The present application relates to surgical devices and systems and, more particularly, to devices and methods for tissue dissection, e.g., conducted in laparoscopic surgery, which may involve blunt tissue dissection performed via a focused fluid jet instead of the mechanical tissue disruption typically performed by laparoscopic dissectors and graspers. For example, the devices and systems herein may include a laparoscopic instrument that includes modes of mechanical tissue dissection, hydro dissection, suction, and irrigation provided in a single instrument.
In laparoscopic, thoracic, gynecological, urological, and minimally invasive surgery, such as robotic surgical procedures, isolation of anatomic structures, such as blood vessels and ducts, are performed via blunt dissection maneuvers involving spreading and tearing of soft tissue adjacent to the vessels and ducts. If the organ involved in the surgery is ischemic or necrotic, the organ and surrounding soft tissue becomes swollen and edematous, making it impossible to discern the outlines and locations of underlying ducts and vessels. Surgical maneuvers with existing laparoscopic graspers and dissectors carry significant potential of disrupting unrecognized organs, ducts, and vessels, which may lead to spillage of toxic infective contents into the abdominal cavity and hemorrhage.
Blunt dissection of soft tissue during laparoscopic surgery may be hazardous when the tissue is swollen and edematous, and the outline of blood vessels and ducts coursing through the soft tissue is not visible via endoscopic observation. In gangrenous cholecystitis, the gallbladder is distended to such a degree that it becomes ischemic, with compromise to its blood supply. Necrosis of the organ occurs, and the resultant inflammation and tissue swelling in the area of the gallbladder obscures the location of the cystic duct and the cystic artery. These structures must be surgically isolated, ligated or clipped, and transected for gallbladder removal. Mechanical dissection of the gangrenous gallbladder with traditional laparoscopic instruments, such as Maryland dissectors, may easily cause transection or laceration of non-visualized common bile duct, portal vein, colon, other intestines, cystic duct, and cystic artery, causing spillage of infected bile in the abdominal cavity and hemorrhage.
Other endoscopic procedures requiring execution of difficult and hazardous surgical blunt dissection include intra-abdominal endometriosis lesion resection, adhesiolysis or lysis of adhesions, and video assisted thoracic surgery or VATS, generally involving lung resection procedures and drainage of empyema.
Previous laparoscopic forceps exist that supply fluid irrigation and suction to the jaws of the instruments. One such instrument, described by Fischer in U.S. Pat. No. 9,308,014, teaches the use of a fluid jet at or in a stationary jaw of a forceps to dissect tissue.
Therefore, improved devices and methods for performing dissection of tissue within a patient's body would be useful.
The present application relates generally to surgical devices and systems, and, more particularly, to devices for tissue dissection, e.g., conducted in laparoscopic and/or robotic surgery, and to systems and methods for using such devices. The devices may include surgical instruments, e.g., a laparoscopic grasper, forceps, scissors, clip applier, vessel sealer, the like, that provide multiple modes of operation, e.g., hydro dissection, suction, and/or irrigation in addition to other optional mechanical functionalities, e.g., including end effectors for mechanical tissue dissection, cutting, and the like, provided in a single instrument. The devices may be provided in systems that include other components for operating the devices, e.g., sources or fluid and/or vacuum, electrical power sources, and the like. The devices may also be included in robotic surgical systems that may be operated remotely.
Optionally, the devices and systems may include one or more additional components or functionalities. For example, the devices may include one or more sensors on or adjacent their end effectors, e.g., Doppler or other sensors for identifying blood flow in contacted tissue, microfluidics sensors for identifying tissue characteristics and the like, one or more electrodes or other cautery elements, vessel sealing elements, and/or one or more imaging Clements. One or more processors or controllers may be coupled to these elements, e.g., to analyze signals from sensors, generate images on a display, and the like. If one or more imaging elements are provided on the devices, a display may be provided, e.g., mounted on a proximal end of the devices or remotely from the devices, which may allow visual monitoring of a surgical field during use of the devices.
In accordance with one example, an instrument, e.g., a laparoscopic grasper or forceps, is provided that includes double action jaws that include rigid nozzles on lateral aspects of each jaw. Fluid-carrying channels extend along lateral aspects of the instrument shaft, and a length of flexible hose connects the distal end of each channel to a proximal end of a respective jaw nozzle channel. The short flexible hose sections may adopt a substantially straightened position when the jaws are closed, such that their outer profile does not exceed the outer profile of the instrument shaft, allowing the instrument to be inserted through a trocar, e.g., a five millimeter (5 mm) laparoscopic trocar.
