The present invention is directed to an improved load-handling clamp capable of handling two or more stacked loads of differing sizes, such as vertically-stacked abbreviated-height paper rolls of different diameters. Such a clamp is often referred to as a split-arm clamp. Preferably, the clamp is also useful for handling a single full-height or abbreviated-height load, or multiple stacked loads of the same size.
Such a split-arm clamp normally consists of at least a pair of separately-actuated clamp arms on one side of the clamp, in opposed relation to a single larger clamp arm on the opposite side of the clamp. The separately-actuated clamp arms are powered by separate hydraulic actuators connected in parallel to a source of pressurized fluid, and give the clamp the ability to apply clamping force separately to multiple objects of different widths or diameters stacked one atop the other. Such clamping capabilities are useful, for example, with respect to stacked paper rolls, bales or cartons of different sizes.
A common problem with such a clamp is misalignment of the separately-actuated clamp arms due to different frictional resistances in the respective arm mechanisms as they close or open, and/or different starting positions of the clamp arms when they close or open. If the clamp arms are misaligned to any extent, their combined profile will usually be thicker than normal. If the operator is unaware of such a misalignment, the clamp arms can strike a paper roll or other fragile load located inside the arms or adjacent loads located outside the arms as the arms are inserted or withdrawn in the course of engaging or depositing a load, causing substantial damage to the load. Correction of such misalignment often necessitates opening or closing the clamp arms to their maximum extent to realign them, which is time-consuming and requires operating space which may not be available.
A related problem is that, if only a single abbreviated-height paper roll or other single load is to be handled, clamping pressure on the load-engaging clamp arm cannot be obtained until the other separately-actuated arm is closed to its maximum extent. Conversely, opening of the clamp arms sometimes requires full opening of one clamp arm before another can be released sufficiently to disengage a load. In either case, the resultant high degree of misalignment of the clamp arms maximizes the time and space requirements for operating the clamp, and maximizes the risk of damage to the loads.
U.S. Pat. No. 4,682,931 offers a partial solution to these prior problems by providing a flow regulator of the divider/combiner type which requires the respective movements (or lack thereof) of a pair of clamp arms during closing and opening to be synchronized until the regulator is overridden, after which nonsimultaneous movement of the clamp arms is enabled. U.S. Pat. No. 5,984,617 improves on this system by making it compatible with clamp force adjustment systems. However, after the regulator has been overridden, the resultant unsynchronized arms must be opened or closed fully to resynchronize their positions, requiring extra time and space which may not be available.
Mechanical, rather than flow-regulating, solutions to the foregoing problems of unsynchronized clamp arms have been attempted in the past. These alternative solutions interconnect separately-actuated clamp arms by means of mechanical linkages which permit only a limited range of movement between the clamp arms. Such mechanical linkages include simple flexible or articulated tether-type links, or mechanical or hydraulic balance-beam links, which prevent more than a predetermined misalignment of the clamp arms. These linkages, however, share the common problem that they do not correct misalignment of the clamp arms and return them to their synchronized positions automatically to minimize their combined thickness.
Other previous linkage mechanisms include a spring-biased detent assembly tending to hold separately-actuated clamp arms in alignment with each other, but allowing large deviations from alignment whenever the spring-biased holding force of the detent is overcome by the fluid power actuators of the clamp arms. Such an arrangement provides neither adequate limitations on the misalignment of the clamp arms, nor automatic correction of such misalignment. Moreover, when only a single abbreviated-height load is to be handled, clamping pressure on the load-engaging clamp arm cannot be attained until the other clamp arm is fully closed.
A spring-link system shown in U.S. Pat. No. 6,318,949 is designed to cause synchronization automatically upon opening of the clamp arms. However the spring is limited in its ability to provide sufficient force to transfer hydraulic fluid rapidly enough to cause immediate realignment of the clamp arms. Moreover, such a spring link system can cause excessive mechanical limitations on visibility and the permitted extent of misalignment, depending on the particular profiles of the clamp arms. Also, clamping only a single load exerts the force of both fluid actuators into one clamping arm.
