a pair of diametrically opposite, radially moveable latch members, said spring means comprising a single compression spring biasing both of said latch members radially outward toward said latched condition, each of said latch members defining said generally planar stop surface.
- 3. A valve deactivator assembly as claimed in claim 1, characterized by said engine including a cylinder head defining a bore, said outer body member of said valve deactivator assembly being generally cylindrical, and disposed within said bore.
- 4. A valve deactivator assembly as claimed in claim 1, characterized by said outer body member being generally cylindrical and hollow, and said inner body member being generally cylindrical and hollow, said outer and inner body members defining therebetween a generally annular chamber.
- 5. A valve deactivator assembly as claimed in claim 4, characterized by said spring biasing said inner body member toward said axially extended position comprising a coil compression spring disposed within said annular chamber, said spring having an upper end seated relative to said inner body member, and a lower end seated relative to said outer body member, said latched condition of said latch assembly occurring when said inner body member is in said axially extended position.
- 6. A valve deactivator assembly as claimed in claim 1, characterized by said latch member defining, on its outer periphery, a flat surface oriented generally perpendicular to said planar stop surface, said inner body member including a retention member disposed closely spaced apart from said flat surface, and operable to orient said latch member whereby said stop surface remains substantially parallel to said annular latch surface.
- 7. A valve deactivator assembly as claimed in claim 1, characterized by said inner body member defining a pair of diametrically arranged bores, and an annular groove which intersects said bores, said latch members being disposed in said bores and each defining one of said planar stop surfaces; an orientation member disposed within said annular groove and disposed adjacent each of said planar stop surfaces to orient said latch members whereby said stop surfaces remain substantially parallel to said annular latch surface.
- 8. A valve deactivator assembly for an internal combustion engine of the type having valve means for controlling the flow to and from a combustion chamber, drive means for providing cyclical motion for opening and closing said valve means in timed relationship to the events in said combustion chamber, and valve gear means operative in response to said cyclical motion to effect cyclical opening and closing of said valve means; said valve deactivator assembly comprising part of said valve gear means and including an outer body member and an inner body member disposed within said outer body member and being reciprocable relative thereto, and a spring biasing said inner body member toward an axially extended position relative to said outer body member; a latch assembly wholly disposed within said inner body member when said outer and inner body members are in an unlatched condition, said latch assembly including a radially moveable latch member and spring means biasing said latch member toward a latched condition; a source of pressurized fluid operably associated with said latch assembly and operable to bias said latch member toward said unlatched condition; characterized by:
(a) said latch assembly further comprises said outer body member defining an annular latch surface; (b) said latch member defining a generally planar stop surface oriented generally parallel to said annular latch surface and disposed for face-to-face engagement therewith when said latch member is in said latched condition; and (c) an orientation arrangement operable to orient said latch member whereby said stop surface remains substantially parallel to said latch surface.
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application is a continuation-in-part (CIP) of co-pending application U.S. Ser. No. 09/533,832, filed Mar. 23, 2000, in the name of Kynan L. Church, Austin R. Zurface and Keith Hampton for a “Hydraulically Actuated Latching Pin Valve Deactivation”, which application is a continuation-in-part (CIP) of co-pending application U.S. Ser. No. 09/255,366, filed Feb. 23,1999, in the name of Kynan L. Church for a “Hydraulically Actuated Valve Deactivating Roller Follower”, now U.S. Pat. No. 6,196,175 issued Mar. 6, 2001.
Continuation in Parts (2)
|
Number |
Date |
Country |
Parent |
09533832 |
Mar 2000 |
US |
Child |
09851954 |
May 2001 |
US |
Parent |
09255366 |
Feb 1999 |
US |
Child |
09533832 |
Mar 2000 |
US |