Hydraulically positioned shaft bearing attachment system and method

Abstract
A mounting system is disclosed for mounting a bearing assembly or other mechanical element to a shaft. The mounting system uses a tapered sleeve mechanism to secure the bearing assembly on the shaft. Specifically, a pressure loaded piston drives the sleeve from a pre-assembled position to an initial position. The initial position is determined by monitoring the pressure applied to the piston. Once the initial position has been reached, a linear indicator is used to measure the axial sleeve movement from the initial position to a final position. The system remains in place after the bearing is installed on the shaft and facilitates removal of the bearing assembly from the shaft.
Description

DRAWINGS

These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:



FIG. 1 is an exploded perspective view of the attachment system, illustrating a bearing assembly, an external flange, an internal flange, a tapered sleeve, a piston and fasteners in a presently contemplated embodiment of the invention;



FIG. 2 is a sectional view of the attachment system of FIG. 1 sectioned along line 2-2, illustrating the process for installing the bearing assembly onto the shaft using the innovative drive system;



FIG. 3 is a sectional view of the attachment system of FIG. 1 sectioned along line 2-2, further illustrating the process for securing the bearing assembly onto the shaft; and



FIG. 4 is a sectional view of the attachment system of FIG. 1 sectioned along line 3-3, illustrating the process for dismounting the bearing assembly from the shaft via the removal chamber.





DETAILED DESCRIPTION

Turning now to the drawings, FIG. 1 illustrates the elements of the hydraulically positioned bearing attachment system in accordance with an exemplary embodiment of the invention. The system includes a bearing kit 10 comprising of a bearing assembly 12 and an internal flange 14. The bearing assembly 12 has a tapered inside diameter 16 and a guide diameter 18 to radially locate and mate with an internal diameter of the internal flange 14. A sleeve 20 having a tapered outside diameter 22 engages the tapered inside diameter 16 of the bearing assembly 12. The sleeve 20 has a uniform inside diameter 24 and an axial split 26 allowing it to clamp down on a circular shaft when the outside diameter 22 is engaged. It should be noted that the present system may be employed with components that are differently configured, particularly insomuch as the engaging tapers are concerned. For example, to avoid tapering the inside of the bearing assembly itself, another sleeve may be interposed in the assembly that has a surface interfacing with the inner diameter of the bearing assembly, and a tapered inner surface that contacts the tapered outside diameter 22 of sleeve 20.


The sleeve 20 has a series of recesses 28 located on its outside diameter 22. The recesses 28 form part of a removal chamber contained by the tapered outside diameter 22 of the sleeve 20 interfacing the tapered inside diameter 16 of the bearing assembly 12. The removal chamber will be discussed in more detail below with reference to FIG. 4. The outer portion of the sleeve 20 transitions from the tapered outside diameter 22 to a uniform outside diameter 30 near the front face 32 of the sleeve 20. The sleeve 20 has a vertically drilled and plugged hole 34 located on the uniform diameter 30 and a horizontally drilled and plugged hole 36 located on the front face 32. These holes form part of the removal chamber and allow for hydraulic coupling to the removal chamber via the hydraulic access port 38 located on the front face 32 of the sleeve 20. Again, the operation of the removal chamber will be discussed in more detail below with reference to FIG. 4.


The internal flange 14 has a stepped inside diameter 40, further having a recess 42 extending from the front face for a portion of the stepped diameter. A key or pin 44 extends from the uniform diameter 30 of the sleeve 20 and engages the recess 42. This prevents any relative motion between these parts that could otherwise generate frictional heat and lead to eventual failure or unscheduled maintenance of the system.


The system further includes an external flange or housing 46 having a front face 48 and back face 50. The external flange 46 is secured to the internal flange 14 via a plurality of fasteners 54. Countersunk holes 56 are located on the front face 48 of the external flange 46 allowing the fasteners 54 to pass through and engage the threaded holes 58 located on the front face 60 of the internal flange 14. A ring-like recess is located on the back face 50 of the external flange 46 forming an internal hydraulic chamber 62. An access port 64 is hydraulically coupled to the internal chamber 62 via a vertically cross-drilled hole 66. The access port 64 allows a user to externally couple a hydraulic pump (e.g., a hand pump, not shown) to the system. A piston 68 comprising a ring-shaped body is configured to interface the internal chamber 62 located in the external flange 46. The piston 68 has a seal 70 located on the outside diameter 72 and a further seal 74 located on the inside diameter 76, thereby sealing the internal hydraulic chamber 62 when the piston 68 is seated in the external flange 46.