The present invention overcomes the foregoing deficiencies of prior split-arm clamps by providing a clamp with an improved hydraulic circuit interconnecting the separate fluid-actuated clamp arms.
In its preferred embodiment, the clamp has a hydraulic circuit capable of selectively causing closing movement of a pair of clamp arms in synchronized unison with each other and thereafter, automatically in response to resistance to closing movement by one but not the other of the pair of clamp arms, causing unsynchronized closing movement of the other clamp arm. Subsequently, upon opening of the clamp, the hydraulic circuit initially causes opening movement of the previously unsynchronized clamp arm and thereafter, automatically in response to the attainment of synchronized clamp arm positions, causes opening movement of the pair of clamp arms in synchronized unison with each other.
The foregoing and other objectives, features, and advantages of the invention will be more readily understood upon consideration of the following detailed description, taken in conjunction with the accompanying drawings.
An exemplary paper roll clamp, designated generally as 10 in
The load clamp 10 engages multiple stacked half-height paper rolls, such as 40 and 42, of different diameters so as to transport them simultaneously from one location to another. The clamp can also engage and transport only a single full-height or half-height paper roll, such as roll 40, or a pair of half-height rolls of the same diameter in stacked relationship. Transporting of the rolls requires that each be engaged with sufficient clamping force, by the respective pads 28a, 30a and 36a, to be able to frictionally support the weight of the rolls vertically. In operation, the clamping force is determined by the pressure of hydraulic fluid tending to extend hydraulic cylinders 32 and 34, respectively, to close the clamp arms. Cylinders 38 are principally used to position clamp arm 36 prior to clamping if necessary.
The hydraulic circuitry will first be explained with reference to the preferred embodiment of
In addition to the lift truck relief valve 50, a pressure-limiting valve assembly 53 (
The valve assembly 53 could alternatively comprise one or more pressure-reducing valves, instead of the relief valves 55, connected in series with the clamp-closing conduit 52 if desired. Or, as a further alternative, such pressure limit could be varied automatically by an adaptive system capable of varying the pressure limit in response to the sensed weight of the load clamped between the opposing clamp assemblies 24 and 26. An example of such an adaptive system is shown in U.S. Pat. No. 6,390,751, which is incorporated herein by reference.
Fluid power actuators 38, if present, could be controlled by a directional control valve separately from valve 48. However, as shown in
In operation, closure of the clamp arms 28 and 30 begins with the clamp arms in synchronized, preferably aligned, positions relative to each other. Closure is accomplished by the lift truck operator's manipulation of valve 48 to deliver pressurized fluid from the pump 44 through the clamp-closing conduit 52 and a parallel connection 52a to the hydraulic cylinders 32 and 34 through their respective conduits 32a and 34a and pilot-operated check valves 32b and 34b, respectively. As the cylinders 32 and 34 extend, fluid is simultaneously exhausted from the cylinders through conduits 32c an 34c, respectively, and through a parallel connection 57a to a clamp-opening conduit 57. In the preferred embodiment of
Assuming that rolls of different diameters corresponding to rolls 40 and 42 are to be engaged, clamp arm 28 would be the first to encounter resistance to its closing movement because roll 40 has the larger diameter. This resistance restrains the further extension of cylinder 32 and thus stops the flow exhausted through conduit 32c. In response thereto, the flow regulator 58 also stops flow through conduit 34c, which would ordinarily prevent further extension of cylinder 34 and further closure of clamp arm 30 even though, at this point, the clamp arm 30 has not yet engaged the smaller-diameter roll 42. However, in the embodiment of
When the operator subsequently desires to deposit the roll(s), he lowers the roll(s) to a supporting surface and moves the valve 48 in the opposite direction from its centered position, which introduces pressurized fluid from the pump 44 into the clamp-opening conduit 57. Initially, however, such pressure in the clamp-opening conduit 57 does not result in parallel flows through the flow regulator 58 because the check valve 60 and pressure-responsive sequence valve 68 initially prevent any flow through the flow regulator 58. However, the pilot-operated check valves 32b and 34b are both unseated by the pressure in conduit 57 to enable the retraction of the cylinders 32 and 34. Therefore, pressure in conduit 57 and bypass conduit 66b begins pushing the previously rightwardly-positioned piston 64 of the flow limiter 34e to the left in
When the piston 64 of the flow limiter 34e reaches its leftward extremity of travel, the pair of clamp arms 28 and 30 are once more in their original synchronized positions relative to each other. Thereafter, since pistons 64 and 65 are now both in their extreme leftward positions in flow limiter 34e and 32e respectively, the pressure in conduit 57 increases to the point where it exceeds the pressure setting of sequence valve 68. Thus, valve 68 automatically opens and introduces flow to the flow regulator 58 which, operating in its dividing mode, thereby causes opening movement of the clamp arms 28 and 30 in synchronized unison with each other.
