Applicant claims priority based on provisional patent application Ser. No. 60/559,844, filed Apr. 6, 2004.
This invention relates generally methods and apparatuses for synthesizing olefins, alcohols, ethers, and aldehydes from alkanes, alkenes, and aromatics, and more particularly to specific improvements in the methods and apparatuses disclosed in the patents and patent applications identified herein.
The present application comprises a continuation-in-part of application Ser. No. 10/430,240, the disclosure of which is incorporated herewith by reference as if set forth herein. The present invention comprises specific improvements in and to the methods and apparatuses disclosed and described in the patents and patent applications identified herein, specifically including:
Safety Improvements;
Use of Alternative Feedstocks;
Process Simplification;
Improvements to the Halogenation Step;
Improvements to the Reproportionation Step;
Improvements to the Solid Oxide Reaction;
Improvements to Solid Oxide Regeneration;
Improvements in Separations;
Maintenance;
Start-up;
Shut-down;
Materials of Construction.
Safety Improvements:
1. The safety of the process may be improved by shipping the halogen in solid halide form. Some specific variations include:
2. The safety of the process may be improved by shipping the halogen in liquid halide form. The use of liquid may minimize solids handling operation and associated particulate hazards. Liquid may also be easier to handle.
3. The safety of the process may be improved by shipping the halogen in liquid alkyl halide form. The use of liquid halides may minimize solids handling operation and associated particulate hazards. The use of liquid halides may also be easier to handle. The shipment of alkyl halide may be particularly useful for the startup of the plant and may also provide a convenient and safe way to introduce make-up halide.
4. The safety of the process may be improved by the placement of hygroscopic metal halides in selected reactors provided with a sink for water in the event of a process upset. Many metal halides are hygroscopic and will react with water to form hydrates, minimizing corrosion.
5. The bromine inventory may be reduced by utilization of the bromine separation apparatus (typically following the regeneration reactor) as the reservoir for bromine for introduction into the alkane bromination reactor or other necessary step involving bromine. This reservoir of liquid bromine will have sufficient capacity to maintain adequate pump priming and allow bromine to be pumped as a liquid rather than using more costly compressors.
6. Reactive metal oxide traps at all process vents for use in normal and emergency operations may be used to insure against release of any and all organic-bromides. These metal oxides may be regenerated to recover bromine.
7. The safety of the process may be enhanced by the use of a solid oxide to dispose of halogenated organic streams and recovery of halide by conversion to carbon dioxide, water, and solid halide. The solid oxide may be regenerated by reacting the solid halide with oxygen, liberating halogen for recycle to the process.
The above-identified processes may be useful and particularly valuable with feedstocks containing otherwise difficult to separate components. The halogenation chemistry may facilitate the reactive separation of various streams including:
1. The use of steams containing alkane and olefin of the same carbon number.
2. The use of streams containing branched and linear alkanes resulting in product streams enriched in branched and/or linear molecules.
3. The use of streams containing multiple types of branched molecules resulting in product streams enriched or depleted in molecules containing a certain type or amount of branching:
4. The use of streams containing trace amounts of impurities that are more reactive than the desired alkane reactant:
5. The use of streams of mixed alkane and olefin in coupling processes. Streams containing alkanes and olefins may be used to produce products of higher carbon number. Several process variations may be employed:
1. The halogenation and solid oxide reaction steps may be conducted in the same unit:
2. The halogenation, solid oxide reaction, and solid oxide regeneration may be conducted in the same unit by introducing hydrocarbon and oxygen to a solid halide or solid halide-oxide combination. The oxygen will regenerate the solid halide generating hydrocarbon halide and solid oxide, the hydrocarbon halide will react with the oxide, generating product. Variations include:
3. The solid oxide reaction and product separation may be conducted simultaneously when the product is lighter then the reactant the reaction is conducted in a liquid phase reactor under conditions where the product is a vapor and leaves the reactant mixture.
4. Reacting the halide-containing regeneration effluent with olefin to form dihaloalkanes to reduce the energy required for and equipment size in the halide recovery.
5. Reacting the alkane over selected metal-halides in the regeneration step to form the alkyl-halide and a metal-hydride. This would also be a safety improvement and eliminate the need for halogen separation. Materials include but are not limited to halides of boron, nickel, iron, and their mixtures as well as carbon based materials (e.g. C60).
6. Operation of the halogenation process at high halogen:alkane ratio for the feed at temperatures and pressures to maximize the production of monohalo-alkanes at 100% alkane conversion. The alkane feed may be mixed. The products which will contain multiply-halogenenated species and haloacid which may be passed directly over a metal oxide bed to produce a mixture of products dependent upon the reaction conditions will be produced which will be condensed together and separated in the liquid phase by a combination of distillation and phase separation.
