Hydro-generator plant

Information

  • Patent Grant
  • 6894416
  • Patent Number
    6,894,416
  • Date Filed
    Tuesday, May 27, 1997
    27 years ago
  • Date Issued
    Tuesday, May 17, 2005
    19 years ago
Abstract
The magnetic circuit of a generator in a hydro-generator plant is arranged to directly supply a high supply voltage of 20-800 kV, preferably higher than 36 kV. The generator is provided with solid insulation and its winding includes a cable (6) comprising one or more current-carrying conductors (31) with a number of strands (36) surrounded by at least one outer and one inner semiconducting layer (34, 32) and intermediate insulating layers (33). The outer semiconducting layer (34) is at earth potential. The stator winding may be produced with full or fractional slot winding, the phases of the winding being Y-connected. The Y-point may be insulated and protected from over-voltage by means of surge arresters, or else the Y-point may be earthed via a suppression filter. The invention also relates to a hydro-generator plant, a generator included in the plant and a procedure for building such a plant.
Description
TECHNICAL FIELD

The present invention relates to a hydro-generator plant of the type described in the preamble to the claim and which is intended for connection to distribution or transmission networks, hereinafter called power networks. The invention also relates to an electric generator for high voltage in a hydro-generator plant intended for the above-mentioned purpose. The invention further relates to a procedure for assembling such a plant and the manufacture of such a generator.


BACKGROUND ART

The magnetic circuits in electric generators usually comprise a laminated core, e.g. of sheet steel with a welded construction. To provide ventilation and cooling the core is often divided into stacks with radial and/or axial ventilation ducts. For larger machines the laminations are punched out in segments which are attached to the frame of the machine, the laminated core being held together by pressure fingers and pressure rings. The winding of the magnetic circuit is disposed in slots in the core, the slots generally having a cross section in the shape of a rectangle or trapezium.


In multi-phase electric generators the windings are made as either single or double layer windings. With single layer windings there is only one coil side per slot, whereas with double layer windings there are two coil sides per slot. By coil side is meant one or more conductors combined vertically or horizontally and provided with a common coil insulation, i.e. an insulation designed to withstand the rated voltage of the generator to earth.


Double-layer windings are generally made as diamond windings whereas single layer windings in the present context can be made as diamond or flat windings. Only one (possibly two) coil width exists in diamond windings whereas flat windings are made as concentric windings, i.e. with widely varying coil width. By coil width is meant the distance in arc dimension between two coil sides pertaining to the same coil.


Normally all large machines are made with double-layer winding and coils of the same size. Each coil is placed with one side in one layer and the other side in the other layer. This means that all coils cross each other in the coil end. If there are more than two layers these crossings complicate the winding work and the coil end is less satisfactory.


It is considered that coils for rotating generators can be manufactured with good results within a voltage range of 3-20 kV.


It is also generally known that connection of a synchronous machine to a power network must be via a Δ/Y-connected or step-up transformer, since the voltage of the power network is generally higher than the voltage it has hitherto been able to achieve with the electric machine. Thus this transformer and the synchronous machine constitute integrated parts of a plant. The transformer entails an extra cost and also has the drawback that the total efficiency of the system is reduced. If, therefore, it were possible to manufacture electric generators for considerably higher voltages, the step-up transformer could be eliminated.


Although the dominant known technology for supplying current from a generator to a high-voltage network, a concept which in the present application applies to the level of 20 kV and upwards, preferably higher than 36 kV, is for a transformer to be inserted between the generator and the power network, it is already known to attempt to eliminate the transformer and generate the high voltage directly out to the power network at its voltage level. Such generators are described, for instance, in U.S. Pat. Nos. 4,429,244, 4,164,672 and 3,743,867.


However, the machine designs according to the above publications do not permit optimal utilization of the electromagnetic material in the stator.


DESCRIPTION OF THE INVENTION

The object of the invention is thus to provide an electric generator which can be used in a hydro-generator plant for such high voltage that the above-mentioned Δ/Y-connected step-up transformer can be omitted, i.e. a plant in which the electric generators are intended for considerably high voltages than conventional machines of corresponding type, in order to be able to execute direct connection to power networks at all types of high voltage.


This object has been achieved according to the invention in that a plant of the type described in the preamble to claim 1 is given the special features defined in the characterizing part of this claim, in that a generator of the type described in the preamble to claim 34 is given the special features defined in the characterizing part of this claim, and in that a procedure of the type described in the preamble to claim 33 includes the special measures defined in the characterizing parts of respective claims.


Thanks to the solid insulation in combination with the other features defined, the network can be supplied without the use of an intermediate step-up transformer even at network voltages considerably in excess of 36 kV.


The fact that the solid insulation enables the windings to be arranged for direct connection to the high-voltage network, thus eliminating the step-up transformer, offers great advantages over known technology.


The elimination of the transformer per se entails great savings, for instance, and the absence of the transformer also results in several other simplifications and thus savings.


A plant of this type is often arranged in a rock chamber where, with conventional technology, the transformer is arranged either in direct connection with the generator in the rock chamber or above ground at a distance of several hundred meters and connected to the generator by a busbar system. Compared with the first alternative, elimination of the transformer enables the volume of the rock chamber to be greatly reduced. The fire risk entailed with an oil-insulated transformer is also eliminated therefore reducing the necessity for extensive fire-safety precautions such as special evacuation routes for personnel.


In the alternative in which the transformer is placed above ground the busbar system is more extended due to the longer distance between the generator and the transformer. Since the current in the busbars (normally with aluminium conductors) is considerable, in the order of 10-20 kA, the power losses are large. Moreover, busbar systems introduce a risk for 2- and 3-phase faults during which the currents are considerable.


With the present invention two major objectives are achieved:

    • The losses in the busrun are reduced due to the high voltage.
    • The risk for 2- and 3-phase failures is considerably reduced due to the use of insulated HV cables.


The reduction in the number of electrical components achieved with the invention therefore means that the corresponding safety equipment can be omitted.


Furthermore, the rock chamber need not be blasted to allow laying of the busbar system, which entails a saving in rock chamber space of several thousand cubic meters.


The plant according to the invention also enables several connections with different voltage levels to be arranged, i.e. the invention can be used for all auxiliary power in the power station.


In all, the advantages mentioned above entail radically improved total economy for the plant. The plant cost, typically in the order of some hundred million SEK, is reduced by 30-50%. Operating economy is improved both by less need for maintenance and by an increase in the degree of efficiency by 1-1.5%. For an operating time of 8000 h/year, an output level corresponding to 150 MVA, a kWh price of SEK 0.20 and a useful service life of 30 years the gain would be approximately SEK 75-100 million per generator.


In a particularly preferred embodiment of the plant and generator respectively, the solid insulation system comprises at least two layers, each layer constituting essentially an equipotential surface, and also intermediate solid insulation therebetween, at least one of the layers having substantially the same coefficient of thermal expansion as the solid insulation.