In another example, a laparoscopic forceps is provided that includes multiple modes of operation, e.g., including two or more of mechanical tissue dissection, hydro dissection, suction and irrigation, cautery, vessel sealing, and microfluidics provided in a single instrument. Alternatively, other surgical instruments may be provided that include these modes of operation, e.g., a bowel grasper, clip applier, scissors, vessel sealer, and the like. Tissue manipulation and blunt tissue dissection may be conducted with jaws of the forceps extended distal to a tip of a coaxial sheath. Tissue hydro dissection may also be performed in this configuration, with the forceps grasping tissue to provide counter-traction while a high velocity fluid jet performs atraumatic surgical dissection without the mechanical tissue disruption typically performed by conventional laparoscopic dissectors and graspers. Hydro dissection may safely isolate and/or dissect ducts, blood vessels and other anatomic structures during surgical procedures in gangrenous or edematous tissue and organs. The forceps may be retracted fully into the sheath, e.g., to perform suctioning and/or to perform pure hydro dissection without applying tissue counter-traction. Suction may clear hydro dissection fluid and/or blood from the surgical field, and fluid irrigation may clear the suction cannula of clogging due to tissue debris and blood clots. Optionally, the instrument may include a self-contained battery-operated fluid pump and a port that allows device connection to a vacuum cannister in the operating room.
In yet another example, a hydro dissection and suction laparoscopic forceps device is provided that includes two movable jaws connected to distal end of a long rigid, e.g., five millimeter (5 mm) outer diameter, shaft, with the jaws configured to be opened and closed by an actuator on a handle on a proximal end of the shaft, e.g., including an elongated stationary ring that accommodates multiple fingers and a movable thumb ring that actuates the jaws. Tubular channels may be provided on lateral aspects of the shaft and jaws, e.g., including a pair of shaft channels extending between the proximal and distal ends of the shaft and a relatively short, e.g., three millimeter (3 mm) long, tubular jaw channel on each of the jaws, which are circumferentially exposed to allow attachment of two flexible tubes connecting cach shaft channel to a corresponding jaw channel in a fluid tight fashion. The flexible tubes may allow the closed jaw instrument to maintain a desired maximum outer diameter or other profile, e.g., a five millimeter (5 mm) outer diameter throughout the length of the device, e.g., for insertion through a corresponding, e.g., five millimeter (5 mm), inner diameter trocar or sheath.
Once the jaws are disposed inside an abdominal cavity of a patient, the jaws may be opened and closed while the flexible tubes allow fluid delivery lateral to the jaws for atraumatic hydro-dissection of tissue lateral to anatomic structures grasped by the jaws, e.g., as counter traction is applied to the tissue stabilized by the forceps. Such a method of lateral tissue hydro-dissection while applying centralized tissue counter traction may be less traumatic to tissue than conventional blunt dissection with conventional laparoscopic forceps, as the such conventional forceps typically involve tissue puncture and tissue tearing as components of mechanical blunt dissection. In contrast, hydro-dissection, as enabled by the devices and methods herein, uses gentle fluid jet streams to separate tissue and isolate anatomic structures, eliminating the sharp force tissue interaction associated with mechanical blunt dissection.
In some laparoscopic procedures, it may be desirable to perform surgery with forceps containing double action jaws rather than a single action jaw and a stationary jaw. Double action jaws may permit a wider grasp of tissue to prevent slippage during tissue manipulation. Double action jaws may also enable the jaws to remain in axial orientation with the shaft of the instrument, with the jaws opening symmetrically on either side of the shaft. Application of the laparoscopic forceps with double action jaws may be more intuitive, facilitating efficient surgical technique and saving operative time. In contrast, with a single action forceps, the instrument shaft needs to be displaced to the side of the stationary jaw to accurately grasp tissue as intended. Thus, double action jaws on the device may be particularly useful, although, alternatively, single action jaws may also be provided, if desired.