7. The use of a hydrogenation step to recover the over-halogenated products by reducing the halogenation to the desired degree. The use of such a step will allow for higher per-pass conversion in the halogenation step. Catalysts may be used, including but not limited to Pd, Pt, Ru, Ni, Au, Cu, and their alloys.
8. Controlling the amount of hydrogen halide added to a metal oxide reactor in order to generate the heat required for an endothermic reaction.
9. The use of hydrogen halide formed in the halogenation step for conversion of byproducts or products into more useful compounds.
1. Improvements in selectivity to desired multiply-halogenated isomers through isomerization of the multiply-halogenated species formed by halogenation. Examples include:
2. Enrichment in the primary halide content of a stream of mixed halide isomers by separating primary halides from other halide isomers. Dehydrohalogenating the other isomers, rehydrohalogenating the resulting olefins to produce a stream enriched in primary halide isomers, and returning the resulting stream to the primary halide separation step. Some variations include:
3. The use of multiple halogens to create the desired halide isomer. One halogen may be used to halogenate the hydrocarbon and be replaced by another.
4. The use a membrane reactor with halogen on one side and alkane on the other to improve selectivity to the desired halide isomer. This reactor design may improve monohalogenation, dihalogenation, and/or primary halogenation selectivity.
5. Operation of the halogenation reaction at high halogen:alkane ratio to improve conversion may result in unconverted halogen. Photoactivation of the unconverted halogen may be used at low temperature in a solid oxide bed to allow full recovery of all the halogen.
Improvements to the Reproportionation Step
In many processes, the overhalogenated species may be recycled to a point in the process where they are converted to the desired degree of halogenation or less than the desired degree of halogenation. The change in degree of halogenation is termed “reproportionation,” and allows for the use of the carbon and hydrogen in the overhalogenated species, thus reducing feedstock loss and perhaps also allowing greater economic per-pass yield.
Several Improvements Include:
1. A low-temperature reproproportionation step, in which the halogen is redistributed among over-halogenated species, resulting in the formation of optimally halogenated species and additional very highly halogenated species.
2. A low-temperature reproproportionation step, in which the halogen is redistributed among over-halogenated species, resulting in the formation of optimally halogenated species and additional very highly halogenated species. The yield of optimally halogenated species is maximized by conducting this reproportionation under temperature, pressure, and process conditions such that the reproportionation is conducted in the liquid phase while the optimally halogenated species is predominantly in the vapor phase.
3. The conversion of over-halogenated hydrocarbon to carbon black or other carbon material and halogen. The carbon material may be sold and the halogen may be recycled to the process.
4. The reproportionation of overhalogenated hydrocarbon with another hydrocarbon or halohydrocarbon. Such a process may allow the recovery of the desired hydrocarbon with a loss of a less desirable material.
1. A method of contacting water with alkyl halide and metal oxide in a multi-phase reactor with alkyl halide, solid oxide and optional diluent present at the bottom of the reactor with refluxing water present in a zone above the reactant mixture.
2. The product yield may be increased and process corrosivity may be reduced by conducting the solid oxide reaction in a liquid phase with water present to remove metal halide as it is formed. A specific example is:
3. The liquid phase performance of a reactor may be improved by adding a diluent. The diluent may be, but is not limited to alkanes that are readily separated from the products and reactants.
4. The yield to desired product may be improved by introducing the stream containing hydrocarbon halide to the metal oxide in stages.
5. The yield to desired product may be improved by providing a feed of solid to a fluidized bed reactor that includes some partially or completely spent material. Spent is defined as solid with no remaining oxygen (donation) capacity or bromine capacity.
6. The yield to desired product may be improved by providing a feed of solid to a fluidized bed reactor that includes some partially coked material.
7. The solid oxide reaction may be conducted in a series of switched fixed beds, some of which are undergoing regeneration at any given time.
8. In a process for the production of olefins, the di-halogenated species may be at least partially converted to olefin using certain solids. Some examples include:
Improvements to Solid Oxide Regeneration
1. Varying the temperature of solid oxide prior to oxygen introduction to change the particle size of the solid oxide to a more desirable distribution.
2. Increasing the temperature of solid oxide prior to oxygen introduction to dehydrogenate or desorb adsorbed hydrocarbon, reducing the amount of water and possibly carbon oxides generated in regeneration, thus reducing corrosivity and simplifying halide purification.
3. Performing a separate oxidation, particularly at low temperature, to remove adsorbed hydrocarbon reducing the amount of water and carbon oxides generated in regeneration, thus reducing corrosivity and simplifying halide purification.
