Not applicable.
1. Field of the Invention
The invention relates generally to downhole tools. More particularly, the invention relates to jars for applying an axial impact force to a downhole assembly.
2. Background of the Technology
In oil and gas well operations, it is frequently necessary to apply an axial blow to a tool or tool string that is positioned downhole. For example, application of axial force to a downhole string may be desirable to dislodge drilling or production equipment that is stuck in a wellbore. Another circumstance involves the retrieval of a tool or string downhole that has been separated from its pipe or tubing string. The separation between the pipe or tubing and the stranded tool or “fish” may be the result of structural failure or a deliberate disconnection initiated from the surface.
Jars have been used in petroleum well operations for several decades to enable operators to deliver axial impacts to stuck or stranded tools and strings. “Drilling jars” are frequently employed when either drilling or production equipment gets stuck in the well bore. The drilling jar is normally placed in the pipe string in the region of the stuck object and allows an operator at the surface to deliver a series of impact blows to the drill string via manipulation of the drill string. These impact blows are intended to dislodge the stuck object, thereby enabling continued downhole operations. “Fishing jars” are inserted into the well bore to retrieve a stranded tool or fish. Fishing jars are provided with a mechanism that is designed to firmly grasp the fish so that the fishing jar and the fish may be lifted together from the well. Many fishing jars are also provided with the capability to deliver axial blows to the fish to facilitate retrieval.
Conventional jars typically include an inner mandrel disposed in an outer housing. The mandrel is permitted to move axially relative to the housing and has a hammer formed thereon, while the housing includes an anvil positioned adjacent to the mandrel hammer. By impacting the anvil with the hammer at a relatively high velocity, a substantial jarring force is imparted to the stuck drill string. If the jarring force is sufficient, the stuck string will be dislodged and freed.
There are four basic types of jars: purely hydraulic jars, purely mechanical jars, bumper jars, and mechanical-hydraulic jars. Bumper jars are primarily used to provide a downward jarring force. The bumper jar usually contains a splined joint with sufficient axial travel to allow a pipe to be lifted and dropped, causing the impact surfaces inside the bumper jar to come together to deliver a downward jarring force to the string.
Mechanical, hydraulic, and mechanical-hydraulic jars differ from the bumper jar in that each contains a triggering mechanism which prevents impacting each other until a sufficient axial strain, either tensile or compressive, has been applied to the jar. To provide an upward jarring force, the drill pipe is stretched by an axial tensile load applied at the surface. This tensile force is resisted by the triggering mechanism of the jar long enough to allow the string to stretch and store potential energy. When the jar triggers, this stored energy is converted to kinetic energy causing the impact surfaces of the jar to move together at a relatively high velocity. To provide a downward jarring force, the pipe weight is slacked off at the surface and, and in some cases, additional compressive force is applied, to place the string in compression. This compressive force is resisted by the triggering mechanism of the jar to allow the string to compress and store potential energy. When the jar triggers, the potential energy is converted to kinetic energy causing the impact surfaces of the jar to come together at a relatively high velocity.
The triggering mechanism in most mechanical jars consists of a friction sleeve coupled to the mandrel which prevents movement of the mandrel relative to the housing until the load applied to the mandrel exceeds a preselected amount, often referred to as the “triggering load.” The triggering mechanism in most hydraulic jars consists of one or more pistons which pressurize fluid in a chamber in response to movement by the mandrel relative to the housing. The compressed fluid resists movement of the mandrel. The pressurized fluid is ordinarily allowed to bleed off at a preselected rate. As the fluid bleeds off, the mandrel slowly translates relative to the housing, eventually reaching a point in the jar where the chamber seal is opened, and the compressed fluid is allowed to rush past the piston, thereby allowing the mandrel to move rapidly.
Mechanical-hydraulic jars ordinarily combine some features of both purely mechanical and purely hydraulic jars. For example, one design utilizes both a slowly metered fluid and a mechanical spring element to resist relative axial movement of the mandrel and the housing. Another design utilizes a combination of a slowly metered fluid and a mechanical brake to retard the relative movement between the mandrel and the housing. In this design, drilling mud is used as the hydraulic medium. Therefore, the string must be pressurized before the jar will operate. This pressurization step will ordinarily require a work stoppage and the insertion of a ball into the work string to act as a sealing device. After the jar is triggered, the ball must be retrieved before normal operations can continue.