In one example, the hydro-dissection laparoscopic forceps devices provided herein may incorporate a self-contained fluid pump and/or a battery or other power source to power the pump, e.g., within or on the handle device. Saline may be supplied to the pump via an intravenous line, e.g., attached to a hanging intravenous fluid bag. Optionally, a separate hose supplying wall suction in the operating room is also connected to the device handle.
In one example, the device may include two normally-closed valves coupled to respective actuators, e.g., which reside in series in the intravenous line attached to both tubular channels on the proximal end of the shaft. For example, a first trumpet valve may control both the electrical supply to the fluid pump and the fluid flow lateral to the forceps jaws, and a second trumpet valve may activate vacuum to clear fluid injected during hydro dissection.
Optionally, the laparoscopic hydro dissection forceps and/or other devices described herein, e.g., including fluid pump and battery, may be a single-use device that is disposed following the surgical procedure, to avoid the need for device cleaning, re-sterilization, and storage between successive procedures. Alternatively, all or some components of the device may be reusable, e.g., after cleaning and/or sterilization.
In one example, the fluid carrying tubular channels located on the grasper jaws may have a smaller inner diameter than the tubular channels located on the lateral aspects of the instrument shaft. This allows the velocity of the fluid jet emanating from the grasper jaw channels to be tuned to a desired level, e.g., based on pressure and/or flow rate specifications generated by the fluid pump.
Pathologic conditions may exist that cause anatomic landmarks to be obscured during endoscopic surgery, rendering tissue dissection difficult and hazardous. For example, in laparoscopic cholecystectomy or removal of the gallbladder, surgical dissection must be performed to isolate the cystic artery and cystic duct to allow for their ligation and transection prior to gallbladder removal. Acute cholecystitis is inflammation of the gallbladder caused by occlusion of the cystic duct by gallstones. The gallbladder becomes distended, and the pressure inside the organ may increase to such a level that it compromises the blood supply and causes ischemia, leading to gangrenous cholecystitis, which occurs in over 20% of acute cholecystitis cases. The severe inflammation observed in gangrenous cholecystitis causes such a degree of swelling and edema in the gallbladder and surrounding tissues that the outlines of anatomic structures, such as the cystic duct and cystic artery are invisible under laparoscopic visualization, and normally observed outlines and landmarks are obscured.
Blunt tissue dissection using conventional laparoscopic forceps requires insertion of the closed tips of the forceps jaws into tissue without perceptible landmarks, followed by opening of the jaws to spread apart the tissue. The tissue disruption associated with this blunt dissection maneuver may easily lacerate or transect unseen vessels and ducts. In contrast, hydro-dissection is a less traumatic approach to isolation of anatomic structures embedded in edematous tissue. Surgical dissection of inflamed tissue also prolongs procedure times, increasing the physical stress of surgery and general anesthesia to the patient, thus increasing the patient morbidity and mortality.
A modified technique of tissue dissection is proposed herein, involving tissue dissection performed solely by simultaneous hydro-dissection lateral to both sides of double action movable laparoscopic grasper jaws. The jaws of the devices described herein may not be applied in a typical fashion for mechanical tissue disruption and blunt dissection. Rather, the jaws may gently grasp and fixate exposed tissue prior to instillation of pressurized fluid jets lateral to the grasping jaws to perform hydro dissection of the soft tissue to achieve isolation of the desired anatomic structures.
The hydro dissection devices and methods herein may also be used in additional endoscopic procedures, e.g., to isolate delicate anatomic structures obscured by overlying amorphous tissue, such as resection of intra-abdominal endometriosis lesions, lysis of tissue and organ adhesions, and video assisted thoracic surgical procedures such as lung resection and lobectomy. In these procedures, dissection of connective tissue surrounding delicate organs, blood vessels and ducts may be performed less traumatically via hydro dissection versus standard mechanical blunt surgical dissection.
In accordance with one example, a device is provide for performing hydro-dissection of tissue within a patient's body that includes an elongate shaft comprising a proximal end, a distal end sized for introduction into the patient's body, and one or more shaft channels extending between the proximal and distal ends; first and second jaws on the distal end coupled to an actuator on the proximal end for moving the jaws between closed and opened positions, each jaw comprising a jaw channel comprising an outlet disposed adjacent a distal tip of the respective jaw; and a flexible tube extending between each jaw and the distal end of the shaft to fluidly couple the outlet of the respective jaw to the one or more shaft channels to deliver pressurized fluid from a fluid source through the one or more shaft channels, the flexible tubes, the jaw channels, and out the outlets to dissect tissue adjacent grasped between the jaws.