This embodiment constitutes an expedient embodiment of the solid insulation that in an optimal manner enables the windings to be directly connected to the high-voltage network and where harmonization of the coefficients of thermal expansion eliminates the risk of defects, cracks or the like upon thermal movement in the winding.


It should be evident that the windings and the insulating layers are flexible so that they can be bent.


It should also be pointed out that the plant according to the invention can be constructed using either horizontal or vertical generators, which may be of either underground or aboveground type.


The above and other preferred embodiments of the invention are defined in the dependent claims.


The major and essential difference between known technology and the embodiment according to the invention is thus that this is achieved with a magnetic circuit included in an electric generator which is arranged to be directly connected via only breakers and isolators to a high supply voltage in the vicinity of between 20 and 800 kV, preferably higher than 36 kV. The magnetic circuit thus comprises a laminated core having at least one winding consisting of a threaded cable with one or more permanently insulated conductors having a semiconducting layer both at the conductor and outside the insulation, the outer semiconducting layer being connected to earth potential.


To solve the problems arising with direct connection of electric machines to all types of high-voltage power networks, the generator in the plant according to the invention has a number of features as mentioned above, which differ distinctly from known technology. Additional features and further embodiments are defined in the dependent claims and are discussed in the following.


Such features mentioned above and other essential characteristics of the generator and thus of the hydro-generator plant according to the invention include the following:

    • The winding of the magnetic circuit is produced from a cable having one or more permanently insulated conductors with a semiconducting layer at both conductor and sheath. Some typical conductors of this type are PEX cable or a cable with EP rubber insulation which, however, for the present purpose are further developed both as regards the strands in the conductor and the nature of the outer sheath.
    • Cables with circular cross section are preferred, but cables with some other cross section may be used in order to obtain better packing density, for instance.
    • Such a cable allows the laminated core to be designed according to the invention in a new and optimal way as regards slots and teeth.
    • The winding is preferably manufactured with insulation in steps for best utilization of the laminated core.
    • The winding is preferably manufactured as a multi-layered, concentric cable winding, thus enabling the number of coil-end intersections to be reduced.
    • The slot design is suited to the cross section of the winding cable so that the slots are in the form of a number of cylindrical openings running axially and/or radially outside each other and having an open waist running between the layers of the stator winding.
    • The design of the slots is adjusted to the relevant cable cross section and to the stepped insulation of the winding. The stepped insulation allows the magnetic core to have substantially constant tooth width, irrespective of the radial extension.
    • The above-mentioned further development as regards the strands entails the winding conductors consisting of a number of impacted strata/layers, i.e. insulated strands that from the point of view of an electric machine, are not necessarily correctly transposed, uninsulated and/or insulated from each other.
    • The above-mentioned further development as regards the outer sheath entails that at suitable points along the length of the conductor, the outer sheath is cut off, each cut partial length being connected directly to earth potential.


The use of a cable of the type described above allows the entire length of the outer sheath of the winding, as well as other parts of the plant, to be kept at earth potential. An important advantage is that the electric field is close to zero within the coil-end region outside the outer semiconducting layer. With earth potential on the outer sheath the electric field need not be controlled. This means that no field concentrations will occur either in the core, in the coil-end regions or in the transition between them.


The mixture of insulated and/or uninsulated impacted strands, or transposed strands, results in low stray losses.


The cable for high voltage used in the magnetic circuit winding is constructed of an inner core/conductor with a plurality of strands, at least two semiconducting layers, the innermost being surrounded by an insulating layer, which is in turn surrounded by an outer semiconducting layer having an outer diameter in the order of 20-200 mm and a conductor area in the order of 40-3000 mm2.


The solid insulation in a generator according to the invention also offers great advantages when constructing a hydro-generator plant. The absence of wet insulation means that the stator of the generator need not be completed at the factory but can instead be delivered in parts and assembled on site. A stator of the size under consideration here is large and heavy which has entailed transport problems with conventional designs where the roads must be reinforced and dimensioned for the vast weight. This problem is eliminated since the stator for a generator can be delivered in parts.


The invention thus also relates to the procedures as defined in claims 30 and 33, where this possibility is exploited when building a hydro-generator plant and manufacturing a generator, respectively.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be described in more detail in the following detailed description of a preferred embodiment of constructing the magnetic circuit of the electric generator in the hydro-generator plant, with reference to the accompanying drawings in which



FIG. 1 shows a schematic axial end view of a sector of the stator in an electric generator in the hydro-generator plant according to the invention,



FIG. 2 shows an end view, partially stripped, of a cable used in the winding of the stator according to FIG. 1,



FIG. 3 shows a simplified view, partially in section, of a hydro-generator arrangement according to the invention,



FIG. 4 shows a circuit diagram for the hydro-generator plant according to the invention,



FIG. 5 shows a section through a conventional hydro-generator plant.



FIG. 6 is a diagram showing a traditional solution for auxiliary power for a hydro plant, and



FIG. 7 is a diagram showing generators with build-in windings for generation of auxiliary power according to the invention.





DESCRIPTION OF A PREFERRED EMBODIMENT

In order to understand certain aspects of the advantages of the invention, reference is made initially to FIG. 5 showing an example of a conventional hydro-generator plant. This is of a type with the transformer hall 501 situated some way from the generator hall 502, the latter being in the form of a rock chamber housing the generator 503. The generator 503 is connected to the transformer in the transformer hall 501 via a busbar system 505 arranged in a tunnel system 504 several hundred meters long. A plant according to the invention entirely eliminates the part to the right of the line A-A in FIG. 5, while substantially the same dimensions are retained in the generator hall 502. A conventional plant without the transformer situated above ground as shown in FIG. 5 would instead require a considerably larger generator hall 502 to allow space for the transformer and its auxiliary and safety equipment.


The rotor 2 of the generator is also indicated in the schematic axial view through a sector of the stator 1 according to FIG. 1, pertaining to the generator 100 (FIG. 3) included in the hydro-generator plant. The stator 1 is composed in conventional manner of a laminated core. FIG. 1 shows a sector of the generator corresponding to one pole pitch. From a yoke part 3 of the core situated radially outermost, a number of teeth 4 extend radially in towards the rotor 2 and are separated by slots 5 in which the stator winding is arranged. Cables 6 forming this stator winding, are high-voltage cables which may be of substantially the same type as those used for power distribution, i.e. PEX cables. PEX=crosslinked polyethylene (XLPE). One difference is that the outer, mechanically-protective sheath, and the metal screen normally surrounding such power distribution cables are eliminated so that the cable for the present application comprises only the conductor and at least one semiconducting layer on each side of an insulating layer. Thus, the semiconducting layer which is sensitive to mechanical damage lies naked on the surface of the cable.