4. Introducing water to the solid halide to change the particle size of the resulting solid oxide to a more desirable distribution.
5. Dissolving the active metal halide to separate it from impurities, and then converting metal halide to metal oxide.
6. The use of very high temperature regeneration to remove impurities. In particular, chlorine may be removed from metal bromide in this manner.
a. The combination of high temperature with heating of the solid halide prior to oxygen introduction may be particularly useful. In the case of metal bromides, this methodology may allow the removal of chlorine as C1Br or C12.
7. The reduction of the solid halide with hydrogen or other reducing agent to remove impurities. The reduced material may be reoxidized with oxygen, air, or other oxygen containing gas.
Improvements in Separations
1. Separation of halogen from nitrogen, oxygen, and other non-condensibles using solid adsorbents. The solid adsorbents will adsorb the halogen, which can be removed by heating the solid or reducing the pressure. The adsorbents may be, but are not limited to:
2. Separation of halogen from nitrogen, oxygen, and other non-condensibles using reactive solid adsorbents. The solid reactive adsorbents will react with the halogen, forming a new chemical composition, from which the halogen can be removed by heating the solid or reducing the pressure, regenerating the solid. The reactive adsorbents may be, but are not limited to:
3. Removal of water from halogen by passing the mixed stream over metal halides or metal halide hydrates which may be supported or unsupported. The metal halides will form hydrates and the metal halide hydrates will form more highly hydrated species. The water can be liberated and starting material can be regenerated by heating.
4. Methods of removing trace amounts of halogen from product streams using reactive solids, which may or may not be regenerable. Some specific reactive solids include, but are not limited to:
5. Removal of residual halogen from streams by reaction with olefins. Specific examples include:
6. Removal of residual hydrocarbon halide from streams by reaction with reactive solids Some specific reactive solids include, but are not limited to:
7. Separation of primary, secondary, and/or tertiary alkyl halides by selective dehydrohalogenation of selected species, separation of the olefin and hydrogen halide from the remaining alkyl halide, and recombination of the hydrogen halide and olefin to form alkyl halides. Examples include, but are not limited to:
8. Removal of sulfur-containing compounds from a hydrocarbon feed by reacting the feed with dry halogen to form sulfur, which can be removed as a solid from the sulfur-depleted hydrocarbon and hydrocarbon halide stream.
9. Removal of sulfur-containing compounds from a hydrocarbon feed by reacting the feed with dry halogen to form sulfur, which can be removed as a solid from the sulfur-depleted hydrocarbon and hydrocarbon halide stream.
10. Removal of carbon dioxide from a stream by reacting with a carbonate-forming material such as calcium oxide. The carbonate may be used in a hydrogen-halide recovery section of the plant. The carbonate will react with hydrogen halide, liberating water and carbon dioxide and producing solid halide, which can be regenerated and recycled to the carbon dioxide separation section.
11. Removal of arsenic, mercury, heavy metal-containing compounds from a hydrocarbon feed by reacting the feed with dry halogen to form solid metal compounds, solid metal halides or halogenated metal hydrocarbons, which can be easily separated.
12. Removing adsorbed product from the solid by rinsing with a compound that is easily separated from the product. Such a rinsing agent may be pentane or other alkane.
13. Removing adsorbed product from the solid by steam distillation.
Maintenance
1. A method of removing coke from reactors by reacting with bromine to form volatile carbon bromides. The carbon bromides may be used in the process in a reproportionation step, thus producing product from the coke.
2. A method of removing coke from reactors by reacting with hydrogen bromide to form volatile hydrocarbon bromides. The carbon bromides may be used in the process in a reproportionation step, thus producing product from the coke.
Start-Up
1. Starting the process with some or all of the solid in the halide or partially halogenated form may provide a number of benefits including:
2. Starting the process with some or all of the solid in the oxide or partially oxygenated form may provide a number of benefits including:
3. Starting the process with a solid which has undergone a number of regeneration cycles may offer benefits including:
4. Starting the process with the halogen present in part or completely as alkyl halide may be desirable for a number of reasons including:
1. Stopping the process with the halide in metal halide and/or alkyl halide form may improve safety, reduce corrosion, and improve maintenance accessibility.
2. Introducing reactive components into certain sections of the plant may provide a sink for halogen or hydrogen halide, improving safety, reducing corrosion and improving accessibility. An example of such a component is olefin.