In many wireline retrieval operations, particularly tight hole operations, it is often desirable to applying a tensile load on the wireline in an attempt to free the stuck downhole object without firing the jar. For example, the operator may slowly increase tension on the wireline, and then hold the tension for an extended period of time to try and dislodge the downhole assembly without the need for triggering the jar. In some cases, the operator may choose apply an overload tension in excess of the triggering load of the jar to try and dislodge the downhole assembly, but not want to fire the jar. However, with most conventional jars, application of a tensile load over a long period of time and application of an overload tension are likely to cause the jar to inadvertently fire or be very near the point of firing.
Accordingly, there remains a need in the art for downhole jars and associated devices that allow the jar triggering load to be exceeded for a finite period of time without causing the jar to fire. Such jars and associated devices would be particularly well-received if they provided the operator the option of reducing the line tension shortly after the overpull to avoid jarring, or maintaining the overpull to fire the jar.
These and other needs in the art are addressed in one embodiment by a jar having a longitudinal axis. In an embodiment, the jar comprises a housing including an anvil. In addition, the jar comprises a mandrel telescopically disposed within the housing and including a hammer. Further, the jar comprises an annular chamber radially positioned between the mandrel and the housing. Still further, the jar comprises an actuation assembly disposed in the annular chamber. The actuation assembly includes a first collet disposed about the mandrel and adapted to releasably engage the mandrel. The first collet is axially moveable between a neutral position engaging the mandrel and a triggered position disengaged from the mandrel. The actuation assembly also includes a first trigger sleeve disposed about the first collet and adapted to releasably engage the first collet. Still further, the actuation assembly includes a first biasing member adapted to exert an axial force on the mandrel upon compression of the first biasing member by movement of the mandrel in a first axial direction relative to the housing when the first collet is in the neutral position. Moreover, the jar comprises a lock assembly disposed in the annular chamber. The lock assembly includes a second collet disposed about the mandrel and adapted to releasably engage the mandrel. The second collet is axially moveable between a neutral position engaging the mandrel and a triggered position disengaged from the mandrel. The lock assembly also includes a second trigger sleeve disposed about the second collet and adapted to releasably engage the second collet. Further, the lock assembly includes a second biasing member adapted to exert an axial force on the mandrel upon compression of the second biasing member by movement of the mandrel in the first axial direction relative to the housing when the second collet is in the neutral position. The lock assembly is adapted to release the mandrel, and the actuation assembly is adapted to release the mandrel and allow to the hammer to axially impact the anvil.
These and other needs in the art are addressed in another embodiment by a jar having a longitudinal axis. In an embodiment, the jar comprises a housing including an anvil surface. In addition, the jar comprises a mandrel telescopically disposed within the housing and including a hammer surface. Further, the jar comprises a seal assembly radially disposed between the housing and the mandrel. Still further, the jar comprises an annular hydraulic chamber radially positioned between the mandrel and the housing and extending axially from the seal assembly to an annular balancing piston disposed about the mandrel. Moreover, the jar comprises an annular actuation piston disposed in the hydraulic chamber and axially positioned between the seal assembly and the balance piston. The jar also includes a first biasing member disposed in the hydraulic chamber and axially positioned between the actuation piston and a first annular shoulder on the housing. The first biasing member biases the actuation piston in a first axial direction. In addition, the jar includes a first trigger sleeve disposed in the hydraulic chamber about the mandrel. Further, the jar includes a first collet disposed in the hydraulic chamber about the mandrel. The first collet has a first position positively engaging the mandrel and the second position positively engaging the first trigger sleeve. The first collet and the actuation piston are adapted to move with the mandrel relative to the housing and the first trigger sleeve when the first collet is in the first position, and the mandrel is adapted to move relative to the first collet and the actuation piston when the first collet is in the second position. Still further, the jar includes a second trigger sleeve disposed in the hydraulic chamber about the mandrel. Moreover, the jar includes a second collet disposed in the hydraulic chamber about the mandrel. The second collet has a first position positively engaging the mandrel and the second position positively engaging the second trigger sleeve. The jar also includes a second biasing member axially positioned between a second annular shoulder on the housing and the second collet. The second collet is adapted to move with the mandrel relative to the housing and the second trigger sleeve when the second collet is in the first position, and the mandrel is adapted to move relative to the second collet when the second collet is in the second position.
These and other needs in the art are addressed in another embodiment by a method of operating a downhole jar. The jar including a housing with a longitudinal axis and a mandrel telescopically disposed within the housing. In an embodiment, the method comprises (a) applying a tensile load to the jar so as to move the mandrel relative to the housing in a first axial direction. In addition, the method comprises (b) compressing a first biasing member that biases the mandrel in a second axial direction that is opposite the first axial direction with a first biasing force. Further, the method comprises (c) removing the first biasing force from the mandrel after sufficient axial movement of the mandrel relative to the housing. Still further, the method comprises (d) continuing to apply a tensile load to the jar so as to move the mandrel relative to the housing after (c). Moreover, the method comprises (e) compressing a second biasing member that biasing the mandrel in the second axial direction with a second biasing force during (d).
