The present invention relates generally to pumps, and more particularly to a system of pumps wherein a first hydraulic motor operatively connected to a first master pump can hydraulically drive a second hydraulic motor operatively connected to a second slave pump.
Pumps are of course well known and there are also of course a multitude of different types of pumps. Examples of different types of pumps may be, for example, gear pumps, slurry pumps, metering pumps, variable volume pumps, diaphragm pumps, master pumps, slave pumps, catalyst pumps, resin pumps, piston pumps, reciprocating pumps, displacement pumps, and the like. Various different types of pumps are disclosed, for example, within U.S. Pat. No. 6,666,385 which issued to Gonitzke et al. on Dec. 23, 2003; U.S. Pat. No. 6,105,880 which issued to Bazil et al. on Aug. 22, 2000; U.S. Pat. No. 5,306,124 which issued to Back on Apr. 26, 1994; U.S. Pat. No. 5,294,052 which issued to Kukesh on Mar. 15, 1994; U.S. Pat. No. 5,114,319 which issued to Faber on May 19, 1992; U.S. Pat. No. 4,809,909 which issued to Kukesh on Mar. 7, 1989; U.S. Pat. No. 4,522,789 which issued to Kelly et al. on Jun. 11, 1985; U.S. Pat. No. 4,490,096 which issued to Box on Dec. 25, 1984; U.S. Pat. No. 4,328,824 which issued to Kiernan et al. on May 11, 1982; U.S. Pat. No. 3,179,120 which issued to Erickson et al. on Apr. 20, 1965; U.S. Pat. No. 3,097,764 which issued to Loeser on Jul. 16, 1963; U.S. Pat. No. 3,039,266 which issued to Schenkelberger on Jun. 19, 1962; U.S. Pat. No. 2,887,060 which issued to Adams et al. on May 19, 1959; U.S. Pat. No. 2,771,958 which issued to Ball on Nov. 27, 1956; United States Patent Application Publication 2016/0346801 of Brudevold et al. which was published on Dec. 1, 2016; United States Patent Application Publication 2015/0361968 of Schroeder et al. which was published on Dec. 17, 2015; United States Patent Application Publication 2013/0064696 of McCormick et al. which was published on Mar. 14, 2013; United States Patent Application Publication 2004/0057853 of Ross et al. which was published on Mar. 25, 2004; U.S. Design Pat. No. D-774,116 which was issued to Norman et al. on Dec. 13, 2016; U.S. Design Pat. No. D-771,719 which issued to Van Keulen et al. on Nov. 16, 2016; and Chinese Patent 106050595 which issued on Oct. 26, 2016.
As can be readily appreciated from the aforenoted prior art, many multi-pump systems are relatively complex. Such systems may employ, for example, hydraulic control circuits which include hydraulic fluid proportioners or dividers. Other systems may comprise mechanical connections, such as, for example, what is known in the art as a drive bar, which projects outwardly from the master pump and is connected to or engaged with the slave pump so as to ensure that the two pumps are operated in a synchronous mode, however, such systems do not handle divergent viscosity characteristics of the two different materials being pumped by the master and slave pumps, or desirably consistent output ratios between the two components being pumped.
A need therefore exists in the art for a new and improved multi-pump system. An additional need exists in the art for a new and improved multi-pump system wherein the system comprises two pumps. A further need exists in the art for a new and improved multi-pump system wherein the two pumps comprise a master pump and a slave pump. A still further need exists in the art for a new and improved multi-pump system wherein the master and slave pumps can be operated synchronously. A yet further need exists in the art for a new and improved multi-pump system wherein the two master and slave double-acting two-valve pumps can be hydraulically synchronized so as to eliminate conventional mechanical connections between conventional master and slave pump systems. A still yet further need exists in the art for a new and improved multi-pump system wherein the two master and slave double-acting two-valve pumps can be hydraulically synchronized so as to effectively improve the operational efficiency of the multi-pump system. A yet still further need exists in the art for a new and improved multi-pump system wherein the two master and slave double-acting two-valve pumps can be hydraulically synchronized so as to effectively improve the operational efficiency of the multi-pump system without regard to the particular viscosity characteristics of the fluids being pumped. An additional need exists in the art for a new and improved multi-pump system wherein the two master and slave double-acting two-valve pumps can be hydraulically synchronized so as to effectively improve the operational efficiency of the multi-pump system without regard to the mass flow rates of the two fluids being pumped.