Materials of Construction
1. The reactors for alkane halogenation and metathesis consisting of materials to minimize corrosion including but not limited to:
2. Process components operating at temperatures below 300 C. constructed from:
This application is a continuation of U.S. patent application Ser. No. 12/692,831 filed Jan. 25, 2010 now U.S. Pat. No. 7,838,708, which is a continuation of U.S. patent application Ser. No. 11/098,997 filed Apr. 5, 2005 now abandoned, which is a continuation-in-part of U.S. patent application Ser. No. 10/430,240 filed Aug. 19, 2003 now U.S. Pat. No. 7,161,050, which is a continuation-in-part of prior application Ser. No. 10/365,346 filed Feb. 12, 2003 now abandoned, which is a continuation of prior application Ser. No. 10/298,440 filed Nov. 19, 2002, abandoned, which is a continuation-in-part of prior application Ser. No. 10/208,068, filed Jul. 29, 2002, abandoned, which is a continuation-in-part of prior application Ser. No. 10/054,004 filed Jan. 24, 2002, now U.S. Pat. No. 6,486,368, which is a continuation-in-part of prior application Ser. No. 09/951,739, filed Sep. 11, 2001, now U.S. Pat. No. 6,465,696, which is a continuation-in-part of application Ser. No. 09/886,078 filed Jun. 20, 2001, now U.S. Pat. No. 6,472,572.
Number | Name | Date | Kind |
---|---|---|---|
2168260 | Heisel et al. | Aug 1939 | A |
2246082 | Vaughan et al. | Jun 1941 | A |
2488083 | Gorin et al. | Nov 1949 | A |
2677598 | Crummett et al. | May 1954 | A |
2941014 | Rothweiler et al. | Jun 1960 | A |
3076784 | Huermann et al. | Feb 1963 | A |
3172915 | Borkowski et al. | Mar 1965 | A |
3246043 | Rosset et al. | Apr 1966 | A |
3273964 | Rosset | Sep 1966 | A |
3294846 | Livak et al. | Dec 1966 | A |
3310380 | Lester | Mar 1967 | A |
3346340 | Louvar et al. | Oct 1967 | A |
3353916 | Lester | Nov 1967 | A |
3353919 | Stockman | Nov 1967 | A |
3496242 | Berkowitz et al. | Feb 1970 | A |
3562321 | Borkowski et al. | Feb 1971 | A |
3598876 | Bloch | Aug 1971 | A |
3657367 | Blake et al. | Apr 1972 | A |
3670037 | Dugan | Jun 1972 | A |
3673264 | Kuhn | Jun 1972 | A |
3679758 | Schneider | Jul 1972 | A |
3702886 | Argauer et al. | Nov 1972 | A |
3705196 | Turner | Dec 1972 | A |
3799997 | Schmerling | Mar 1974 | A |
3865886 | Schindler et al. | Feb 1975 | A |
3876715 | McNulty et al. | Apr 1975 | A |
3879473 | Stapp | Apr 1975 | A |
3879480 | Riegel et al. | Apr 1975 | A |
3883651 | Woitun et al. | May 1975 | A |
3886287 | Kobayashi et al. | May 1975 | A |
3894103 | Chang et al. | Jul 1975 | A |
3894104 | Chang et al. | Jul 1975 | A |
3894105 | Chang et al. | Jul 1975 | A |
3894107 | Butter et al. | Jul 1975 | A |
3907917 | Forth | Sep 1975 | A |
3919336 | Kurtz | Nov 1975 | A |
3920764 | Riegel et al. | Nov 1975 | A |
3923913 | Antonini et al. | Dec 1975 | A |
3928483 | Chang et al. | Dec 1975 | A |
3965205 | Garwood et al. | Jun 1976 | A |
3974062 | Owen et al. | Aug 1976 | A |
3987119 | Kurtz et al. | Oct 1976 | A |
3992466 | Plank et al. | Nov 1976 | A |
4006169 | Anderson et al. | Feb 1977 | A |
4011278 | Plank et al. | Mar 1977 | A |
4025571 | Lago | May 1977 | A |
4025572 | Lago | May 1977 | A |
4025575 | Chang et al. | May 1977 | A |