Thus, embodiments described herein comprise a combination of features and advantages intended to address various shortcomings associated with certain prior devices, systems, and methods. The various characteristics described above, as well as other features, will be readily apparent to those skilled in the art upon reading the following detailed description, and by referring to the accompanying drawings.
For a detailed description of the preferred embodiments of the invention, reference will now be made to the accompanying drawings in which:
The following discussion is directed to various embodiments of the invention. Although one or more of these embodiments may be preferred, the embodiments disclosed should not be interpreted, or otherwise used, as limiting the scope of the disclosure, including the claims. In addition, one skilled in the art will understand that the following description has broad application, and the discussion of any embodiment is meant only to be exemplary of that embodiment, and not intended to intimate that the scope of the disclosure, including the claims, is limited to that embodiment.
Certain terms are used throughout the following description and claims to refer to particular features or components. As one skilled in the art will appreciate, different persons may refer to the same feature or component by different names. This document does not intend to distinguish between components or features that differ in name but not function. The drawing figures are not necessarily to scale. Certain features and components herein may be shown exaggerated in scale or in somewhat schematic form and some details of conventional elements may not be shown in interest of clarity and conciseness.
In the following discussion and in the claims, the terms “including” and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to . . . . ” Also, the term “couple” or “couples” is intended to mean either an indirect or direct connection. Thus, if a first device couples to a second device, that connection may be through a direct connection, or through an indirect connection via other devices, components, and connections. In addition, as used herein, the terms “axial” and “axially” generally mean along or parallel to a central axis (e.g., central axis of a body or a port), while the terms “radial” and “radially” generally mean perpendicular to the central axis. For instance, an axial distance refers to a distance measured along or parallel to the central axis, and a radial distance means a distance measured perpendicular to the central axis.
Referring now to
As may be necessary to traverse particular producing formations, borehole 11 may include generally straight sections and curved sections. In reality, both straight and curved sections may include various kinks and twists, which generally increase the probability of assembly 10 becoming stuck downhole. Consequently, in this embodiment, a jar 100 is included in assembly 10. As will be described in more detail below, in the event assembly 10 becomes stuck in borehole 11, jar 100 may be triggered or fired to provide an abrupt, axial force sufficient to dislodge assembly 10. Although
Referring now to
Jar 100 has a central or longitudinal axis 105, a first or upper end 100a, and a second or lower end 100b opposite end 100a. As indicated by the relative terms “upper” and “lower,” jar 100 is configured to be positioned in the borehole with end 100a uphole of end 100b. In this embodiment, jar 100 includes a radially inner tubular mandrel 110 telescopically disposed within a radially outer tubular housing 210. Mandrel 110 and housing 210 are coaxially aligned such that each has a central axis coincident with jar axis 105.
Referring still to
As best shown in
Referring now to
Referring now to
Moving now to
Referring again to
Similar to mandrel 110, housing 210 is formed from a plurality of tubular segments joined together end-to-end with mating box-pin end threaded connections. In particular, moving axially from housing upper end 210a to housing lower end 210b, housing 210 includes an upper tubular member 215 (
Referring now to
Housing upper tubular member 215 sealingly engages mandrel 110. In particular, tubular member 215 includes a seal assembly 218 that forms dynamic seals with mandrel upper tubular member 120. Seal assembly 218 is radially disposed between tubular members 120, 215, and in this embodiment, comprises a loaded lip seal 218a and an O-ring seal 218b positioned axially below lip seal 218.
Referring still to
An anvil sleeve 300 is disposed about mandrel upper tubular member 120 and extends coaxially into counterbore 217. Specifically, sleeve 300 has a first or upper end 300a and a second or lower end 300b opposite upper end 300a. In this embodiment, sleeve 300 includes a cylindrical portion 301 extending axially from upper end 300a and an annular flange 202 extending radially outward from cylindrical portion 301 at end 300b. Cylindrical portion 301 is disposed in counterbore 217 and flange 302 extends radially outward along lower end 215b. In particular, flange 302 is axially disposed between and engages lower end 215b and shoulder 221. Thus, lower end 215b and shoulder 221 restrict sleeve 300 from moving axially relative to housing 210. Anvil sleeve flange 302 defines a downwardly facing annular anvil surface 303 that is impacted by hammer surface 124 of mandrel upper tubular member 120 to generate an upward axial jarring force when jar 100 is fired.