In operation, applying a pressure to the hydraulic chamber loads the front face 78 of the piston 68, thereby urging the piston 68 to abut the front face 32 of the sleeve 20 and drive the sleeve into the bearing assembly 12. The pressure actuating mechanism will be discussed in more detail below with reference to FIG. 2 and FIG. 3. However, it should be noted that the piston 68 and internal hydraulic chamber 62 are not limited to a ring shape or even to one piston in general. A number of pistons could be implemented and disposed around the diameter and accomplish the same functionality.


A screw 82 engages threaded holes 84 located in the external flange 46. The threaded holes 84 communicate with internal hydraulic chamber 62 allowing the screw 82 to load the front face 78 of the piston to secure it in place. A deformable sealing tape or other thread seal may be placed on the threads 86 of the screw 82 to maintain the internal pressure when the piston 68 is actuated. A plug 88 is threaded into the access port 66, sealing the hydraulic chamber 62 after the bearing assembly is installed on the shaft. Furthermore, the external flange 46 and the piston 68 are configured to remain in place after the bearing assembly is mounted to the shaft. The assembly, in accordance with the illustrated embodiment, then, constitutes a “leave-in-place” pressure actuated tool that greatly facilitates assembly and disassembly of the bearing, shaft and sleeve, without resort to complex additional tooling.



FIG. 2 is a sectional view of the mounting system of FIG. 1, sectioned along line 2-2. The figure illustrates the procedure for mounting a bearing kit 10 on a shaft 92. A tapered bore spherical roller bearing is illustrated in the figure, although the present invention is not limited to these specific types of bearings or even to bearings products in general. In general, the bearing assembly includes an outer ring 94, a roller set 96, and an inner ring 98. The bearing assembly has an internal clearance 100 as indicated by the letter “x” in the figure. The internal clearance allows the user to initially position the assembly onto the shaft and may be decreased when the bearing is placed in service. This may be done by expanding the inner ring 98 of the bearing assembly by means of the tapered sleeve 20. The internal flange 14 is also part of the bearing kit 10 and is, in the illustrated embodiment, axially secured to the inner ring via a snap ring 102, although other securement means may be employed. The snap ring is compressed by an annular camming surface 104, allowing the internal flange to slide onto the inner ring 98 up to the point where the ring springs into the snap ring groove.


The tapered sleeve 20 is then pressed into engagement between the inner ring 98 and the shaft 92 via a pressure loaded piston 68. This is accomplished by hydraulically coupling an external pump 106 to the internal hydraulic chamber 62 via the access port 64 and a hydraulic fitting 108. As discussed above, deformable tape is used on the screws 82 to from a seal with the threaded holes 84 located in the external flange 46. The hydraulic seal is completed by an o-ring 110 located on the outside diameter of the piston 68 and an inner o-ring 112 sealing on the inner surface of the piston 68. It should be noted that any suitable sealing arrangement could be implemented without affecting the functionality of the system. The pump 106 is used to apply a pressure, as indicated by reference numeral 114, to the internal hydraulic chamber, thereby loading the piston 68. This advances the piston and brings the back face 80 of the piston 68 into contact with the front face 32 of the sleeve 20, resulting in axial movement of the sleeve, as indicated by reference numeral 116. This drives the tapered diameters together and results in an expansion/compression force, represented by reference numeral 118, between the parts. Thus, the pressure loaded piston is used to drive the sleeve to the initial or first position. As discussed above, determining the initial position is useful because it represents the point where all of the tolerances and initial clearance between mating parts has been removed. Once this initial position has been determined, the sleeve and/or bearing assembly is advanced a predetermined distance to properly reduce the internal clearance 100 of the bearing or otherwise fully engage the sleeve between the bearing and the shaft.