The cables 6 are illustrated schematically in FIG. 1, only the conducting central part of each cable part or coil side being drawn in. As can be seen, each slot 5 has varying cross section with alternating wide parts 7 and narrow parts 8. The wide parts 7 are substantially circular and surround the cabling, the waist parts between these forming narrow parts 8. The waist parts serve to radially fix the position of each cable. The cross section of the slot 5 also narrows radially inwards. This is because the voltage on the cable parts is lower the closer to the radially inner part of the stator 1 they are situated. Slimmer cabling can therefore be used there, whereas coarser cabling is necessary further out. In the example illustrated cables of three different dimensions are used, arranged in three correspondingly dimensioned sections 51, 52, 53 of slots 5. An auxiliary power winding 9 is arranged furthest out in the slot 5.



FIG. 2 shows a step-wise stripped end view of a high-voltage cable for use in an electric machine according to the present invention. The high-voltage cable 6 comprises one or more conductors 31, each of which comprises a number of strands 36 which together give a circular cross section of copper (Cu), for instance. These conductors 31 are arranged in the middle of the high-voltage cable 6 and in the shown embodiment each is surrounded by a part insulation 35. However, it is feasible for the part insulation 35 to be omitted on one of the conductors 31. In the present embodiment of the invention the conductors 31 are together surrounded by a first semiconducting layer 32. Around this first semiconducting layer 32 is an insulating layer 33, e.g. PEX insulation, which is in turn surrounded by a second semiconducting layer 34. Thus the concept “high-voltage cable” in this application need not include any metallic screen or outer sheath of the type that normal surrounds such a cable for power distribution.


A hydro-generator with a magnetic circuit of the type described above is shown in FIG. 3 where the generator 100 is driven by a water turbine 102 via a common shaft 101.


The stator 1 of the generator 100 thus carries the stator windings 10 which are built up of the cable 6 described above. The cable 6 is unscreened and changes to a screened cable 11 at the cable splicing 9.


With a hydro-generator 100 according to the invention it is thus possible to generate extremely high electric voltages of up to approximately 800 kV. It is thus possible to electrically connect the hydro-generator 100 directly to a distribution or transmission network 110 with an intermediate step-up transformer or similar electric machine as is generally the case in conventional plants where equivalent generators are able at most to generate voltages of up of 25-30 kV.



FIG. 4 illustrates a hydro-generator plant according to the present invention. In conventional manner, the generator 100 has an excitation winding 112 and one (or more) auxiliary power winding(s) 113. In the shown embodiment of the plant according to the invention the generator 100 is earthed via an impedance 103.


It can also be seen from FIG. 4 that the generator 100 is electrically connected via the cable splicing 9 to the screened cable 11 (see also FIG. 3). The cable 11 is provided with current transformers 104 in conventional manner, and terminates at 105. After this point 105 the electric plant in the shown embodiment continues with busbars 106 having branches with voltage transformers 107 and surge arresters 108. However, the main electric supply takes place via the busbars 106 directly to the distribution or transmission network 110 via isolator 109 and circuit-breaker 111.


A hydro-generator plant according to the invention is designed for operation either to generate electric voltage for the power network as described above, or as a pump plant, i.e. to be driven from the electric power network 110. The generator 100 then operates as a motor to drive the turbine 102 as a pump.


Thus, with the hydro-generator 100, no intermediate coupling of a step-up transformer is required. With the hydro-generator plant according to the present invention, therefore, several transformer and breaker units previously necessary are eliminated, which is obviously an advantage—not least from the aspects of cost and operating reliability.


Although the hydro-generator and the plant in which this generator is included have been described and illustrated in connection with an embodiment by way of example, it should be obvious to one skilled in that art that several modifications are possible without departing from the inventive concept. The generator may be earthed directly, for instance, without any impedance. The auxiliary windings can be omitted, as also other components shown. Although the invention has been exemplified with a three-phase plant, the number of phases may be more or less.