4025576 | Chang et al. | May 1977 | A |
4035285 | Owen et al. | Jul 1977 | A |
4035430 | Dwyer et al. | Jul 1977 | A |
4039600 | Chang | Aug 1977 | A |
4044061 | Chang et al. | Aug 1977 | A |
4046825 | Owen et al. | Sep 1977 | A |
4049734 | Garwood et al. | Sep 1977 | A |
4052471 | Pearsall | Oct 1977 | A |
4052472 | Givens et al. | Oct 1977 | A |
4058576 | Chang et al. | Nov 1977 | A |
4060568 | Rodewald | Nov 1977 | A |
4071753 | Fulenwider et al. | Jan 1978 | A |
4072733 | Hargis et al. | Feb 1978 | A |
4087475 | Jordan | May 1978 | A |
4088706 | Kaeding | May 1978 | A |
4092368 | Smith | May 1978 | A |
4110180 | Nidola et al. | Aug 1978 | A |
4117251 | Kaufhold et al. | Sep 1978 | A |
4129604 | Tsao | Dec 1978 | A |
4133838 | Pearson | Jan 1979 | A |
4133966 | Pretzer et al. | Jan 1979 | A |
4138440 | Chang et al. | Feb 1979 | A |
4156698 | Dwyer et al. | May 1979 | A |
4169862 | Eden | Oct 1979 | A |
4172099 | Severino | Oct 1979 | A |
4187255 | Dodd | Feb 1980 | A |
4194990 | Pieters et al. | Mar 1980 | A |
4197420 | Ferraris et al. | Apr 1980 | A |
4219680 | Konig et al. | Aug 1980 | A |
4249031 | Drent et al. | Feb 1981 | A |
4270929 | Dang Vu et al. | Jun 1981 | A |
4272338 | Lynch et al. | Jun 1981 | A |
4282159 | Davidson et al. | Aug 1981 | A |
4300005 | Li | Nov 1981 | A |
4300009 | Haag et al. | Nov 1981 | A |
4301253 | Warren | Nov 1981 | A |
4302619 | Gross et al. | Nov 1981 | A |
4307261 | Beard, Jr. et al. | Dec 1981 | A |
4308403 | Knifton | Dec 1981 | A |
4311865 | Chen et al. | Jan 1982 | A |
4317800 | Sloterdijk et al. | Mar 1982 | A |
4317934 | Seemuth | Mar 1982 | A |
4317943 | Knifton | Mar 1982 | A |
4320241 | Frankiewicz | Mar 1982 | A |
4333852 | Warren | Jun 1982 | A |
4347391 | Campbell | Aug 1982 | A |
4350511 | Holmes et al. | Sep 1982 | A |
4371716 | Paxson et al. | Feb 1983 | A |
4373109 | Olah | Feb 1983 | A |
4376019 | Gamlen et al. | Mar 1983 | A |
4380682 | Leitert et al. | Apr 1983 | A |
4384159 | Diesen | May 1983 | A |
4389391 | Dunn | Jun 1983 | A |
4410714 | Apanel | Oct 1983 | A |
4412086 | Beard, Jr. et al. | Oct 1983 | A |
4418236 | Cornelius et al. | Nov 1983 | A |
4431856 | Daviduk et al. | Feb 1984 | A |
4433189 | Young | Feb 1984 | A |
4433192 | Olah | Feb 1984 | A |
4439409 | Puppe et al. | Mar 1984 | A |
4440871 | Lok et al. | Apr 1984 | A |
4443620 | Gelbein et al. | Apr 1984 | A |
4462814 | Holmes et al. | Jul 1984 | A |
4465884 | Degnan et al. | Aug 1984 | A |
4465893 | Olah | Aug 1984 | A |
4467130 | Olah | Aug 1984 | A |
4467133 | Chang et al. | Aug 1984 | A |
4489210 | Judat et al. | Dec 1984 | A |
4489211 | Ogura et al. | Dec 1984 | A |
4492657 | Heiss | Jan 1985 | A |
4496752 | Gelbein et al. | Jan 1985 | A |
4497967 | Wan | Feb 1985 | A |
4499314 | Seddon et al. | Feb 1985 | A |
4506105 | Kaufhold | Mar 1985 | A |
4509955 | Hayashi | Apr 1985 | A |
4513092 | Chu et al. | Apr 1985 | A |
4513164 | Olah | Apr 1985 | A |
4523040 | Olah | Jun 1985 | A |
4524227 | Fowles et al. | Jun 1985 | A |
4524228 | Fowles et al. | Jun 1985 | A |
4524231 | Fowles et al. | Jun 1985 | A |
4538014 | Miale et al. | Aug 1985 | A |
4538015 | Miale et al. | Aug 1985 | A |
4540826 | Banasiak et al. | Sep 1985 | A |
4543434 | Chang | Sep 1985 | A |