Accordingly, an overall objective of the present invention is to provide a new and improved multi-pump system. An additional overall objective of the present invention is to provide a new and improved multi-pump system wherein the system comprises two pumps. A further overall objective of the present invention is to provide a new and improved multi-pump system wherein the two pumps comprise a master pump and a slave pump. A still further overall objective of the present invention is to provide new and improved multi-pump system wherein the master and slave pumps can be operated synchronously. A yet further overall objective of the present invention is to provide a new and improved multi-pump system wherein the two master and slave double-acting two-valve pumps can be hydraulically synchronized so as to eliminate conventional mechanical connections between conventional master and slave pump systems. A still yet further overall objective of the present invention is to provide a new and improved multi-pump system wherein the two master and slave double-acting two-valve pumps can be hydraulically synchronized so as to effectively improve the operational efficiency of the multi-pump system. A yet still further overall objective of the present invention is to provide a new and improved multi-pump system wherein the two master and slave double-acting two-valve pumps can be hydraulically synchronized so as to effectively improve the operational efficiency of the multi-pump system without regard to the particular viscosity characteristics of the fluids being pumped. An additional overall objective of the present invention is to provide a new and improved multi-pump system wherein the two master and slave double-acting two-valve pumps can be hydraulically synchronized so as to effectively improve the operational efficiency of the multi-pump system.
The foregoing and other objectives are achieved in accordance with the teachings and principles of the present invention through the provision of a new and improved multi-pump system wherein each one of the pumps comprises a double-acting two-valve pump. A first one of the pumps is to be considered the master pump and will output a first fluid, such as, for example, a catalyst, while the second one of the pumps is to be considered the slave pump and will output a second fluid, such as, for example, a resin. In accordance with the particularly unique principles and teachings of the present invention, both pumps are respectively driven by first and second hydraulic motors which are fluidically connected to a closed hydraulic circuit. A two-position four-way valve is included within the hydraulic circuit such that incoming hydraulic fluid is initially conducted to a first lower inlet port of the first hydraulic motor wherein a first motor piston of the first hydraulic motor, which is operatively connected to a first pump piston of the first master pump, moves upwardly so as to actuate the first pump piston of the first master pump such that the first master pump can output its fluid during the upstroke of the first pump piston. At the same time, the first upper outlet port of the first hydraulic motor is fluidically connected, through means of the two-position, four-way valve, to a hydraulic inlet conduit of the second hydraulic motor operatively associated with the second slave pump. Upon reaching its end-of-stroke position upon completion of its upward movement, the first motor piston of the first hydraulic motor will generate a signal which causes the two-position, four-way valve to switch its positions such that incoming hydraulic fluid is now conducted to the upper outlet port of the first hydraulic motor so as to drive the first motor piston of the first hydraulic motor downwardly, while the first lower inlet port of the first hydraulic motor is now fludicially connected to the hydraulic inlet conduit of the second hydraulic motor. When the first motor piston of the first hydraulic motor reaches its end-of-stroke position upon completion of its downward movement, it will again cause a signal to be generated such that the two-position, four-way valve will be switched back to its original position. The second hydraulic motor is also provided with a hydraulic fluid outlet which is fluidically connected to a hydraulic fluid supply tank from which hydraulic fluid is conducted back to the first lower inlet port of the first hydraulic motor by means of an auxiliary pump and the two-position, four-way valve.
Various other features and attendant advantages of the present invention will be more fully appreciated from the following detailed description when considered in connection with the accompanying drawings in which like reference characters designate like or corresponding parts throughout the several views, and wherein:
Referring now to the drawings, and more particularly to
For the purposes of this disclosure, the first double-acting two-valve pump 102 will be considered to be the master pump, while the second double-acting two-valve pump 104 will be considered to be the slave pump. The first double-acting two-valve pump 102 is seen to comprise a fluid inlet 106 and a fluid outlet 108, by means of which its fluid, for example, the catalyst, may be pumped out from the first double-acting two-valve pump 102 and toward a mixer 110. In a similar manner, the second double-acting two-valve pump 104 is seen to comprise a fluid inlet 112 and a fluid outlet 114, by means of which its fluid, for example, the resin, may be pumped out from the second double-acting two-valve pump 104 and toward the mixer 110 within which the two components, the catalyst and the resin, will be mixed in accordance with predeterminedly desired proportions such that the end product can then be transmitted to a dispenser 116 which may be any one of a variety of dispensing devices such as a dispensing gun, a spray gun, and the like.