Claims
  • 1. A hydrogenerator plant for connection to a high voltage transmission or distribution network comprising: at least one rotating electric machine for high voltage coupled to a turbine via shaft means, said electric machine comprising at least one winding formed of a conductor including a plurality of insulated conductive elements, and at least one uninsulated conductive element; a covering surrounding the conductor including an inner layer having semiconducting properties, a solid insulating layer surrounding the inner layer and an outer layer having semiconducting properties surrounding the insulating layer, said inner layer being in contact with the uninsulated element such that the inner layer has the same potential as the conductor, and said at least one winding being directly connectable to the transmission or distribution network, the voltages being across a range of transmission or distribution voltages.
  • 2. The plant as claimed in claim 1 wherein the at least two semiconducting layers each form essentially an equipotential surface, and wherein at least one of the layers has substantially the same coefficient of thermal expansion as the solid insulation.
  • 3. The plant as claimed in claim 1, wherein the generator comprises a magnetic circuit with a magnetic core.
  • 4. The plant as claimed in claim 3, wherein the electric machine includes a core comprising laminated sheet of at least one of cast iron, powder-based iron, and rough forge iron.
  • 5. The plant as claimed in claim 1 wherein the winding comprises a cable.
  • 6. The plant as claimed in claim 5, wherein at least two of said layers have substantially the same coefficient of thermal expansion.
  • 7. The plant as claimed in claim 1, wherein the inner semiconducting layer is at substantially the same potential as the conductors.
  • 8. The plant as claimed in claim 1, wherein the outer semiconducting layer forms an equipotential surface surrounding the conductors.
  • 9. The plant as claimed in claim 8, wherein said outer semiconducting layer is connected to a predefined potential.
  • 10. The plant as claimed in claim 9, wherein the predefined potential is earth potential.
  • 11. A plant as claimed in claim 9 wherein the coils in the stator are distributed and have a coil span different from the pole pitch.
  • 12. The plant as claimed in claim 1, wherein the cable also comprises a metal screen and a sheath.
  • 13. The plant as claimed in claim 1 including a stator cooled at earth potential by means of a fluid.
  • 14. The plant as claimed in claim 1 wherein the outer semiconducting layer is connected to earth potential.
  • 15. The plant as claimed in claim 1, wherein the electric machine includes a rotor inductively connected to the high voltage.
  • 16. The plant as claimed in claim 15, wherein the rotor is cylindrical in shape, has salient poles and also has a constant air gap.
  • 17. The plant as claimed in claim 16, wherein the electric machine includes a stator having a stator winding formed as at least one of an integral slot winding, and a fractional slot winding.
  • 18. The plant as claimed in claim 17, wherein the stator has a pole pitch and the winding is distributed and includes a coil having a coil span different from the pole pitch.
  • 19. The plant as claimed in claim 1, wherein the cable has a conductor area of about between 40 and 3000 mm2 and an outer cable diameter of about between 20 and 250 mm.
  • 20. The plant as claimed in claim 19, wherein the cable is cooled by gas or liquid inside current-carrying conductors.
  • 21. The plant as claimed in claim 1, wherein the electric machine is designed for high voltage and arranged to supply the out-going electric network directly without any intermediate connection of a transformer.
  • 22. The plant as claimed in claim 21, wherein at least one electric machine is earthed via an impedance.
  • 23. The plant as claimed in claim 21, wherein electric machine is directly earthed.
  • 24. The plant as claimed in claim 21, wherein said plant is operative as at least one of a pump and turbine station, the electric machine being arranged to function as at least one of a motor driven directly from the transmission or distribution network and as a generator, generating voltage for the transmission or distribution network.
  • 25. The plant as claimed claim 21, wherein the electric machine is arranged to generate power to various voltage levels.
  • 26. The plant as claimed in claim 25, wherein at least one electric machine includes a separate auxiliary winding for producing auxiliary power at one of said voltage levels.
  • 27. The plant as claimed in claim 1, comprising a plurality of electric machines, each of which lacks an individual step-up transformer, but which, via a system transformer common to the electric machines, is connected to the transmission or distribution network.
  • 28. The plant as claimed in claim 1, including a common earth system.
  • 29. The plant as claimed in claim 1, wherein the winding of the electric machine is operable for self-regulating field control and lacks auxiliary means for control of the field.
  • 30. The plant as claimed in claim 1, wherein the electric machine includes a stator comprising a plurality of stator limitations having openings for receiving the winding, said laminations being assembled into a stack with the openings aligned, and the winding comprises a cable threaded into the openings or the stacking laminations of the stator at the manufacturing facility or at the generation plant site.