4544781 | Chao et al. | Oct 1985 | A |
4547612 | Tabak | Oct 1985 | A |
4550217 | Graziani et al. | Oct 1985 | A |
4550218 | Chu | Oct 1985 | A |
4568660 | Klosiewicz | Feb 1986 | A |
4579977 | Drake | Apr 1986 | A |
4579992 | Kaufhold et al. | Apr 1986 | A |
4579996 | Font Freide et al. | Apr 1986 | A |
4587375 | Debras et al. | May 1986 | A |
4588835 | Torii et al. | May 1986 | A |
4590310 | Townsend et al. | May 1986 | A |
4599474 | Devries et al. | Jul 1986 | A |
4605796 | Isogai et al. | Aug 1986 | A |
4605803 | Chang et al. | Aug 1986 | A |
4621161 | Shihabi | Nov 1986 | A |
4621164 | Chang et al. | Nov 1986 | A |
4633027 | Owen et al. | Dec 1986 | A |
4634800 | Withers, Jr. et al. | Jan 1987 | A |
4642403 | Hyde et al. | Feb 1987 | A |
4642404 | Shihabi | Feb 1987 | A |
4652688 | Brophy et al. | Mar 1987 | A |
4654449 | Chang et al. | Mar 1987 | A |
4655893 | Beale | Apr 1987 | A |
4658073 | Tabak | Apr 1987 | A |
4658077 | Kolts et al. | Apr 1987 | A |
4665259 | Brazdil et al. | May 1987 | A |
4665267 | Barri | May 1987 | A |
4665270 | Brophy et al. | May 1987 | A |
4675410 | Feitler et al. | Jun 1987 | A |
4690903 | Chen et al. | Sep 1987 | A |
4695663 | Hall et al. | Sep 1987 | A |
4696985 | Martin | Sep 1987 | A |
4704488 | Devries et al. | Nov 1987 | A |
4704493 | Devries et al. | Nov 1987 | A |
4709108 | Devries et al. | Nov 1987 | A |
4720600 | Beech, Jr. et al. | Jan 1988 | A |
4720602 | Chu | Jan 1988 | A |
4724275 | Hinnenkamp et al. | Feb 1988 | A |
4735747 | Ollivier et al. | Apr 1988 | A |
4737594 | Olah | Apr 1988 | A |
4748013 | Saito et al. | May 1988 | A |
4769504 | Noceti et al. | Sep 1988 | A |
4774216 | Kolts et al. | Sep 1988 | A |
4775462 | Imai et al. | Oct 1988 | A |
4777321 | Harandi et al. | Oct 1988 | A |
4781733 | Babcock et al. | Nov 1988 | A |
4783566 | Kocal et al. | Nov 1988 | A |
4788369 | Marsh et al. | Nov 1988 | A |
4788377 | Chang et al. | Nov 1988 | A |
4792642 | Rule et al. | Dec 1988 | A |
4795732 | Bam | Jan 1989 | A |
4795737 | Rule et al. | Jan 1989 | A |
4795843 | Imai et al. | Jan 1989 | A |
4795848 | Teller et al. | Jan 1989 | A |
4804797 | Minet et al. | Feb 1989 | A |
4804800 | Bortinger et al. | Feb 1989 | A |
4808763 | Shum | Feb 1989 | A |
4814527 | Diesen | Mar 1989 | A |
4814532 | Yoshida et al. | Mar 1989 | A |
4814535 | Yurchak | Mar 1989 | A |
4814536 | Yurchak | Mar 1989 | A |
4849562 | Buhs et al. | Jul 1989 | A |
4849573 | Kaefing | Jul 1989 | A |
4851602 | Harandi et al. | Jul 1989 | A |
4851606 | Ragonese et al. | Jul 1989 | A |
4886925 | Harandi | Dec 1989 | A |
4886932 | Leyshon | Dec 1989 | A |
4891463 | Chu | Jan 1990 | A |
4895995 | James, Jr. et al. | Jan 1990 | A |
4899000 | Stauffer | Feb 1990 | A |
4899001 | Kalnes et al. | Feb 1990 | A |
4899002 | Harandi et al. | Feb 1990 | A |
4902842 | Kalnes et al. | Feb 1990 | A |
4925995 | Robschlager | May 1990 | A |
4929781 | James, Jr. et al. | May 1990 | A |
4939310 | Wade | Jul 1990 | A |
4939311 | Washecheck et al. | Jul 1990 | A |
4945175 | Hobbs et al. | Jul 1990 | A |
4950811 | Doussain et al. | Aug 1990 | A |
4950822 | Dileo et al. | Aug 1990 | A |
4956521 | Volles | Sep 1990 | A |
4962252 | Wade | Oct 1990 | A |
4973776 | Allenger et al. | Nov 1990 | A |