Referring briefly to
Referring again to
Referring still to
Referring now to
Referring to
Referring now to
Referring now to
Referring to
Referring to
Referring again to
Piston 320 is designed to ensure that the pressure of the operating fluid within chamber 161 is substantially the same as the fluid pressure in the wellbore annulus, while simultaneously restricting and/or preventing fluid communication between chambers 161, 162. Accordingly, piston 320 includes a radially inner seal assembly 321 that sealingly engages mandrel 110 and a radially outer seal assembly 322 that sealingly engages housing 210. In this embodiment, inner seal assembly 321 includes an O-ring seal 323 and a loaded lip seal 324 axially spaced below O-ring seal 323, and similarly, outer seal assembly 322 includes an O-ring seal 325 and a loaded lip seal 326 axially spaced below O-ring seal 325. Thus, housing seal assembly 218 and piston seal assemblies 321, 322 restrict and/or prevent mud and other debris in the wellbore annulus from contaminating the operating fluid (e.g., hydraulic fluid) within chamber 161, and restrict and/or prevent the loss of operating fluid from chamber 161 into the wellbore annulus.
Referring still to
As will be described in more detail below and is shown in
Referring now to
Referring now to
Biasing member 341 is axially positioned between lower end 230b of housing mandrel 230 and actuation piston 345. In particular, biasing member 341 has a first or upper end 341a that bears against lower end 230b and a second or lower end 341b that bears against piston 345. In this embodiment, biasing member 341 comprises a stack of Bellville springs formed by a plurality of individual Bellville springs arranged one-adjacent-the other (e.g., one-above-the-other) to form an elongate “stack.” However, in other embodiments, the piston biasing member (e.g., biasing member 341) may comprise other types of spring arrangements including, without limitation, coil springs. Biasing member 341 is configured such that it provides minimal resistance to the axial flow of working fluid. For example, biasing member 341 may be radially spaced from housing 210, radially spaced from mandrel 110, include one or more axial throughbores or flow passages, or combinations thereof.
Biasing member 341 is axially compressed between end 230b and piston 345, and thus, urges piston 345 axially downward and away from end 230b. Thus, the biasing member 341 resists upward axial movement of actuating piston 345 and seeks to seat actuating piston 345 against housing annular shoulder 241 as shown in
Referring now to
As best shown in
Referring now to
Second flow passage 349 includes a one-way check valve 349a that restricts and/or prevents working fluid from flowing through passage 349 when piston 345 moves axially upward within chamber 161, but allows working fluid to flow through passage 349 when piston moves axially downward within chamber 161. In general, the check valve may comprise any suitable check valve that allows one-way fluid flow. One example of a suitable check valve is the Ø 0.187 in. (outer diameter) Lee Chek check valve available from The Lee Company of Westbrook, Conn.
Actuating piston 345 divides jar working fluid chamber 161 into a first or upper portion 161a extending axially from seal assembly 218 to piston 345 and a second or lower portion 161b extending axially from piston 345 to piston 320. Since piston 345 sealingly engages mandrel 110 and housing 210, flow restriction orifice 348a in flow passage 348 restricts working fluid flow therethrough, and check valve 349a in flow passage 349 prevents working fluid flow therethrough, piston 345 substantially restricts working fluid in upper chamber portion 161a from flowing into lower chamber portion 161b. Thus, as piston 345 moves axially upward within chamber 161, the pressure of working fluid in chamber upper portion 161 increases. Such an increase in the working fluid pressure in chamber upper portion 161 resists the upward movement of piston 345. That is, upward relative movement of piston 345 relative to the housing 210 reduces the volume of chamber upper portion 161a, thereby causing a significant increase in the working fluid pressure within chamber upper portion 161a that generates an axial force that resist the upward movement of piston 345 relative to housing 210. This resistance to relative movement of piston 345 allows a large buildup of potential energy. However, over time, flow restrictor 348a slowly allows working fluid to flow through piston 345 from chamber upper portion 161a to chamber lower portion 161b, and thereby allows piston 345 to creep upward within chamber 161 relative to housing 210. It is this bleeding of working fluid across piston 345 as piston 345 is urged axially upward within chamber 161 that defines the hydraulic delay portion of the firing cycle of jar 100 and firing section 101. As previously described, biasing member 355 also exerts and axial force on piston 345 that resists upward movement of piston 345 relative to housing 210.