  • 31. An electric generator for a high voltage included in a hydro-generator plant in which the generator is coupled to a turbine via shaft means, said generator comprising at least one winding including a conductor, a solid insulation covering including an inner layer having semiconducting properties; a solid insulating layer surrounding the inner layer and an outer layer having semiconducting properties surrounding the insulation layer; said conductor formed of a plurality of conductive elements including at least one uninsulated element in contact with the inner layer and a plurality of insulated elements; and wherein each winding is directly connectable to a high voltage transmission or distribution network, and the inner layer forms an equipotential surface about the conductor.
  • 32. A hydrogenerator plant including a rotating high voltage electric machine comprising a stator; a rotor and a winding, wherein said winding comprises a cable including a current-carrying conductor and a magnetically permeable, electric field confining cover surrounding the conductor, the cover including an inner layer having semiconducting properties, a solid insulation surrounding the inner layer and an outer layer having semiconducting properties surrounding the solid insulation, said cable forming at least one uninterrupted turn in the corresponding winding of said machine, and wherein the conductor includes a plurality of insulated conductive strands and at least one uninsulated electrically conductive strand in contact with the inner layer, such that said conductor and inner layer are at the same potential.
  • 33. The hydrogenerator plant of claim 32, wherein the outer layer has a conductivity sufficient to establish an equipotential surface around the conductor.
  • 34. The hydrogenerator plant of claim 32, wherein the cover is formed of a plurality of integrally bonded layers, and wherein said plurality of layers are substantially void free.
  • 35. A hydrogenerator plant for direct connection to a high voltage transmission or distribution network comprising: at least one rotating electric machine for high voltage coupled to a turbine via shaft means, said electric machine including at least one winding comprising a conductor and a magnetically permeable, electric field confining insulating covering surrounding the conductor including an inner layer having semiconducting properties, a solid insulation surrounding the inner layer and an outer layer having semiconducting properties surrounding the insulating layer, said conductor including at least one of a plurality of insulated conductive elements, and at least one uninsulated conductive element being in contact with the inner layer such that said conductor and inner layer are at the same potential; and said at least one winding being directly connectable to the transmission or distribution network.
Priority Claims (1)
Number Date Country Kind
9602079 May 1996 SE national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCTSE97/00885 5/27/1997 WO 00 3/25/1998
Publishing Document Publishing Date Country Kind
WO9745923 12/4/1997 WO A
US Referenced Citations (327)
Number Name Date Kind
681800 Lasche Sep 1901 A
847008 Kitsee Mar 1907 A
1304451 Burnham May 1919 A
1418856 Williamson Jun 1922 A
1481585 Beard Jan 1924 A
1508456 Lenz Sep 1924 A
1728915 Blankenship et al. Sep 1929 A
1742985 Burnham Jan 1930 A
1747507 George Feb 1930 A
1756672 Barr Apr 1930 A
1762775 Ganz Jun 1930 A
1781308 Vos Nov 1930 A
1861182 Hendey et al. May 1932 A
1904885 Seeley Apr 1933 A
1974406 Apple et al. Sep 1934 A
2006170 Juhlin Jun 1935 A
2206856 Shearer Jul 1940 A
2217430 Baudry Oct 1940 A
2241832 Wahlquist May 1941 A
2251291 Reichelt Aug 1941 A
2256897 Davidson et al. Sep 1941 A
2295415 Monroe Sep 1942 A
2409893 Pendleton et al. Oct 1946 A
2415652 Norton Feb 1947 A
2424443 Evans Jul 1947 A
2436306 Johnson Feb 1948 A
2446999 Camilli Aug 1948 A
2459322 Johnston Jan 1949 A
2462651 Lord Feb 1949 A
2498238 Berberich et al. Feb 1950 A
2650350 Heath Aug 1953 A
2721905 Monroe Oct 1955 A
2749456 Luenberger Jun 1956 A
2780771 Lee Feb 1957 A
2846599 McAdam Aug 1958 A
2885581 Pileggi May 1959 A
2943242 Schaschl et al. Jun 1960 A
2947957 Spindler Aug 1960 A
2959699 Smith et al. Nov 1960 A
2962679 Stratton Nov 1960 A
2975309 Seidner Mar 1961 A
3014139 Shildneck Dec 1961 A
3098893 Pringle et al. Jul 1963 A
3130335 Rejda Apr 1964 A
3143269 Van Eldik Aug 1964 A
3157806 Wiedemann Nov 1964 A
3158770 Coggeshall et al. Nov 1964 A
3197723 Dortort Jul 1965 A
3268766 Amos Aug 1966 A
3304599 Nordin Feb 1967 A
3354331 Broeker et al. Nov 1967 A
3365657 Webb Jan 1968 A
3372283 Jaecklin Mar 1968 A
3392779 Tilbrook Jul 1968 A
3411027 Rosenberg Nov 1968 A
3418530 Cheever Dec 1968 A
3435262 Bennett et al. Mar 1969 A
3437858 White Apr 1969 A
3444407 Yates May 1969 A
3447002 Ronnevig May 1969 A
3484690 Wald Dec 1969 A
3541221 Aupoix et al. Nov 1970 A
3560777 Moeller Feb 1971 A
3571690 Lataisa Mar 1971 A
3593123 Williamson Jul 1971 A
3631519 Salahshourian Dec 1971 A
3644662 Salahshourian Feb 1972 A
3651244 Silver et al. Mar 1972 A
3651402 Leffmann Mar 1972 A
3660721 Baird May 1972 A
3666876 Forster May 1972 A
3670192 Andersson et al. Jun 1972 A
3675056 Lenz Jul 1972 A
3684821 Miyauchi et al. Aug 1972 A
3684906 Lexz Aug 1972 A
3699238 Hansen et al. Oct 1972 A
3716652 Lusk et al. Feb 1973 A
3716719 Angelery et al. Feb 1973 A
3727085 Goetz et al. Apr 1973 A