4973786 | Karra | Nov 1990 | A |
4982024 | Lin et al. | Jan 1991 | A |
4982041 | Campbell | Jan 1991 | A |
4988660 | Campbell | Jan 1991 | A |
4990696 | Stauffer | Feb 1991 | A |
4990711 | Chen et al. | Feb 1991 | A |
5001293 | Nubel et al. | Mar 1991 | A |
5004847 | Beaver et al. | Apr 1991 | A |
5013424 | James, Jr. et al. | May 1991 | A |
5013793 | Wang et al. | May 1991 | A |
5019652 | Taylor et al. | May 1991 | A |
5026934 | Bains et al. | Jun 1991 | A |
5026937 | Bricker | Jun 1991 | A |
5026944 | Allenger et al. | Jun 1991 | A |
5034566 | Ishino et al. | Jul 1991 | A |
5043502 | Martindale et al. | Aug 1991 | A |
5055235 | Brackenridge et al. | Oct 1991 | A |
5055633 | Volles | Oct 1991 | A |
5055634 | Volles | Oct 1991 | A |
5059744 | Harandi et al. | Oct 1991 | A |
5068478 | Miller et al. | Nov 1991 | A |
5071449 | Sircar | Dec 1991 | A |
5071815 | Wallace | Dec 1991 | A |
5073656 | Chafin et al. | Dec 1991 | A |
5073657 | Warren | Dec 1991 | A |
5082473 | Keefer | Jan 1992 | A |
5082816 | Teller et al. | Jan 1992 | A |
5085674 | Leavitt | Feb 1992 | A |
5087779 | Nubel et al. | Feb 1992 | A |
5087786 | Nubel et al. | Feb 1992 | A |
5087787 | Kimble et al. | Feb 1992 | A |
5093542 | Gaffney | Mar 1992 | A |
5096469 | Keefer | Mar 1992 | A |
5097083 | Stauffer | Mar 1992 | A |
5099084 | Stauffer | Mar 1992 | A |
5105045 | Kimble et al. | Apr 1992 | A |
5105046 | Washecheck | Apr 1992 | A |
5107032 | Erb et al. | Apr 1992 | A |
5107051 | Pannell | Apr 1992 | A |
5107061 | Ou et al. | Apr 1992 | A |
5108579 | Casci | Apr 1992 | A |
5118899 | Kimble et al. | Jun 1992 | A |
5120332 | Wells | Jun 1992 | A |
5132343 | Zwecker et al. | Jul 1992 | A |
5138112 | Gosling et al. | Aug 1992 | A |
5139991 | Taylor et al. | Aug 1992 | A |
5146027 | Gaffney | Sep 1992 | A |
5157189 | Karra | Oct 1992 | A |
5160502 | Kimble et al. | Nov 1992 | A |
5166452 | Gradl et al. | Nov 1992 | A |
5175382 | Hebgen et al. | Dec 1992 | A |
5178748 | Casci et al. | Jan 1993 | A |
5185479 | Stauffer | Feb 1993 | A |
5188725 | Harandi | Feb 1993 | A |
5191142 | Marshall et al. | Mar 1993 | A |
5194244 | Brownscombe et al. | Mar 1993 | A |
5202506 | Kirchner et al. | Apr 1993 | A |
5202511 | Salinas, III et al. | Apr 1993 | A |
5210357 | Kolts et al. | May 1993 | A |
5215648 | Zones et al. | Jun 1993 | A |
5223471 | Washecheck | Jun 1993 | A |
5228888 | Gmelin et al. | Jul 1993 | A |
5233113 | Periana et al. | Aug 1993 | A |
5237115 | Makovec et al. | Aug 1993 | A |
5243098 | Miller et al. | Sep 1993 | A |
5243114 | Johnson et al. | Sep 1993 | A |
5245109 | Kaminsky et al. | Sep 1993 | A |
5254772 | Dukat et al. | Oct 1993 | A |
5254790 | Thomas et al. | Oct 1993 | A |
5264635 | Le et al. | Nov 1993 | A |
5268518 | West et al. | Dec 1993 | A |
5276226 | Horvath et al. | Jan 1994 | A |
5276240 | Timmons et al. | Jan 1994 | A |
5276242 | Wu | Jan 1994 | A |
5284990 | Peterson et al. | Feb 1994 | A |
5300126 | Brown et al. | Apr 1994 | A |
5306855 | Periana et al. | Apr 1994 | A |
5316995 | Kaminsky et al. | May 1994 | A |
5319132 | Ozawa et al. | Jun 1994 | A |
5334777 | Miller et al. | Aug 1994 | A |
5345021 | Casci et al. | Sep 1994 | A |
5354916 | Horvath et al. | Oct 1994 | A |