Referring to
Trigger sleeve 351 has a radially outer cylindrical surface that slidingly engages housing 210 and a radially inner surface that includes a plurality of annular recesses 352 defining a plurality of radially inwardly projecting annular flanges 353—one flange 353 is axially disposed between each pair of axially adjacent recesses 352. As will be described in more detail below, recesses 352 and flanges 353 are sized and configured to releasably engage a plurality of mating flanges and recesses, respectively, provided on the radially outer surface of collet 360 when jar 100 is fired.
Referring now to
The radially outer surface of each axially extending segment 363 includes a primary flange 364 and a plurality of secondary flanges 365 positioned between lower end 360b and primary flange 364. Flanges 364, 365 define a plurality of recesses or grooves 366 on the radially outer surface of each segment 363—one groove 366 is axially positioned between each pair of axially adjacent flanges 364, 365. Each flange 364, 365 extends circumferentially across its respective segment 363 and projects radially outward from body 361. On each segment 363, primary flange 364 is positioned axially above secondary flanges 365, and further, primary flange 364 has a greater axial width than each secondary flange 365. Collet flanges 364, 365 and recesses 366 are sized and configured to releasably mesh with and engage trigger sleeve recesses 352 and flanges 353, respectively. When collet flanges 364, 365 and recesses 366 positively engage trigger sleeve recesses 352 and flanges 353, respectively, collet 360 is fixed relative to trigger sleeve 351 (i.e., collet 360 does not move axially relative to trigger sleeve 351).
The radially inner surface of each axially extending segment 363 also includes a primary flange 367 and a plurality of secondary flanges 368 positioned between lower end 360b and primary flange 367. Flanges 367, 368 define a plurality of recesses or grooves 369 on the radially inner surface of each segment 363—one groove 369 is axially positioned between each pair of axially adjacent flanges 367, 368. Each flange 367, 368 extends circumferentially across its respective segment 363 and projects radially inward from body 361. On each segment 363, primary flange 367 is positioned axially above secondary flanges 368, and further, primary flange 367 has a greater axial width than each secondary flange 368. Collet flanges 367, 368 and recesses 369 are sized and configured to releasably mesh with and engage mandrel recesses 132 and flanges 133, respectively. When collet flanges 367, 368 and recesses 369 positively engage mandrel recesses 132 and flanges 133, respectively, collet 360 is fixed relative to mandrel 110 (i.e., collet 360 does not move axially relative to mandrel 110).
As previously described, collet flanges 367, 368 and recesses 369 releasably engage mandrel recesses 132 and flanges 133, respectively, and collet flanges 364, 365 and recesses 366 releasably engage trigger sleeve recesses 352 and flanges 353, respectively. When collet flanges 367, 368 and recesses 369 positively engage mandrel recesses 132 and flanges 133, respectively, collet 360 is secured to mandrel 110 and moves axially along with mandrel 110. However, when collet flanges 364, 365 and recesses 366 positively engage trigger sleeve recesses 352 and flanges 353, respectively, collet 360 is secured to trigger sleeve 351 and mandrel 110 is free to move axially relative to collet 360. Thus, collet 360 of actuation assembly 340 may be described as having a first position secured to mandrel 110 and a second position secured to trigger sleeve 351. Collet 360 transitions from the first position to the second position as collet flanges 364, 365 and recesses 366 come into alignment with trigger sleeve recesses 352 and flanges 353, respectively, and simultaneously move into positive engagement with trigger sleeve recesses 352 and flanges 353, respectively, and out of engagement with mandrel recesses 132 and flanges 133, respectively. Further, collet 360 transitions from the second position to the first position as collet flanges 364, 365 and recesses 366 come into alignment with mandrel recesses 132 and flanges 133, respectively, and simultaneously move into positive engagement with mandrel recesses 132 and flanges 133, respectively, and out of engagement with trigger sleeve recesses 352 and flanges 353, respectively.
As best shown in
Referring now to
Biasing member 371 is axially positioned between lower end 245b of housing tubular member 245 and compression ring 375. In particular, biasing member 371 has a first or upper end 371a that bears against lower end 245b and a second or lower end 371b that bears against compression ring 375. Biasing member 371 is configured such that it provides minimal resistance to the axial flow of working fluid. For example, biasing member 371 may be radially spaced from housing 210, radially spaced from mandrel 110, include one or more axial throughbores or flow passages, or combinations thereof. In this embodiment, biasing member 371 comprises a stack of Bellville springs. As previously described, a “stack” of Bellville springs refers to a plurality of Bellville springs positioned one adjacent the other (e.g., one-above-the-other) to form an elongate “stack.” In other embodiments, the piston biasing member (e.g., biasing member 371) may comprise other types of spring arrangements including, without limitation, coil springs.