3740600 Turley Jun 1973 A
3743867 Smith, Jr. Jul 1973 A
3746954 Myles et al. Jul 1973 A
3758699 Lusk et al. Sep 1973 A
3778891 Amasino et al. Dec 1973 A
3781739 Meyer Dec 1973 A
3787607 Schlafly Jan 1974 A
3792399 McLyman Feb 1974 A
3801843 Corman et al. Apr 1974 A
3809933 Sugawara et al. May 1974 A
3813764 Tanaka et al. Jun 1974 A
3828115 Hvizd, Jr. Aug 1974 A
3881647 Wolfe May 1975 A
3884154 Marten May 1975 A
3891880 Britsch Jun 1975 A
3902000 Forsyth et al. Aug 1975 A
3912957 Reynolds Oct 1975 A
3932779 Madsen Jan 1976 A
3932791 Oswald Jan 1976 A
3943392 Keuper et al. Mar 1976 A
3947278 Youtsey Mar 1976 A
3965408 Higuchi et al. Jun 1976 A
3968388 Lambrecht et al. Jul 1976 A
3971543 Shanahan Jul 1976 A
3974314 Fuchs Aug 1976 A
3993860 Snow et al. Nov 1976 A
3995785 Arick et al. Dec 1976 A
4001616 Lonseth et al. Jan 1977 A
4008367 Sunderhauf Feb 1977 A
4008409 Rhudy et al. Feb 1977 A
4031310 Jachimowicz Jun 1977 A
4039740 Iwata Aug 1977 A
4041431 Enoksen Aug 1977 A
4047138 Steigerwald Sep 1977 A
4064419 Peterson Dec 1977 A
4084307 Schultz et al. Apr 1978 A
4085347 Lichius Apr 1978 A
4088953 Sarian May 1978 A
4091138 Takagi et al. May 1978 A
4091139 Quirk May 1978 A
4099227 Liptak Jul 1978 A
4103075 Adam Jul 1978 A
4106069 Trautner et al. Aug 1978 A
4107092 Carnahan et al. Aug 1978 A
4109098 Olsson et al. Aug 1978 A
4121148 Platzer Oct 1978 A
4132914 Khutoretsky Jan 1979 A
4134036 Curtiss Jan 1979 A
4134055 Akamatsu Jan 1979 A
4134146 Stetson Jan 1979 A
4149101 Lesokhin et al. Apr 1979 A
4152615 Calfo et al. May 1979 A
4160193 Richmond Jul 1979 A
4164672 Flick Aug 1979 A
4164772 Hingorani Aug 1979 A
4177397 Lill Dec 1979 A
4177418 Brueckner et al. Dec 1979 A
4184186 Barkan Jan 1980 A
4200817 Bratoljic Apr 1980 A
4200818 Ruffing et al. Apr 1980 A
4206434 Hase Jun 1980 A
4207427 Beretta et al. Jun 1980 A
4207482 Neumeyer et al. Jun 1980 A
4208597 Mulach et al. Jun 1980 A
4229721 Koloczek et al. Oct 1980 A
4238339 Khutoretsky et al. Dec 1980 A
4239999 Vinokurov et al. Dec 1980 A
4245182 Aotsu et al. Jan 1981 A
4246694 Raschbichler et al. Jan 1981 A
4255684 Mischler et al. Mar 1981 A
4258280 Starcevic Mar 1981 A
4262209 Berner Apr 1981 A
4274027 Higuchi et al. Jun 1981 A
4281264 Keim et al. Jul 1981 A
4292558 Flick et al. Sep 1981 A
4307311 Grozinger Dec 1981 A
4308476 Schuler Dec 1981 A
4308575 Mase Dec 1981 A
4310966 Brietenbach Jan 1982 A
4314168 Breitenbach Feb 1982 A
4317001 Silver et al. Feb 1982 A
4320645 Stanley Mar 1982 A
4321426 Schaeffer Mar 1982 A
4321518 Akamatsu Mar 1982 A
4330726 Albright et al. May 1982 A
4337922 Streiff et al. Jul 1982 A
4341989 Sandberg et al. Jul 1982 A
4347449 Beau Aug 1982 A
4347454 Gellert et al. Aug 1982 A
4353612 Meyers Oct 1982 A
4357542 Kirschbaum Nov 1982 A
4360748 Raschbichler et al. Nov 1982 A
4361723 Hvizd, Jr. et al. Nov 1982 A
4365178 Lexz Dec 1982 A
4367425 Mendelsohn et al. Jan 1983 A
4367890 Spirk Jan 1983 A
4368418 DeMello et al. Jan 1983 A
4369389 Lambrecht Jan 1983 A
4371745 Sakashita Feb 1983 A
4384944 Silver et al. May 1983 A
4387316 Katsekas Jun 1983 A
4401920 Taylor et al. Aug 1983 A
4403163 Armerding et al. Sep 1983 A
4404486 Keim et al. Sep 1983 A
4411710 Mochizuki et al. Oct 1983 A
4421284 Pan Dec 1983 A
4425521 Rosenberry, Jr. et al. Jan 1984 A
4426771 Wang et al. Jan 1984 A
4429244 Nikitin et al. Jan 1984 A
4431960 Zucker Feb 1984 A
4432029 Lundqvist Feb 1984 A
4437464 Crow Mar 1984 A
4443725 Derderian et al. Apr 1984 A
4470884 Carr Sep 1984 A
4473765 Butman, Jr. et al. Sep 1984 A
4475075 Munn Oct 1984 A
4477690 Nikitin et al. Oct 1984 A
4481438 Keim Nov 1984 A
4484106 Taylor et al. Nov 1984 A
4488079 Dailey et al. Dec 1984 A
4490651 Taylor et al. Dec 1984 A
4503284 Minnick et al. Mar 1985 A
4508251 Harada et al. Apr 1985 A
4510077 Elton Apr 1985 A
4517471 Sachs May 1985 A
4520287 Wang et al. May 1985 A
4523249 Arimoto Jun 1985 A
4538131 Baier et al. Aug 1985 A
4546210 Akiba et al. Oct 1985 A
4551780 Canay Nov 1985 A
4557038 Wcislo et al. Dec 1985 A
4560896 Vogt et al. Dec 1985 A
4565929 Baskin et al. Jan 1986 A
4571453 Takaoka et al. Feb 1986 A
4588916 Lis May 1986 A
4590416 Porche et al. May 1986 A
4594630 Rabinowitz et al. Jun 1986 A
4607183 Rieber et al. Aug 1986 A
4615109 Wcislo et al. Oct 1986 A
4615778 Elton Oct 1986 A
4618795 Cooper et al. Oct 1986 A
4619040 Wang et al. Oct 1986 A
4622116 Elton et al. Nov 1986 A
4633109 Feigel Dec 1986 A
4650924 Kauffman et al. Mar 1987 A
4652963 Fahlen Mar 1987 A
4654551 Farr Mar 1987 A
4656316 Meltsch Apr 1987 A
4656379 McCarty Apr 1987 A
4677328 Kumakura Jun 1987 A
4687882 Stone et al. Aug 1987 A
4692731 Osinga Sep 1987 A
4723083 Elton Feb 1988 A
4723104 Rohatyn Feb 1988 A
4724345 Elton et al. Feb 1988 A
4732412 van der Linden et al. Mar 1988 A
4737704 Kalinnikov et al. Apr 1988 A
4745314 Nakano May 1988 A
4761602 Leibovich Aug 1988 A
4766365 Bolduc et al. Aug 1988 A
4771168 Gundersen et al. Sep 1988 A
4785138 Brietenbach et al. Nov 1988 A
4795933 Sakai Jan 1989 A
4827172 Kobayashi May 1989 A
4845308 Womack, Jr. et al. Jul 1989 A
4847747 Abbondanti Jul 1989 A
4853565 Elton et al. Aug 1989 A
4859810 Cloetens et al. Aug 1989 A
4859989 McPherson Aug 1989 A
4860430 Raschbichler et al. Aug 1989 A
4864266 Feather et al. Sep 1989 A
4883230 Lindstrom Nov 1989 A
4890040 Gundersen Dec 1989 A
4894284 Yamanouchi et al. Jan 1990 A
4914386 Zocholl Apr 1990 A
4918347 Takaba Apr 1990 A
4918835 Wcislo et al. Apr 1990 A
4924342 Lee May 1990 A
4926079 Niemela et al. May 1990 A
4942326 Butler, III et al. Jul 1990 A
4949001 Campbell Aug 1990 A
