None.
1. Field of the Disclosure
The present disclosure relates to a charge air system for an internal combustion engine having a hydraulically operated airflow control capability associated with the engine's intake manifold.
2. Related Art
Devices for controlling the flow of charge air within an intake manifold have typically used either vacuum or electrical power. Each of these types of power source is characterized by certain shortcomings. In the case of vacuum devices, vacuum availability under some operating conditions, such as operation at high altitude, may be a problem. In the case of electrical devices, package space and reliability present issues. Moreover, with both types of systems, failure mode management may be an issue. Excessive noise, and, in the case of electrical devices, electromagnetic compatibility, may also be issues, as is high cost, it being understood that cost reduction is a never ending goal in the automotive design field.
It would be desirable to provide an internal combustion engine charge air system having airflow control devices which overcome the difficulties associated with electrical and vacuum powered devices, while avoiding excessive cost.
According to an aspect of the present disclosure, a hydraulically operated charge air system for an internal combustion engine includes an intake manifold having a number of intake runners and a number of rotatable airflow control devices mounted within at least a portion of the intake runners. A hydraulic motor rotatably positions the airflow control devices according to instructions from either a controller which contains a predetermined control strategy, or as a function of engine oil pressure, independently of a controller. For example, a hydraulic motor positioning airflow control devices used with long/short runner control may be operated according to an engine's speed and load.
According to another aspect of the present disclosure, an intake manifold may have a number of short intake runners and a number of long intake runners, with rotatable airflow control devices being configured as intake runner control valves mounted within the short intake runners.
According to another aspect of the present disclosure, rotatable airflow control devices may include charge motion control valves, particularly valves having a control area which is less than the flow area of the intake runner within which the valve plate is mounted. In either case, rotatable airflow control devices will be mounted upon a rotatable shaft which is coupled to the hydraulic motor.
According to another aspect of the present disclosure, the hydraulic motor may be powered by an engine lubrication pump, with the motor including a housing and a multi-lobed rotor rotatably positioned within the housing so that engine oil passing through appropriate control ports will cause the rotor to position the airflow control devices in a desired rotational location.
It is an advantage of the present system that the package volume required for the system will be less than that required for known pneumatic or electrodrive systems.
It is a further advantage of the present system that problems with electromagnetic compatibility and audible noise are eliminated.
It is yet another advantage of the present system that the response speed is very high due to the operating principles of the hydraulic motor which positions the flow control devices.
It is yet another advantage of the present system that the cost for a charge air system is low compared to known vacuum and electrically driven devices.
Other advantages, as well as features of the present system, will become apparent to the reader of this specification.
As shown in
Those skilled in the art will appreciate in view of this disclosure that rotor 70 could be configured with more than two lobes, alternatively, rotor 70 could be equipped with a single lobe; such details are committed to the discretion of those seeking to employ the present system. Moreover, the present system may be employed with engines having configurations which are different from that shown in
Vanes 74 of rotor 70 have an included angle of about 140°, which is configured in order to match the maximum rotation of rotor 70 to the valve plate opening angle. Vanes 74 could have a range of included angles therebetween. Advantageously, hydraulic motor 66 does not extend past the parting line between cylinder head 16 and intake manifold 36.
Airflow control device 62 is illustrated in
The foregoing system has been described in accordance with the relevant legal standards, thus the description is exemplary rather than limiting in nature. Variations and modifications to the disclosed embodiments may become apparent to those skilled in the art and fall within the scope of the disclosure. Accordingly the scope of legal protection can only be determined by studying the following claims.