In accordance with another example, a device is provided for performing hydro-dissection of tissue within a patient's body that includes an elongate shaft comprising a proximal end, a distal end sized for introduction into the patient's body, and first and second shaft channels extending between the proximal and distal ends; first and second jaws on the distal end, each jaw comprising an outlet disposed adjacent a distal tip of the respective jaw; an actuator on the proximal end coupled to the jaws to manipulate the jaws between closed and opened positions; first and second flexible tubes extending between the jaws and the distal end of the shaft communicating between the outlet of the respective jaws and the first and second shaft channels, respectively; and a source of pressurized fluid coupled to the first and second shaft channels to deliver pressurized fluid through the shaft channels, the flexible tubes, the jaw channels, and out the outlets to dissect tissue adjacent grasped between the jaws.
In accordance with still another example, a method is provided for dissecting tissue within a patient's body that includes providing a dissection device comprising a distal end carrying a pair of jaws, each jaw comprising a nozzle adjacent a distal tip of the jaw; introducing the distal end into the patient's body with the jaws in a closed position; opening the jaws; manipulating the device and jaws to grasp tissue between the jaws; and delivering pressurized fluid out the nozzles to dissect tissue adjacent the jaws.
In accordance with another example, a combination hydro-dissection, irrigation, and suction laparoscopic forceps may be provided that includes a shaft, e.g., having about a three millimeter (3.0 mm) or smaller outer diameter, that resides and translates axially within a lumen of an outer sheath, e.g., a thin-walled sheath having an outer diameter of about five millimeters. The outer sheath may include a relatively large primary or central lumen and a relatively small (e.g., about 0.0325 inch (0.81 mm) inner diameter) fluid channel, e.g., incorporated in the wall the full length of the sheath, which may generate a high velocity hydro dissection jet emanating from a distal tip of the sheath. The central lumen of the sheath may be configured to supply either vacuum suction or low velocity fluid irrigation when connected to an appropriate source, as desired.
Optionally, a control valve integrated with an electrical switch may be provided that initiates fluid delivery by an attached fluid pump, with the capability to select either a high velocity jet emanating from the small diameter hydro dissection nozzle, or a low velocity fluid irrigation through the lumen of the outer sheath. Optionally, the control valve may include multiple settings, e.g., to allow different flow rates and/or volumes of fluid to be delivered, e.g., using a potentiometer and/or other control mechanism. A separate control valve produces suction through the outer sheath. In one example, an elastomeric seal maybe provided at a proximal end of the outer sheath, which may form a fluid-tight seal around the shaft of forceps while allowing the forceps to translate axially to expose the forceps jaws out of the distal end of the sheath or retract the jaws fully into the sheath.
The sheath may be constructed of a substantially rigid material, e.g., a thin-walled stainless steel tube of about 0.007 inch (0.18 mm) wall thickness, with about a 0.042 inch (1.05 mm) OD×0.0325 inch (0.81 mm) ID stainless steel tube welded or otherwise permanently axially along its inner surface to provide the fluid channel for the hydro dissection nozzle. Alternatively, the sheath may be a double lumen polymer extrusion with a small diameter, e.g., 0.0325 inch (0.81 mm), lumen incorporated in the wall of the extrusion. Exemplary materials for the extrusion may include one or more of Nylon, polyimide, polyetheretherketone (PEEK), and the like. A fluid pump and power source that powers the pump, e.g., a nine-volt battery or cable connectable to an external power source, may be attached to the body of the forceps. Alternatively, the outer sheath, fluid pump, battery, and control valves may be incorporated into a frame that accepts and rigidly attaches to a conventional laparoscopic forceps.
In tests of a hydro dissection jet with fluid delivery supplied by a twelve-volt, 400 mA diaphragm pump powered by a nine-volt battery, the water jet exhibited a velocity of 28 m/sec. This fluid velocity is sufficient to dissect connective tissue without severing or lacerating blood vessels and ducts.