The initial position may be determined by monitoring the pressure inside the internal hydraulic chamber 62 via a pressure sensor 120 hydraulically coupled to the chamber. A pressure value that corresponds to the initial position can be pre-determined for the bearing assembly and shaft mounting configuration. This will typically be done empirically for particular sized of product. Once the desired pressure is obtained, the user then drives the sleeve and/or bearing assembly from the initial position to the final position. The distance between the initial position and final position corresponds to an axial sleeve and/or bearing assembly movement required to properly mount the bearing assembly to the shaft, and will also typically be specified for the particular product. Advancement through this pre-determined distance, as indicated by the letter “y” and reference numeral 122 in the figure, may be determined by placing a linear indicator 124 on the shaft to indicate the relative movement of the sleeve and/or bearing assembly from the initial position to the final position. Various types of indicators and indication techniques may be employed, and the invention is not intended to be limited to any particular linear indicator. The user then applies a pressure to the system until the desired axial sleeve and/or bearing assembly movement is observed.


Those skilled in the art will appreciate that this piston loaded drive system reduces frictional losses in the drive mechanism and allows the user to accurately determine and reliable quantify the initial position by monitoring the pressure in the hydraulic chamber, and the final position by measuring the sleeve and/or bearing assembly axial movement relative to the initial position. In other words, the invention eliminates the need to rely on a variable torque measurement to determine the initial or final position. Furthermore, the invention does not require the user to overcome an excessive amount of frictional resistance, thereby making the system easier to install.



FIG. 3 is the same sectional view illustrated in FIG. 2, but further illustrating the process for securing the piston 68 in place to prevent the sleeve 20 from disengaging the bearing assembly 12 and the shaft 92. Once the final position is reached, the pressure of the hydraulic fluid located in the internal chamber 62 may be relieved, and where desired, the fluid may be drained via the access port 64. The chamber 62 may then be sealed. This is done by uncoupling the hydraulic pump and threading a plug 88 into the access port 64. The piston 68 may then be secured against the sleeve by applying a torque to the screws 82, allowing them to abut the front face 78 of the piston 68. Because the external flange 46 and piston 68 remain in place, the screws 82 and piston 68 prevent the sleeve from disengaging the bearing assembly 12 and the shaft 92. Also, as discussed above, a pin 44 engages a recess 42 thereby preventing relative rotational movement between the internal flange 14, the external flange 46, the sleeve 20, and the inner ring 98.



FIG. 4 is the same sectional view illustrated in FIG. 2, but further illustrating the process for extracting the sleeve 20 from between the bearing assembly 10 and the shaft 92 via the removal chamber 126. The removal chamber is formed by the interface of the outside diameter 22 of the sleeve 20 and the internal diameter 16 of the bearing assembly 12, and further by the recesses 28 located on the outside diameter of the sleeve 20. This interface provides for a hydraulically sealed circuit. The external flange is shown removed from the bearing kit 10 exposing the removal access port 38 located on the front face 32 of the sleeve 20. A hydraulic pump 106 is coupled to the removal chamber 126 via and a hydraulic fitting 130. The horizontal drilled hole 36 and the vertical drilled hole 34 allow a hydraulic fluid from the pump to communicate with the removal chamber. A pressure is thus applied to the removal chamber 126, creating a radial expansion force, indicated by reference numeral 132, forcing the inner ring 98 to expand and thereby driving sleeve 20 out of the inner race 98, as indicated by reference numeral 134. This allows the user to quickly and efficiently dismount the parts from one another.


Finally, as mentioned throughout the present discussion, the present mounting system is not limited to bearing assemblies and may be used to mount other mechanical elements to a shaft. For example, the system may serve to mount mechanical couplings used to couple one shaft to another. To complete this coupling a mechanical element (typically a coupling “half”) is directly mounted to the shaft. The present system may be used to mount this type of element, and many others, directly to a shaft offering all of the same benefits and advantages described above.


While only certain features of the invention have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.