4982147 Lauw Jan 1991 A
4994952 Silva et al. Feb 1991 A
4997995 Simmons et al. Mar 1991 A
5012125 Conway Apr 1991 A
5030813 Stanisz Jul 1991 A
5036165 Elton et al. Jul 1991 A
5036238 Tajima Jul 1991 A
5066881 Elton et al. Nov 1991 A
5067046 Elton et al. Nov 1991 A
5083360 Valencic et al. Jan 1992 A
5086246 Dymond et al. Feb 1992 A
5091609 Swada et al. Feb 1992 A
5094703 Takaoka et al. Mar 1992 A
5095175 Yoshida et al. Mar 1992 A
5097241 Smith et al. Mar 1992 A
5097591 Wcislo et al. Mar 1992 A
5111095 Hendershot May 1992 A
5124607 Rieber et al. Jun 1992 A
5136459 Fararooy Aug 1992 A
5140290 Dersch Aug 1992 A
5153460 Bovino et al. Oct 1992 A
5168662 Nakamura et al. Dec 1992 A
5171941 Shimizu et al. Dec 1992 A
5182537 Thuis Jan 1993 A
5187428 Hutchison et al. Feb 1993 A
5231249 Kimura et al. Jul 1993 A
5235488 Koch Aug 1993 A
5246783 Spenadel et al. Sep 1993 A
5264778 Kimmel et al. Nov 1993 A
5287262 Klein Feb 1994 A
5304883 Denk Apr 1994 A
5305961 Errard et al. Apr 1994 A
5321308 Johncock Jun 1994 A
5323330 Asplund et al. Jun 1994 A
5325008 Grant Jun 1994 A
5325259 Paulsson Jun 1994 A
5327637 Britenbach et al. Jul 1994 A
5341281 Skibinski Aug 1994 A
5343139 Gyugyi et al. Aug 1994 A
5355046 Weigelt Oct 1994 A
5365132 Hann et al. Nov 1994 A
5387890 Estop et al. Feb 1995 A
5397513 Steketee, Jr. Mar 1995 A
5399941 Grothaus et al. Mar 1995 A
5400005 Bobry Mar 1995 A
5408169 Jeanneret Apr 1995 A
5449861 Fujino et al. Sep 1995 A
5452170 Ohde et al. Sep 1995 A
5468916 Litenas et al. Nov 1995 A
5499178 Mohan Mar 1996 A
5500632 Halser, III Mar 1996 A
5510942 Bock et al. Apr 1996 A
5530307 Horst Jun 1996 A
5533658 Benedict et al. Jul 1996 A
5534754 Poumey Jul 1996 A
5545853 Hildreth Aug 1996 A
5550410 Titus Aug 1996 A
5583387 Takeuchi et al. Dec 1996 A
5587126 Steketee, Jr. Dec 1996 A
5598137 Alber et al. Jan 1997 A
5607320 Wright Mar 1997 A
5612510 Hildreth Mar 1997 A
5663605 Evans et al. Sep 1997 A
5672926 Brandes et al. Sep 1997 A
5689223 Demarmels et al. Nov 1997 A
5807447 Forrest Sep 1998 A
5834699 Buck et al. Nov 1998 A
Foreign Referenced Citations (432)
Number Date Country
399790 Jul 1995 AT
565063 Feb 1957 BE
391071 Apr 1965 CH
266037 Oct 1965 CH
534448 Feb 1973 CH
539328 Jul 1973 CH
646403 Feb 1979 CH
657482 Aug 1986 CH
1189322 Oct 1986 CH
PCTCN 9600010 Oct 1996 CN
40414 Aug 1887 DE
277012 Jul 1914 DE
336418 Jun 1920 DE
372390 Mar 1923 DE
386561 Dec 1923 DE
387973 Jan 1924 DE
406371 Nov 1924 DE
425551 Feb 1926 DE
426793 Mar 1926 DE
432169 Jul 1926 DE
433749 Sep 1926 DE
435608 Oct 1926 DE
435609 Oct 1926 DE
436809 Oct 1926 DE
441717 Mar 1927 DE
443011 Apr 1927 DE
460124 May 1928 DE
482506 Sep 1929 DE
501181 Jul 1930 DE
523047 Apr 1931 DE
568508 Jan 1933 DE
572030 Mar 1933 DE
584639 Sep 1933 DE
586121 Oct 1933 DE
604972 Nov 1934 DE
629301 Apr 1936 DE
673545 Mar 1939 DE
719009 Mar 1942 DE
846583 Aug 1952 DE
875227 Apr 1953 DE
975999 Jan 1963 DE
1465719 May 1969 DE
1807391 May 1970 DE
2050674 May 1971 DE
1638176 Jun 1971 DE
2155371 May 1973 DE
2400698 Jul 1975 DE
2520511 Nov 1976 DE
2656389 Jun 1978 DE
2721905 Nov 1978 DE
137164 Aug 1979 DE
138840 Nov 1979 DE
2824951 Dec 1979 DE
2835386 Feb 1980 DE
2839517 Mar 1980 DE
2854520 Jun 1980 DE
3009102 Sep 1980 DE
2913697 Oct 1980 DE
2920478 Dec 1980 DE
3028777 Mar 1981 DE
2939004 Apr 1981 DE
3006382 Aug 1981 DE
3008818 Sep 1981 DE
209313 Apr 1984 DE
3305225 Aug 1984 DE
3309051 Sep 1984 DE
3441311 May 1986 DE
3543106 Jun 1987 DE
2917717 Aug 1987 DE
3612112 Oct 1987 DE
3726346 Feb 1989 DE
3728346 Feb 1989 DE
PCTDE 9000279 Nov 1990 DE
3925337 Feb 1991 DE
4023903 Nov 1991 DE
4022476 Jan 1992 DE
4233558 Mar 1994 DE
4402184 Aug 1995 DE
4409794 Aug 1995 DE
4412761 Oct 1995 DE
4420322 Dec 1995 DE
19620906 Jan 1996 DE
4438186 May 1996 DE
19020222 Mar 1997 DE
19547229 Jun 1997 DE
468827 Jul 1997 DE
134022 Dec 2001 DE
049104 Apr 1982 EP
0493704 Apr 1982 EP
0056580 Jul 1982 EP
078908 May 1983 EP
0120154 Oct 1984 EP
0130124 Jan 1985 EP
0142813 May 1985 EP
0155405 Sep 1985 EP
0102513 Jan 1986 EP
0174783 Mar 1986 EP
0185788 Jul 1986 EP
0277358 Aug 1986 EP
0234521 Sep 1987 EP
0244069 Nov 1987 EP
0246377 Nov 1987 EP
0265868 May 1988 EP
0274691 Jul 1988 EP
0280759 Sep 1988 EP
0282876 Sep 1988 EP
0309096 Mar 1989 EP
0314860 May 1989 EP
0316911 May 1989 EP
0317248 May 1989 EP
0335430 Oct 1989 EP
0342554 Nov 1989 EP
0221404 May 1990 EP
0375101 Jun 1990 EP
0406437 Jan 1991 EP
0439410 Jul 1991 EP
0440865 Aug 1991 EP
0469155 Feb 1992 EP
0490705 Jun 1992 EP
0503817 Sep 1992 EP
0571155 Nov 1993 EP
0620570 Oct 1994 EP
0620630 Oct 1994 EP
0642027 Mar 1995 EP
0671632 Sep 1995 EP
0676777 Oct 1995 EP
0677915 Oct 1995 EP
0684679 Nov 1995 EP
0684682 Nov 1995 EP
0695019 Jan 1996 EP
0732787 Sep 1996 EP
0738034 Oct 1996 EP
0739087 Oct 1996 EP
0740315 Oct 1996 EP
0749190 Dec 1996 EP
0751605 Jan 1997 EP
0739087 Mar 1997 EP
0749193 Mar 1997 EP
0780926 Jun 1997 EP
0802542 Oct 1997 EP
0913912 May 1999 EP
805544 Apr 1936 FR
841351 Jan 1938 FR
847899 Dec 1938 FR
916959 Dec 1946 FR
1011924 Apr 1949 FR
1126975 Mar 1955 FR
1238795 Jul 1959 FR
2108171 May 1972 FR
2251938 Jun 1975 FR
2305879 Oct 1976 FR
2376542 Jul 1978 FR
2467502 Apr 1981 FR
2481531 Oct 1981 FR
2556146 Jun 1985 FR
2594271 Aug 1987 FR
2708157 Jan 1995 FR
PCTFR 9800468 Jun 1998 FR
123906 Mar 1919 GB
268271 Mar 1927 GB
293861 Nov 1928 GB
292999 Apr 1929 GB
319313 Jul 1929 GB
518993 Mar 1940 GB
537609 Jun 1941 GB
540456 Oct 1941 GB
589071 Jun 1947 GB
666883 Feb 1952 GB
685416 Jan 1953 GB
702892 Jan 1954 GB
715226 Sep 1954 GB
723457 Feb 1955 GB