In robotic surgery, the limitation of a surgeon not working next to the patient creates major issues during instrument exchange. Instruments are introduced from a dependent area and may cause organs blocking the inner opening of the port. During exchanges, there are risks that the assistant surgeon can perforate an organ as the instruments always return to their initial position during removal of the previous instrument. Any of the devices and systems herein including a camera, microfluidics, and/or other sensors may warn the introducer of organ blocking the port and potential injury.
In accordance with another example, tissue manipulation and blunt tissue dissection are conducted with the jaws of the laparoscopic forceps exposed distal to the tip of a retracted coaxial outer sheath. With the instrument in this configuration, the shaft of the laparoscopic dissector forceps occupies the central lumen of the bushing located at the distal tip of the outer sheath of the device, forcing all fluid flow to exit a small diameter nozzle in the bushing to create a high velocity fluid jet. Tissue hydro dissection is performed in this configuration, with the forceps grasping tissue to provide counter-traction while the high velocity fluid jet performs atraumatic surgical dissection without the mechanical tissue disruption typically performed by laparoscopic dissectors and graspers. Hydro dissection safely isolates and dissects ducts, blood vessels and other anatomic structures during surgical procedures in gangrenous or edematous tissue and organs.
The outer sheath of the instrument may be extended to cover the jaws of the laparoscopic dissection forceps. As the cross-sectional area of the tapered forceps jaws is less than the cross-sectional area of the forceps shaft, an enlarged fluid path is formed at the tip of the outer sheath to enable suctioning, or to provide low velocity fluid irrigation. Suction clears hydro dissection fluid and blood from the surgical field, and fluid irrigation clears the suction cannula of clogging due to tissue debris and blood clots.
In one example, the instrument has a self-contained battery-operated fluid pump and a port that allows device connection to a vacuum cannister in the operating room.
In accordance with a particular example, a hydro dissection, irrigation, and suction laparoscopic forceps is provided that includes a three millimeter (3 mm) outer diameter or smaller laparoscopic forceps that resides inside a thin walled five millimeter (5 mm) outer sheath. The outer sheath extends nearly the full length of the shaft of the forceps, and is configured to translate axially along the forceps shaft to either fully expose or fully enclose the forceps jaws. Axial translation of the outer sheath is performed via an actuator located on the proximal handle of the device.
A bushing is attached to the distal tip of the outer sheath. In one example, the bushing is approximately twelve millimeters (12 mm) long, and includes a lumen approximately four millimeters (4 mm) in inner diameter therethrough. A one millimeter (1 mm) thick end cap on the bushing includes a central lumen with an inner diameter that is a sliding fit with the outer diameter of the laparoscopic forceps, and a tiny offset lumen approximately 0.3 millimeter in diameter.
When the outer sheath is fully retracted, the central lumen of the end cap on the bushing seals against the outer surface of the dissector forceps shaft, and all fluid flow exits the 0.3 mm diameter lumen, forming a high velocity fluid jet. When the outer sheath is fully extended to enclose the forceps jaws, injected fluid flows through a low resistance path, with ample clearance between the dissector forceps shaft and the inner surface of the outer sheath, and between the outer surface of the forceps jaws and the central lumen of the bushing end cap, to produce low velocity fluid irrigation, or to allow vacuum suction to occur.
In one example, fluid flow is provided via a battery powered fluid pump integrated into the device handle, with a fluid line connecting the pump to the fluid supply consisting of an elevated intravenous saline bag. A separate connector in the handle attaches to a vacuum line that utilizes a standard operating room vacuum source. A specialized spring-loaded three-way control valve is included on the device handle, which may be actuated between two positions, to provide either fluid flow or vacuum to the lumen of the outer sheath. In its normal resting position, the valve permits fluid flow to occur. When the suction control button is pressed, the valve shuttles to its second position, cutting off fluid flow while opening the vacuum line.
In one example, fluid flow is provided by a battery powered electric pump activated by depression of an electrical button switch in the device handle. Two nine-volt batteries supply power to the pump via an electronic control board that maintains a constant voltage delivery to ensure that a constant fluid jet velocity is achieved for reliable tissue hydro dissection. A rotational switch that controls a potentiometer may also be provided on the instrument handle to allow the surgeon to adjust the velocity of the hydro dissection jet.
Other aspects and features of the present invention will become apparent from consideration of the following description taken in conjunction with the accompanying drawings.