Claims
  • 1. A system for mounting a bearing assembly to a shaft, comprising: an internal flange axially securable to the bearing assembly;an external flange secured to the internal flange via a plurality of fasteners, the external flange having an internal hydraulic chamber;a sleeve having a tapered outside diameter, the sleeve configured to be driven between the bearing assembly and the shaft;a piston configured to seal the internal hydraulic chamber and to drive the sleeve to an initial position between the bearing assembly and the shaft via a pressure loaded hydraulic fluid contained in the chamber; andmeans for securing the piston against the sleeve.
  • 2. The system of claim 1, wherein the means for securing the piston against the sleeve includes a screw that engages threads in the external flange.
  • 3. The system of claim 1, wherein the external flange includes a hydraulic access port for coupling a hydraulic pump to the internal hydraulic chamber.
  • 4. The system of claim 1, wherein the initial position corresponds to a pre-determined pressure of the fluid within the chamber and the system further includes a pressure sensor configured to indicate the pressure within the chamber.
  • 5. The system of claim 1, wherein the distance between the initial position and a final position is a pre-determined distance and corresponds to an axial sleeve and/or bearing assembly movement required to properly mount the bearing assembly to the shaft.
  • 6. The system of claim 5, comprising a linear indicator configured to indicate the axial sleeve and/or bearing assembly movement relative to the initial position.
  • 7. The system of claim 1, wherein the sleeve is axially split, whereby the sleeve can clamp the shaft when the tapered outside diameter is engaged.
  • 8. The system of claim 1, wherein the external flange and the internal flange are rotatably secured to an inner ring of the bearing assembly via a pin located in the sleeve and engaging a recess in the internal flange.
  • 9. The system of claim 1, wherein the internal hydraulic chamber is a ring-like recess in a front face of the external flange.
  • 10. The system of claim 1, wherein the piston comprises a ring-shaped body having a front face, a back face, a hydraulic seal located on an outside diameter, and a hydraulic seal located on an inside diameter.
  • 11. The system of claim 1, wherein the external flange, the internal flange, and the piston are configured to remain in place after the bearing assembly is mounted on the shaft.
  • 12. The system of claim 1, wherein a removal chamber is created between the interface of the bearing assembly and the tapered outside diameter of the sleeve, the removal chamber configured to allow a pressure loaded hydraulic fluid to extract the sleeve from between the bearing assembly and the shaft.
  • 13. The system of claim 1, wherein the internal flange is attached to the bearing assembly via a snap ring.
  • 14. A system for mounting an element to a shaft, comprising: a sleeve having a tapered outside diameter configured to engage an inside diameter of the element, the sleeve having an axial split allowing it to clamp the shaft when the tapered outside diameter is engaged; anda pressure actuated tool secured to the element and configured to drive the sleeve between the element and the shaft, the pressure actuated tool configured to remain in place after the element is installed on the shaft.
  • 15. The system of claim 14, wherein the pressure actuated tool is configured to drive the sleeve to an initial position between the element and the shaft, the initial position corresponding to a pre-determined pressure, and wherein the system further comprises a pressure sensor to indicate an applied pressure.
  • 16. The system of claim 15, wherein the pressure actuated tool is configured to drive the sleeve and/or the element from the initial position to a final position, and wherein the system further comprises a linear indicator to indicate axial movement of the sleeve and/or the element between the initial position and the final position.
  • 17. The system of claim 14, wherein the pressure actuated tool comprises a housing secured to the element via a plurality of fasteners and a piston configured to seal an internal hydraulic chamber in the housing.
  • 18. The system of claim 17, wherein the housing includes a hydraulic access port for coupling a hydraulic pump to the internal hydraulic chamber.
  • 19. The system of claim 14, wherein a removal chamber is created between the element and the tapered outside diameter of the sleeve, the removal chamber configured to allow a pressure loaded hydraulic fluid to extract the sleeve from between the element and the shaft.
  • 20. The system of claim 14, where the element is an inner ring of a bearing assembly.
  • 21. A method for mounting a bearing assembly on a shaft, comprising: engaging a tapered sleeve to a first position between the bearing assembly and the shaft via a pressure actuated tool;further engaging the sleeve from the first position to a final position between the bearing assembly and the shaft while measuring relative axial movement of the sleeve and\or the bearing assembly from the first position to the final position via a linear indicator;securing the sleeve in place at the final position; andleaving the pressure actuated tool in place after the bearing assembly is mounted to the shaft.
  • 22. The method of claim 21, wherein the pressure actuated tool includes a piston disposed in a piston housing, the piston housing surrounding the shaft and secured to the bearing assembly.
  • 23. The method of claim 22, wherein the sleeve is secured in the final position via a screw that engages threads in the piston housing to abut the piston against the sleeve.
  • 24. The method of claim 21, wherein the first position corresponds to a predetermined pressure applied to the pressure actuated tool.
  • 25. The method of claim 21, comprising removing the bearing assembly from the shaft via a removal chamber created between the bearing assembly and the sleeve, the removal chamber configured to allow a pressure loaded hydraulic fluid to extract the sleeve from between the bearing assembly and the shaft.