Biasing member 371 is axially compressed between end 245b and ring 375, and thus, urges ring 375 axially downward and away from end 245b. Thus, the biasing member 371 resists upward axial movement of compression ring 375 and seeks to seat ring 375 against housing annular shoulder 251 as shown in
The preload (e.g., lbs.) provided by each biasing member 341, 371 may be varied depending on the application and generally depends on the axial travel required to trigger collets 360, 360′, respectively. In this embodiment, sections 101, 102 are configured such that biasing member 371 provides a larger preload than biasing member 341. This may be achieved, for example, by including Bellville springs in biasing member 371 with a greater axial thickness than the Bellville springs in biasing member 341 as shown in
Referring now to
Unlike piston 345 previously described, ring 375 does not sealingly engage housing 210 or mandrel 110. Thus, working fluid in chamber 161 is generally free to move around ring 375 (e.g., between ring 375 and mandrel 210 and between ring 375 and housing 210) as ring 375 moves axially through chamber 161. Since ring 375 is axially spaced from mandrel 110, working fluid around ring 375 will pass through the annulus between ring 375 and mandrel 110. In addition, there is a sufficient OD clearance between compression ring 375 and housing 210 to allow working fluid to flow between ring 375 and housing 210 with little restriction.
Referring to
Trigger sleeve 381 has a first or upper end 381a and a second or lower end 381b opposite end 381a. In addition, trigger sleeve 381 has a radially outer surface including a cylindrical portion 382 extending from end 381a and an annular recess 383 axially positioned between cylindrical portion 382 and end 381b. Recess 383 is proximal to, but does not extend to end 381b, and therefore, defines an annular shoulder 384 along the outer surface of trigger sleeve 381. The radially inner surface of trigger sleeve 381 includes a plurality of annular recesses 385 defining a plurality of radially inwardly projecting annular flanges 386—one flange 386 is axially disposed between each pair of axially adjacent recesses 385. Recesses 385 and flanges 386 are sized and configured to releasably engage mating flanges 364, 365 and recesses 366, respectively, provided on the radially outer surface of collet 360′ as described in more detail below.
An annular split ring 387 couples trigger sleeve 381 to housing tubular mandrel 255. Split ring 387 has a radially outer cylindrical surface that slidingly engages housing 210 and a radially inner surface include an annular recess 388 that defines annular flanges 389a, 389b at the upper and lower ends, respectively, of split ring 387. Flanges 389a, 389b extend radially inward and engage recesses 383, 259, respectively, of trigger sleeve 381 and housing tubular mandrel 255, respectively. Together, adjustment ring 261, housing mandrel 255, and split ring 387 allow for the adjustment of the axial position of trigger sleeve 381 relative to collet 360′ in the neutral position. Specifically, adjustment ring 261 and mandrel 255 may be rotated about axis 105 in a first direction to move mandrel 255 and trigger sleeve 381 coupled thereto with split ring 387 axially downward. Alternatively, adjustment ring 261 and mandrel 255 may be rotated about axis 105 in the opposite direction to move mandrel 255 and trigger sleeve 381 coupled thereto with split ring 387 axially upward. It should be appreciated that housing shoulder 252 limits the extent of upward movement of trigger sleeve 381 relative to collet 360′.
Referring now to
When collet flanges 367, 368 and recesses 369 positively engage mandrel recesses 141 and flanges 142, respectively, collet 360′ is secured to mandrel 110 and moves axially along with mandrel 110. However, when collet flanges 364, 365 and recesses 366 positively engage trigger sleeve recesses 385 and flanges 386, respectively, collet 360′ is secured to trigger sleeve 381 and mandrel 110 is free to move axially relative to lock assembly collet 360. Thus, collet 360′ of lock assembly 370 may be described as having a first position secured to mandrel 110 and a second position secured to trigger sleeve 381. Collet 360′ transitions from the first position to the second position as collet flanges 364, 365 and recesses 366 come into alignment with trigger sleeve recesses 385 and flanges 386, respectively, and simultaneously move into positive engagement with trigger sleeve recesses 385 and flanges 386, respectively, and out of engagement with mandrel recesses 141 and flanges 142, respectively. Further, collet 360′ transitions from the second position to the first position as collet flanges 364, 365 and recesses 366 come into alignment with mandrel recesses 141 and flanges 142, respectively, and simultaneously move into positive engagement with mandrel recesses 141 and flanges 142, respectively, and out of engagement with trigger sleeve recesses 385 and flanges 386, respectively.