The invention is best understood from the following detailed description when read in conjunction with the accompanying drawings. It is emphasized that, according to common practice, the various features and design elements of the drawings are not to-scale. On the contrary, the dimensions of the various features and design elements are arbitrarily expanded or reduced for clarity. Included in the drawings are the following figures.
Before the examples are described, it is to be understood that the invention is not limited to particular examples described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular examples only, and is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims.
Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limits of that range is also specifically disclosed. Each smaller range between any stated value or intervening value in a stated range and any other stated or intervening value in that stated range is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included or excluded in the range, and each range where either, neither or both limits are included in the smaller ranges is also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, some potential and exemplary methods and materials are now described.
It must be noted that as used herein and in the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a compound” includes a plurality of such compounds and reference to “the polymer” includes reference to one or more polymers and equivalents thereof known to those skilled in the art, and so forth.
Certain ranges are presented herein with numerical values being preceded by the term “about.” The term “about” is used herein to provide literal support for the exact number that it precedes, as well as a number that is near to or approximately the number that the term precedes. In determining whether a number is near to or approximately a specifically recited number, the near or approximating unrecited number may be a number which, in the context in which it is presented, provides the substantial equivalent of the specifically recited number.
Turning to the drawings,
Turning to
The device 20 includes a pair of jaws 26 on the distal end 28b of the shaft 28, e.g., that may be manipulated between a closed position (e.g., as shown in
Optionally, the jaws 26 may include substantially blunt surfaces to prevent puncturing, cutting, and/or otherwise damaging tissue. For example, as shown, the inner contact surfaces 26a and/or the distal tips 26b of the jaws 26 may include flat and/or rounded edges to allow tissue to be grasped between the jaws 26 with minimal risk of tearing or cutting. Alternatively, a different end effector may be provided than the blunt jaws 26. For example, the jaws may include sharpened inner edges and/or pointed tips, e.g., to provide a scissors or other cutting instrument (not shown). In another alternative, a stapler or clip applier may be provided for the end effector, e.g., including one or more staples or clips carried by one of the jaws and an anvil or other structure on the opposite jaw (not shown) to allow one or more staplers or clips to be applied through tissue contacted between the jaws.
As best seen in
In one example, when the jaws 26 are closed, the outer profile of the working portion of the device 20, including the jaws 26, fluid supply channels 29 and 27, and flexible tubes 30 do not exceed about five millimeters (5 mm) or other maximum outer diameter or cross-section, e.g., to allow the device 20 to be introduced into the body through a corresponding sized access device, e.g., a five millimeter (5 mm) laparoscopic or thoracoscopic trocar, delivery sheath, and the like (not shown).
Optionally, the graspers 20 may be connected to a radiofrequency power source (not shown), e.g., via a connector 42 on the proximal end 28a, e.g., on handle 41 as shown in
Pressurized fluid for hydro-dissection is supplied by a miniature fluid pump 36 included in or coupled to the handle 41, e.g., integrated into the superior aspect of the stationary portion of the handle 41. The fluid pump 36 may include a connector, e.g., a female luer fitting 37, that accepts an intravenous fluid line connected to a saline bag or other source of fluid (not shown), e.g., containing one to three (1-3) liters or other desired volume of sterile saline. In one example, a fluid supply line 35 extends from the pump 36 to a normally closed fluid irrigation trumpet valve 32 provided on the handle 41.
Optionally, a connector 39 may be provided to connect a source of vacuum or suction (not shown) to the device 20, e.g., communicating with the shaft channels 27. For example, as shown in
In one example, the outlets of both irrigation trumpet valve 32 and suction trumpet valve 33 are connected together to a common fitting 34 with a connecting line 39 extending to a connector 31 that is attached to both fluid supply tubes 27. Thus, in this example, depression of the irrigation trumpet valve 32 causes fluid dissection jets to emanate from both fluid supply tubes 27, while depression of the suction trumpet valve 33 causes suction of fluid via the shaft and jaw channels 27, 29. If the jaw and/or shaft channels 29, 27 become clogged during actuation in the suction mode, the irrigation mode may be activated to clear debris lodged in channels 29, 27.