Continuing further, and in accordance with the principles and teachings of the present invention, the first double-acting two-valve pump 102 is provided with a first hydraulic motor 118 which comprises a first lower hydraulic motor inlet port 120 and a first upper hydraulic motor outlet port 122. In a similar manner, the second double-acting two-valve pump 104 is provided with a second hydraulic motor 124 which comprises a second hydraulic motor inlet conduit 126 and a second hydraulic motor outlet port 128. As will become more fully understood in connection with the detailed description of
Having described substantially all of the structural components comprising the new and improved pump system 100, an operational description of the same will now be provided. More particularly, as illustrated within
It is to be noted that when the first hydraulic motor piston, not illustrated, has reached its upper end-of-stroke position, a signal will be generated so as to cause the two-position, four-way valve 140 to be switched whereby the two-position, four-way valve 140 will now be disposed at the position illustrated within
In order to provide a complete disclosure of the operation of the first and second hydraulic motors 118,124, a brief description of the second conventional hydraulic motor will now be described in connection with
Accordingly, in operation, and as an exemplary starting point, the spool valve 146 will be initially disposed at its elevated UP position, as maintained by means of the detent ball 154 effectively being latched or held within the lower one 152 of the two vertically spaced circumferentially grooved or notched portions 150,152 at which position the plurality of holes or apertures 148 defined therein will be disposed opposite to, or in alignment with, the first hydraulic motor inlet port 130 of the first hydraulic motor inlet conduit 126. It is also to be remembered, however, that hydraulic fluid will also flow downwardly through the first hydraulic inlet conduit 126 so as to likewise enter the internal portion of the second hydraulic motor 124 through means of the second lower hydraulic motor inlet port 132. Therefore, incoming hydraulic fluid is permitted to enter the spool valve 146 from the first upper hydraulic motor inlet port 130, flow downwardly through the spool valve 146, and act upon the upper surface portion 170 of the second hydraulic motor piston 162, while the incoming hydraulic fluid, entering the second lower hydraulic motor inlet port 132, likewise acts upon the undersurface portion 172 of the second hydraulic motor piston 162. In view of the fact, however, that the hydraulic fluid from the first upper hydraulic motor inlet port 130 acts upon a much larger surface area, comprising the upper surface portion 170 of the second hydraulic motor piston 162, as compared to the hydraulic fluid from the second lower hydraulic motor inlet port 132 acting upon a relatively much smaller undersurface portion 172 of the second hydraulic motor piston 162, the hydraulic fluid therefore causes the second hydraulic motor piston 162 to move downwardly within the external housing 160 of the second hydraulic motor 124 and relative to the spool valve connective rod member 156 until the second hydraulic motor piston 162 encounters the spring-biased stop member 158. Any hydraulic fluid disposed beneath the second hydraulic motor piston 162 will effectively be forced back outwardly through the second lower hydraulic motor inlet port 132 so as to effectively be entrained with the hydraulic fluid entering the second hydraulic motor 124 through means of the first upper hydraulic motor inlet port 130.
At this time, as a result of the engagement of the second hydraulic motor piston 162 with the spring-biased stop member 158, the second hydraulic motor piston 162 will cause the spring-biased stop member 158 to move downwardly within the annular connective wall member 166 of the piston assembly thereby, in turn, causing the spool valve connective rod member 156 to move downwardly which effectively pulls the spool valve 146 downwardly. As a result of these forces, the spring-biased detent ball 154 is momentarily forced out from the lower circumferentially grooved or notched portion 152 and is subsequently seated within the upper circumferentially grooved or notched portion 150 as illustrated in
Thus, it may be seen that in accordance with the principles and teachings of the present invention, there has been provided a pump system wherein a first hydraulic motor, operatively associated with a first fluid pump for pumping a first fluid component, drives a second hydraulic motor, operatively associated with a second fluid pump for pumping a second fluid component, in a hydraulically synchronized manner. Obviously, many variations and modifications of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the present invention may be practiced otherwise than as specifically described herein.
Number | Name | Date | Kind |
---|---|---|---|
2771958 | Ball | Nov 1956 | A |
2887060 | Adams et al. | May 1959 | A |
3039266 | Schenkelberger | Jun 1962 | A |
3097764 | Loeser | Jul 1963 | A |
3179120 | Erickson et al. | Apr 1965 | A |
3752039 | Hewins | Aug 1973 | A |
4312463 | Daby | Jan 1982 | A |
4328824 | Kiernan et al. | May 1982 | A |
4490096 | Box | Dec 1984 | A |
4522789 | Kelly et al. | Jun 1985 | A |
4809909 | Kukush | Mar 1989 | A |
5114319 | Faber | May 1992 | A |
5294052 | Kukesh | Mar 1994 | A |
5306124 | Back | Apr 1994 | A |
6105880 | Bazil et al. | Aug 2000 | A |
6666385 | Gonitzke et al. | Dec 2003 | B1 |
D771719 | Van Keulen et al. | Nov 2016 | S |
D774116 | Norman et al. | Dec 2016 | S |
20040057853 | Ross et al. | Mar 2004 | A1 |
20040136832 | Hammonds | Jul 2004 | A1 |
20090220358 | Krivsky | Sep 2009 | A1 |
20130064696 | McCormick et al. | Mar 2013 | A1 |
20150361968 | Schroeder | Dec 2015 | A1 |
20160245399 | Watanabe | Aug 2016 | A1 |
20160346801 | Brudevold et al. | Dec 2016 | A1 |
Number | Date | Country |
---|---|---|
106050595 | Oct 2016 | CN |
Entry |
---|
“Pneumatics vs Hydraulics”, http://www.engineerstudent.co.uk/pneumatics_vs_hydraulics.shtm (Year: 2013). |
Number | Date | Country | |
---|---|---|---|
20190226465 A1 | Jul 2019 | US |