The jarring movement of jar 100 may be understood by referring to
As best shown in
When jar 100 or downhole component coupled to jar 100 (e.g., tool 30) becomes stuck downhole, the operator applies a lifting force to jar 100 from the surface in an attempt to dislodge the stuck component. As a result, jar 100 is placed in tension—upper end 100a and mandrel 110 are pulled upward (e.g., by wireline 20) relative to lower end 100b and housing 210, which are stuck or connected to a stuck downhole component. In general, the range of permissible magnitudes of tensile loads, and thus the imparted upward jarring force, is limited only by the structural limits of jar 100 and the seals therein and by the string or wireline (e.g., wireline 20) that is supporting jar 100. When jar 100 is placed in tension in the neutral position, mandrel 110 and both collets 360, 360′, which positively engaging mandrel 110, are urged axially upward relative to housing 210 and trigger sleeves 351, 381, which axially abut housing shoulders 242, 252, respectively.
The axial upward force applied to collet 360 by mandrel 110 is transferred to biasing member 341 by compression ring 350 and piston 345, and the axial force applied to collet 360′ by mandrel 110 is transferred to biasing member 371 by compression ring 375. However, biasing members 341, 371 are compressed and preloaded in the neutral position such that each exerts an axial downward force on mandrel 110—biasing member 341 exerts an axial downward force on mandrel 110 via piston 345, compression ring 350 and collet 360, and biasing member 371 exerts an axial downward force on mandrel 110 via compression ring 375 and collet 360′. Both collets 360, 360′ are secured to mandrel 110, and thus, mandrel 110 and collets 360, 360′ do not move in response to tension applied to jar 100 unless and until the tensile force applied to jar 100 exceeds the total preload provided by biasing members 341, 371 (i.e., the sum of the preloads provided by biasing members 341, 371). In other words, biasing members 341, 371 share the tensile loads applied to jar 100. As previously described, in this embodiment, the preload of biasing member 371 is greater than the preload of biasing member 341. However, in other embodiments, the preload of the actuation assembly biasing member (e.g., biasing member 341) may be greater than the preload of the lock assembly biasing member (e.g., biasing member 381).
When the tension applied to jar 100 is sufficient to overcome the total preload of both biasing members 341, 371, mandrel 110 and collets 360, 360′ secured thereto will begin to slowly move axially upward relative to housing 210 and trigger sleeves 351, 381. As biasing members 341, 371 are axially compressed, each generates an increasing spring force that resists continued axial upward movement of collets 360, 360′ and mandrel 110. In addition, working fluid pressure in chamber upper portion 161a resist the axial upward movement of collets 360, 360′ and mandrel 110 as piston 345 moves axially upward in chamber 161. That is, upward axial movement of piston 345 relative to the housing 210 reduces the volume of chamber upper portion 161a causing a significant increase in the working fluid pressure within portion 161a, thereby generating an axial hydraulic force that resist this relative movement. The hydraulic resistance to movement of piston 345 relative to housing 210 and the mechanical resistance to movement of piston 345 and compression ring 375 by biasing members 341, 371, respectively, allows a large buildup of potential energy in the working string when a tensile load is placed on jar 100 from the surface. With regard to the hydraulic resistance, it should be appreciated that over time, flow restrictor 348a allows working fluid to flow through piston 345 from chamber upper portion 161a to chamber lower portion 161b, thereby slowly relieving the pressure in chamber upper portion 161a and allowing piston 345 to move slowly upward within chamber 161 relative to housing 210.
If the tension applied to jar 100 is maintained at a level sufficient to overcome both biasing members 341, 371 (i.e., the preloads of both biasing members 341, 371 as well as the added spring forces from the additional compression of both biasing members 341, 371), mandrel 110 and collets 360, 360′ secured thereto will continue to move axially upward relative to housing 210 and trigger sleeves 351, 381. Collets 360, 360′ and trigger sleeves 351, 381, respectively, are sized and positioned such that flanges 364, 365 and recesses 366 of collet 360′ come into alignment with mating recesses 385 and flanges 386, respectively, of trigger sleeve 381 before flanges 364, 365 and recesses 366 of collet 360 come into alignment with mating recesses 352 and flanges 353, respectively, of trigger sleeve 351 as collets 360, 360′ and mandrel 110 move axially upward relative to housing 210 and trigger sleeves 351, 381.