An actuator may be coupled to the jaws 26 to manipulate the jaws between the open and closed positions. For example, as shown, the jaws 26 are opened and closed via advancement and retraction using an elongate member, e.g., a stainless steel rod 44 that extends through the length of shaft 28 and connects to jaw actuation linkage 45.
Turning to
For example, as shown, a conventional three millimeter (3 mm) or smaller laparoscopic forceps 114 may be provided that is inserted through a primary or central lumen 115a of the outer sheath 115 (e.g., shown in
The sheath 115 may include one or more ports communicating with the central lumen 115a, e.g., to allow fluid and/or suction to be applied. For example, as shown, a side port 117 is provided on the valve 116, which may be coupled to a source of fluid or vacuum to allow injection or removal of fluid in the surgical field via the sheath 115, i.e., through the distal opening of the primary lumen 115a at the tip 115b.
In addition, the sheath 115 may include one or more additional or secondary lumens or channels extending between the proximal and distal ends 115c, 115b. For example, as shown, a relatively small, e.g., about 0.0325 inch (0.81 mm) inner diameter, hydro dissection fluid channel 18 may be attached to the sheath 115, e.g., extending along an inner surface of the sheath 115 adjacent the central lumen 115a, as shown in
In the example shown, the fluid flow may be driven by a battery powered diaphragm pump or other fluid source 121 mounted or otherwise provided on the apparatus 120, e.g., rigidly attached to a superior aspect of a handle of the forceps 114. Alternatively, an external pump or other fluid source (not shown) may be provided that may be connected to the apparatus 120. A luer fitting or other connector 121a may be provided on the pump 121 that may be connected to a source of fluid, e.g., a line from an intravenous saline bag (not shown). Pressurized fluid may exit the pump 121 via pump supply line 126, which connects to a fluid control valve 125. In one example, the fluid control valve 125 may be a trumpet valve that includes an electrical switch 124, e.g., leading from a nine-volt battery or other power source 122 to the pump 20, e.g., as best seen in
In the exemplary schematic shown in
Turning to
The sheath 215 may be movable axially relative to the frame 236, e.g., to extend and retract with respect to frame 236 using a pin or other actuator 243, e.g., attached to the valve body 216 of the sheath 215, that translates within a slot 242 in the frame 236, as shown in
Thus, during use, tissue may be grasped by the jaws 219, and a hydro-dissection fluid jet may be generated to dissect tissue. If desired, the jaws 219 may be retracted into the sheath 215 and a hydro-dissection fluid jet may be delivered without traction and/or irrigation/suction may be generated. Optionally, the forceps 214 may be rotatable relative to the sheath 215, e.g., to adjust the orientation of the jaws 218 when extended to facilitate grasping tissue. Optionally, the forceps 214 may be removable entirely from the sheath 215 while the distal end 215b of the sheath 215 is positioned within a surgical space, e.g., to allow one or more different instruments to be introduced through the sheath 215 to perform additional steps of the surgical procedure.
Turning to
As best seen in
For example, as shown in
Optionally, if one or more electrodes or other cautery elements are provided on the jaws 319 (or elsewhere on the distal end of the forceps), the housing 316 may include a connector 323, e.g., an electrical connector, that may be connected to a corresponding connector on the robotic arm system 330 to allow activation of the cautery element(s) during use of the apparatus 320. For example, the robotic arm 330 may be coupled to a generator and/or controller (not shown) for providing electrical or other energy to the cautery element(s). Further optionally, if the sheath 315 and/or forceps 314 include other actuatable features, additional connectors may be provided on the housing 316 and robotic arm system 330. For example, if the forceps 314 includes microfluidic channels and/or sensors, connectors may be provided to allow the sensors to be activated during use.
In another option, as shown in
Unlike the previous apparatus, the surgeon may operate the apparatus 320 to manipulate the sheath 315 remotely as desired, e.g., to introduce the sheath 315 into a surgical space, e.g., through a trocar or other access port (not shown), whereupon the forceps 314 may be deployed and manipulated and/or fluid may be delivered into the surgical space to perform hydro-dissection, irrigation, and/or suction, as needed during the procedure. The robotic arm system 330 may be connected to one or more sources of fluid and/or vacuum, e.g., one or more pumps, one or more power sources, one or more processors and/or controllers, and the like (not shown), which may be activated using the control console 340, similar to conventional robotic surgical procedure systems.