739962 Nov 1955 GB
763761 Dec 1956 GB
805721 Dec 1958 GB
827600 Feb 1960 GB
854728 Nov 1960 GB
870583 Jun 1961 GB
913386 Dec 1962 GB
965741 Aug 1964 GB
992249 May 1965 GB
1024583 Mar 1966 GB
1053337 Dec 1966 GB
1059123 Feb 1967 GB
1103098 Feb 1968 GB
1103099 Feb 1968 GB
1117401 Jun 1968 GB
1135242 Dec 1968 GB
1147049 Apr 1969 GB
1157885 Jul 1969 GB
1174659 Dec 1969 GB
1236082 Jun 1971 GB
1268770 Mar 1972 GB
1319257 Jun 1973 GB
1322433 Jul 1973 GB
1340983 Dec 1973 GB
1341050 Dec 1973 GB
1365191 Aug 1974 GB
1395152 May 1975 GB
1424982 Feb 1976 GB
1426594 Mar 1976 GB
1438610 Jun 1976 GB
1445284 Aug 1976 GB
1479904 Jul 1977 GB
1493163 Nov 1977 GB
1502938 Mar 1978 GB
1525745 Sep 1978 GB
2000625 Jan 1979 GB
1548633 Jul 1979 GB
2046142 Nov 1979 GB
2022327 Dec 1979 GB
2025150 Jan 1980 GB
2034101 May 1980 GB
1574796 Sep 1980 GB
2070341 Sep 1981 GB
2070470 Sep 1981 GB
2071433 Sep 1981 GB
2081523 Feb 1982 GB
2099635 Dec 1982 GB
2105925 Mar 1983 GB
2106306 Apr 1983 GB
2106721 Apr 1983 GB
2136214 Sep 1984 GB
2140195 Nov 1984 GB
2150153 Jun 1985 GB
2268337 Jan 1994 GB
2273819 Jun 1994 GB
2283133 Apr 1995 GB
2289992 Dec 1995 GB
2308490 Jun 1997 GB
2332557 Jun 1999 GB
175494 Nov 1981 HU
60206121 Mar 1959 JP
57043529 Aug 1980 JP
57126117 May 1982 JP
59076156 Oct 1982 JP
59159642 Feb 1983 JP
6264964 Sep 1985 JP
1129737 May 1989 JP
62320631 Jun 1989 JP
2017474 Jan 1990 JP
3245748 Feb 1990 JP
4179107 Nov 1990 JP
318253 Jan 1991 JP
424909 Jan 1992 JP
5290947 Apr 1992 JP
6196343 Dec 1992 JP
6233442 Feb 1993 JP
6325629 May 1993 JP
7057951 Aug 1993 JP
7264789 Mar 1994 JP
8167332 Dec 1994 JP
7161270 Jun 1995 JP
8264039 Nov 1995 JP
9200989 Jan 1996 JP
8036952 Feb 1996 JP
8167360 Jun 1996 JP
67199 Mar 1972 LU
90308 Sep 1937 SE
305899 Nov 1968 SE
255156 Feb 1969 SE
341428 Dec 1971 SE
453236 Jan 1982 SE
457792 Jun 1987 SE
PCT SE 9100077 Apr 1991 SE
502417 Dec 1993 SE
PCTSE 9802148 Jun 1999 SE
792302 Jan 1971 SU
425268 Sep 1974 SU
1019553 Jan 1980 SU
694939 Jan 1982 SU
955369 Aug 1983 SU
1511810 May 1987 SU
WO8202617 Aug 1982 WO
WO8502302 May 1985 WO
WO9011389 Oct 1990 WO
WO9012409 Oct 1990 WO
WO9101059 Jan 1991 WO
WO9101585 Feb 1991 WO
WO9107807 Mar 1991 WO
WO9109442 Jun 1991 WO
WO 9111841 Aug 1991 WO
WO8115862 Oct 1991 WO
WO 9115755 Oct 1991 WO
WO9201328 Jan 1992 WO
WO9203870 Mar 1992 WO
WO9321681 Oct 1993 WO
WO9406194 Mar 1994 WO
WO9518058 Jul 1995 WO
WO9522153 Aug 1995 WO
WO9524049 Sep 1995 WO
WO9622606 Jul 1996 WO
WO9622607 Jul 1996 WO
WO9630144 Oct 1996 WO
WO9710640 Mar 1997 WO
WO9711831 Apr 1997 WO
WO9716881 May 1997 WO
WO 9729494 Aug 1997 WO
WO9745288 Dec 1997 WO
WO9745847 Dec 1997 WO
WO9745848 Dec 1997 WO
WO9745906 Dec 1997 WO
WO9745907 Dec 1997 WO
WO9745912 Dec 1997 WO
WO9745914 Dec 1997 WO
WO9745915 Dec 1997 WO
WO9745916 Dec 1997 WO
WO9745918 Dec 1997 WO
WO9745919 Dec 1997 WO
WO9745920 Dec 1997 WO
WO9745921 Dec 1997 WO
WO9745922 Dec 1997 WO
WO9745923 Dec 1997 WO
WO9745924 Dec 1997 WO
WO9745925 Dec 1997 WO
WO9745926 Dec 1997 WO
WO9745927 Dec 1997 WO
WO9745928 Dec 1997 WO
WO9745929 Dec 1997 WO
WO9745930 Dec 1997 WO
WO9745931 Dec 1997 WO
WO9745932 Dec 1997 WO
WO9745933 Dec 1997 WO
WO9745934 Dec 1997 WO
WO9745935 Dec 1997 WO
WO9745936 Dec 1997 WO
WO9745937 Dec 1997 WO
WO9745938 Dec 1997 WO
WO9745939 Dec 1997 WO
WO9747067 Dec 1997 WO
WO9820595 May 1998 WO
WO9820596 May 1998 WO
WO9820597 May 1998 WO
WO 9820598 May 1998 WO
WO9820600 May 1998 WO
WO 9820602 May 1998 WO
WO9821385 May 1998 WO
WO9827634 Jun 1998 WO
WO9827635 Jun 1998 WO
WO9827636 Jun 1998 WO
WO9829927 Jul 1998 WO
WO9829928 Jul 1998 WO
WO9829929 Jul 1998 WO
WO9829930 Jul 1998 WO
WO9829931 Jul 1998 WO
WO9829932 Jul 1998 WO
WO9833731 Aug 1998 WO
WO9833736 Aug 1998 WO
WO9833737 Aug 1998 WO
WO9834238 Aug 1998 WO
WO 9834239 Aug 1998 WO
WO9834240 Aug 1998 WO
WO9834241 Aug 1998 WO
WO9834242 Aug 1998 WO
WO9834243 Aug 1998 WO
WO9834244 Aug 1998 WO
WO9834245 Aug 1998 WO
WO9834246 Aug 1998 WO
WO9834247 Aug 1998 WO
WO9834248 Aug 1998 WO
WO9834249 Aug 1998 WO
WO9834250 Aug 1998 WO
WO9834309 Aug 1998 WO
WO9834312 Aug 1998 WO
WO9834315 Aug 1998 WO
WO9834321 Aug 1998 WO
WO9834322 Aug 1998 WO
WO9834323 Aug 1998 WO
WO9834325 Aug 1998 WO
WO9834326 Aug 1998 WO
WO9834327 Aug 1998 WO
WO9834328 Aug 1998 WO
WO9834329 Aug 1998 WO
WO9834330 Aug 1998 WO
WO9834331 Aug 1998 WO
WO 9840627 Sep 1998 WO
WO 9843336 Oct 1998 WO
WO9917309 Apr 1999 WO
WO9917311 Apr 1999 WO
WO9917312 Apr 1999 WO
WO9917313 Apr 1999 WO
WO9917314 Apr 1999 WO
WO9917315 Apr 1999 WO
WO9917316 Apr 1999 WO
WO9917422 Apr 1999 WO
WO9917424 Apr 1999 WO
WO9917425 Apr 1999 WO
WO9917426 Apr 1999 WO
WO9917427 Apr 1999 WO
WO9917428 Apr 1999 WO
WO9917429 Apr 1999 WO
WO9917432 Apr 1999 WO
WO9917433 Apr 1999 WO
WO9919963 Apr 1999 WO
WO9919969 Apr 1999 WO
WO9919970 Apr 1999 WO
WO9927546 Jun 1999 WO
WO9928919 Jun 1999 WO
WO9928921 Jun 1999 WO
WO 9928922 Jun 1999 WO
WO9928923 Jun 1999 WO
WO9928924 Jun 1999 WO
WO9928925 Jun 1999 WO
WO9928927 Jun 1999 WO
WO9928928 Jun 1999 WO
WO9928929 Jun 1999 WO
WO9928930 Jun 1999 WO
WO9928931 Jun 1999 WO
WO9928934 Jun 1999 WO
WO9928994 Jun 1999 WO
WO9929005 Jun 1999 WO
WO9929005 Jun 1999 WO
WO9929008 Jun 1999 WO
WO9929011 Jun 1999 WO
WO9929012 Jun 1999 WO
WO9929013 Jun 1999 WO
WO9929014 Jun 1999 WO
WO9929015 Jun 1999 WO
WO9929016 Jun 1999 WO
WO9929017 Jun 1999 WO
WO9929018 Jun 1999 WO
WO9929019 Jun 1999 WO
WO9929020 Jun 1999 WO
WO9929021 Jun 1999 WO
WO9929022 Jun 1999 WO
WO 9929023 Jun 1999 WO
WO9929024 Jun 1999 WO
WO 9929025 Jun 1999 WO
WO9929026 Jun 1999 WO
WO9929029 Jun 1999 WO
WO9929034 Jun 1999 WO
WO9928926 Sep 1999 WO