As best shown in
Once collet 360′ of lock assembly 370 moves out of engagement with mandrel 110, the tensile load applied to jar 100 is substantially or entirely carried by actuation assembly 340. If that applied tensile load is sufficient to overcome biasing member 341 (i.e., the tensile load is greater than the sum of the preload of biasing member 341 as well as the added spring force from the additional compression of biasing members 341), mandrel 110 and collet 360 secured thereto will continue to be urged axially upward. As previously described, compression of the hydraulic fluid in chamber upper portion 161a by piston 345 hydraulically resists movement of piston 345, collet 360, and mandrel 110 relative to housing 210. However, over a period of time referred to as the “hydraulic delay” of firing section 101, flow restrictor 348a allows working fluid to flow through piston 345 from chamber upper portion 161a to chamber lower portion 161b, and thereby allows piston 345 to creep slowly upward within chamber 161 relative to housing 210. In this manner, piston 345 and flow restrictor 348a enable a significant overpull to be applied to mandrel 110 followed by a gradual bleed off of fluid pressure through the piston 345 and eventual triggering of the jar 100. In general, the hydraulic delay may be controllably adjusted by varying the relative axial positions of trigger sleeve 351 and collet 360 in the neutral position (i.e., the short the axial distance collet 360 must move to align flanges 364, 365 and recesses 366 with mating recesses 352 and flanges 353 of trigger sleeve 351, the shorter the hydraulic delay of firing section 101).
With sufficient tension applied to jar 100, piston 345, mandrel 110, and collet 360 moves axially upward relative to housing 210 and trigger sleeve 351. As best shown in
If tension on mandrel 110 is released subsequent to firing jar 100, recocking biasing member 332 urges mandrel 110 axially downward to the position shown in
Collet 360 of actuation assembly 340 provides for relatively short firing or metering stroke. The metering stroke is defined approximately by the distance between primary flanges 364 and the lowermost secondary flanges 365. This relatively short metering stroke minimizes bleed off or lost potential energy and minimizes the amount of working fluid that must pass through piston 345, thereby reducing heat buildup on the fluid.
As previously described, each collet 360, 360′ is provided with a plurality of principal outwardly projecting flanges 364 that are axially wider than recesses 352, 385 in sleeves 351, 381, respectively. This deliberate mismatch in dimensions is designed to prevent one or more of secondary outwardly projecting collet flanges 365 from prematurely engaging and locking into one of lower recesses 352, 385. Such a premature engagement between the outwardly projecting secondary flanges 365 and recesses 352, 385 might prevent the additional axial movement of the mandrel 110 or result in a premature release of mandrel 110 and thus insufficient application of upward jarring force.
In general, the components of embodiments of jars described herein (e.g., jar 100) may be made from any suitable material(s) including, without limitation, metals and metal alloys (e.g., steel, aluminum, etc.), non-metals (e.g., polymers, ceramics, etc.), composites, or combinations thereof. For harsh downhole conditions, the components are preferably made from rigid, durable materials such as mild and alloy steels, stainless steels or the like. Wear surfaces, such as the exterior of the mandrel (e.g., mandrel 110), may be carbonized to provided a harder surface.
In the manner described, embodiments of jar 100 described herein allow the triggering load of jar firing section 101 to be exceeded for a period of time before triggering jar 100 to fire. Specifically, both biasing members 341, 371 provide preload and axial forces resisting upward movement of mandrel 110 and collets 360, 360′ when jar 100 is placed in tension. If the applied tension is sufficient to overcome both biasing members 341, 371, and is maintained for a sufficient period of time, collet 360′ of lock assembly 370 will disengage mandrel 110, and only then does firing section 101 begin its firing cycle. Even if collet 360′ disengages mandrel 110 and the applied tension is maintained at a level sufficient to overcome biasing member 341, the hydraulic delay required for piston 345 to move through chamber 161 provides the operate added time to decide whether to reduce line tension and avoid jarring, or allow jarring to proceed.
While preferred embodiments have been shown and described, modifications thereof can be made by one skilled in the art without departing from the scope or teachings herein. The embodiments described herein are exemplary only and are not limiting. Many variations and modifications of the systems, apparatus, and processes described herein are possible and are within the scope of the invention. For example, the relative dimensions of various parts, the materials from which the various parts are made, and other parameters can be varied. Accordingly, the scope of protection is not limited to the embodiments described herein, but is only limited by the claims that follow, the scope of which shall include all equivalents of the subject matter of the claims.
This application is a 35 U.S.C. §371 national stage application of PCT/US2010/062499 filed Dec. 30, 2010, which is hereby incorporated herein by reference in its entirety for all purposes.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US10/62499 | 12/30/2010 | WO | 00 | 6/28/2013 |