Optionally, any of the devices and apparatus described herein may include one or more additional features. For example, if desired, one or more micro-fluidic channels may be provided on the instrument, e.g., extending to the distal end and/or jaws of the forceps, that may include one or more sensors coupled to a processor (not shown) of the apparatus. Signals from the sensor(s) may be analyzed by the processor, e.g., to identify tissues and/or analyze body fluids to identify the presence of one or more diseases or other conditions.
In addition or alternatively, the devices or apparatus may include a Doppler or other sensor, e.g., carried on one or both jaws of the forceps or other end effector, that may be coupled to a processor to identify blood flow in tissues captured between the jaws. Optionally, the devices or apparatus may include one or more electrodes or other cautery elements, vessel sealing elements, and the like, e.g., on one or both jaws or other location on the end effector, which may be coupled to an energy source (not shown), which may be selectively activated to cauterize tissues that are captured or severed by the forceps or other instrument. One or more actuators (also not shown) may be provided on the handle of the forceps or other location of the apparatus or system, which may be used to activate such sensors and/or cautery elements.
Optionally, any of the devices and systems herein may include one or more imaging elements, e.g., on the distal end of the sheath or instrument, e.g., a CCD, CMOS, or other camera and/or one or more LEDs or light sources (not shown), which may be used to image the end effector of the instrument deployed from the sheath and/or otherwise image a surgical field during a procedure. One or more processors may be coupled to the imaging elements for activating the elements, acquiring images or other signals, and/or for providing output signals to a display, which may be observed by the surgeon during use. For example, a display may be mounted on or otherwise carried on the proximal end of the device, e.g., on the handle 41 of the devices 20, 120 shown in
Turning to
The inner components of the device 410 may be observed in this opened view of the handle housing, i.e., with a cover of the handle removed. An electric fluid pump 418 provides a pressurized source of saline fluid. Electric power is supplied to the pump 418 via two nine-volt batteries 419 or other power source, with an electronic board 420 maintaining a constant voltage source. An externally accessible control 421 to a potentiometer may be provided to allow the surgeon to vary the voltage input to the pump 418, e.g., to increase or decrease the velocity of the fluid emitted by the device. Fluid input connector 422 accepts an intravenous line connected to a saline bag that is elevated, e.g., approximately one meter above the level of the patient on the operating table. The elevated saline bag provides an additional pressure head supply to the fluid pump 418 to increase the flow velocity of the fluid jet used for surgical hydro dissection. A separate suction connector 423 may be attached to a vacuum line that connects to a standard operating room vacuum source.
Delivery of either fluid flow or vacuum to outer sheath 412 is governed by a mechanical valve 424. Fluid control switch 425 is a spring loaded electrical On/Off switch that powers fluid pump 418. Suction control switch 426 is a mechanical switch that selects vacuum as the mode supplied to outer sheath 412.
In the resting position, the narrow valve stem portion 437 is aligned with fluid intake port 434 and valve outlet port 432, enabling fluid flow to occur through the control valve 424. In the normal resting position of valve 424, no tension is exerted on valve stem 435 by the attached inelastic cable 439. In one example, the valve stem 435 may be constructed of an inelastic polymer such as Nylon, polyethylene, or polytetrafluoroethylene (PTFE); or it may be constructed of a partially elastic polymer such as polyurethane.
While the invention is susceptible to various modifications, and alternative forms, specific examples thereof have been shown in the drawings and are herein described in detail. It should be understood, however, that the invention is not to be limited to the particular forms or methods disclosed, but to the contrary, the invention is to cover all modifications, equivalents and alternatives falling within the scope of the appended claims.
The present application claims benefit of co-pending U.S. provisional application Ser. No. 63/421,511, filed Nov. 1, 2022, and is a continuation-in-part of co-pending U.S. application Ser. No. 18/089,368, filed Dec. 27, 2022, which claims benefit of U.S. provisional application Ser. No. 63/312,770, filed Feb. 22, 2022, and 63/421,511, filed Nov. 1, 2022, the entire disclosures of which are expressly incorporated by reference herein the entire disclosure of which is expressly incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
63421511 | Nov 2022 | US | |
63312770 | Feb 2022 | US | |
63421511 | Nov 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 18089368 | Dec 2022 | US |
Child | 18378354 | US |