The foregoing functions are preferably interchangeable with respect to the clamp arms 28 and 30. If the vertical positions of the clamp arms 28 and 30 are reversed by the rotator 18 so that the larger-diameter roll 40 is engaged by the clamp arm 30, then the clamp arm 30 and cylinder 34 are the first to encounter the resistance of the larger-diameter roll 40 and to be restrained against further closing movement. In such case the cylinder 32 continues its closing movement separately, with a valve 32d, conduit 69a, flow limiter 32e and conduit 69b of a preferable second branch of the bypass assembly working in the same manner previously described with respect to valve 34d, conduit 66a, flow limiter 34e and conduit 66b. Later, during opening movement of the clamp arms, flow limiter 32e and check valve 32f operate as described previously with respect to flow limiter 34e and check valve 34f to cause initial separate opening movement of clamp arm 28 while clamp arm 30 remains stationary, until the pair of clamp arms attain synchronization. Then, when the clamp arms becomes synchronized, opening movement of the pair of clamp arms proceeds in synchronized unison due to the opening of sequence valve 68 and the operation of flow regulator 58 in its dividing mode as described above.
Valves 70 and their connecting lines 70a, 70b can be optionally provided if desired to ensure that the clamp arms will open completely in cases where, due to malfunction or low fluid flow rates, the flow regulator 58 prevents the intended passage of fluid in a direction to open the clamp arms.
Alternatives to the flow limiters 32e and 34e can also optionally be used. For example, rotary-type flow limiters could be used instead of linear-type flow limiters as shown. Alternatively, other devices such as clamp-arm proximity sensors or flow-measuring sensors could mechanically, hydraulically or electrically open or close valves in the system to accomplish a similar purpose.
The flow limiters 32e and 34e, or their foregoing alternatives, can be made adjustable so that their control over the permitted movement of one clamp arm relative to the other can be selectively varied for different applications. For example, the displacements of the flow limiters can be changed by changing their cylinder diameters or piston lengths, or by using adjustable stops or end spacers in the cylinders.
Later, upon opening pressure being applied through the clamp-opening conduit 157, the cylinder 132 or 134 which is further extended due to its association with the previously unrestrained, and now unsynchronized, clamp arm, initially executes its independent opening movement by exhausting fluid through its associated flow limiter to conduit 152 until the piston 164 or 165 of its associated flow limiter reaches its leftward extremity. At this point the resulting increasing exhaust pressure opens sequence valve 168, and the cylinders and their respective clamp arms execute their opening movements in unison under the synchronized control of flow regulator 158 operating in its combining mode.
The terms and expressions which have been employed in the foregoing specification are used therein as terms of description and not of limitation, and there is no intention, in the use of such terms and expressions, of excluding equivalents of the features shown and described or portions thereof, it being recognized that the scope of the invention is defined and limited only by the claims which follow.