5354931 | Jan et al. | Oct 1994 | A |
5366949 | Schubert | Nov 1994 | A |
5371313 | Ostrowicki | Dec 1994 | A |
5382704 | Krespan et al. | Jan 1995 | A |
5382743 | Beech, Jr. et al. | Jan 1995 | A |
5382744 | Abbott et al. | Jan 1995 | A |
5385718 | Casci et al. | Jan 1995 | A |
5395981 | Marker | Mar 1995 | A |
5399258 | Fletcher et al. | Mar 1995 | A |
5401890 | Parks | Mar 1995 | A |
5401894 | Brasier et al. | Mar 1995 | A |
5406017 | Withers, Jr. | Apr 1995 | A |
5414173 | Garces et al. | May 1995 | A |
5430210 | Grasselli et al. | Jul 1995 | A |
5430214 | Smith et al. | Jul 1995 | A |
5430219 | Sanfilippo et al. | Jul 1995 | A |
5436378 | Masini et al. | Jul 1995 | A |
5444168 | Brown | Aug 1995 | A |
5446234 | Casci et al. | Aug 1995 | A |
5453557 | Harley et al. | Sep 1995 | A |
5456822 | Marcilly et al. | Oct 1995 | A |
5457255 | Kumata et al. | Oct 1995 | A |
5464799 | Casci et al. | Nov 1995 | A |
5465699 | Voigt | Nov 1995 | A |
5470377 | Whitlock | Nov 1995 | A |
5480629 | Thompson et al. | Jan 1996 | A |
5486627 | Quarderer et al. | Jan 1996 | A |
5489719 | Le et al. | Feb 1996 | A |
5489727 | Randolph et al. | Feb 1996 | A |
5500297 | Thompson et al. | Mar 1996 | A |
5510525 | Sen et al. | Apr 1996 | A |
5523503 | Funk et al. | Jun 1996 | A |
5525230 | Wrigley et al. | Jun 1996 | A |
5538540 | Whitlock | Jul 1996 | A |
5563313 | Chung et al. | Oct 1996 | A |
5565092 | Pannell et al. | Oct 1996 | A |
5565616 | Li et al. | Oct 1996 | A |
5571762 | Clerici et al. | Nov 1996 | A |
5571885 | Chung et al. | Nov 1996 | A |
5599381 | Whitlock | Feb 1997 | A |
5600043 | Johnston et al. | Feb 1997 | A |
5600045 | Van Der Aalst et al. | Feb 1997 | A |
5609654 | Le et al. | Mar 1997 | A |
5633419 | Spencer et al. | May 1997 | A |
5639930 | Penick | Jun 1997 | A |
5653956 | Zones | Aug 1997 | A |
5656149 | Zones et al. | Aug 1997 | A |
5661097 | Spencer et al. | Aug 1997 | A |
5663465 | Clegg et al. | Sep 1997 | A |
5663474 | Pham et al. | Sep 1997 | A |
5675046 | Ohno et al. | Oct 1997 | A |
5675052 | Menon et al. | Oct 1997 | A |
5679134 | Brugerolle et al. | Oct 1997 | A |
5679879 | Mercier et al. | Oct 1997 | A |
5684213 | Nemphos et al. | Nov 1997 | A |
5693191 | Pividal et al. | Dec 1997 | A |
5695890 | Thompson et al. | Dec 1997 | A |
5698747 | Godwin et al. | Dec 1997 | A |
5705712 | Frey et al. | Jan 1998 | A |
5705728 | Viswanathan et al. | Jan 1998 | A |
5705729 | Huang | Jan 1998 | A |
5708246 | Camaioni et al. | Jan 1998 | A |
5720858 | Noceti et al. | Feb 1998 | A |
5728897 | Buysch et al. | Mar 1998 | A |
5728905 | Clegg et al. | Mar 1998 | A |
5734073 | Chambers et al. | Mar 1998 | A |
5741949 | Mack | Apr 1998 | A |
5744669 | Kalnes et al. | Apr 1998 | A |
5750801 | Buysch et al. | May 1998 | A |
5770175 | Zones | Jun 1998 | A |
5776871 | Cothran et al. | Jul 1998 | A |
5780703 | Chang et al. | Jul 1998 | A |
5798314 | Spencer et al. | Aug 1998 | A |
5814715 | Chen et al. | Sep 1998 | A |
5817904 | Vic et al. | Oct 1998 | A |
5821394 | Schoebrechts et al. | Oct 1998 | A |
5847224 | Koga et al. | Dec 1998 | A |
5849978 | Benazzi et al. | Dec 1998 | A |
5866735 | Cheung et al. | Feb 1999 | A |
5895831 | Brasier et al. | Apr 1999 | A |
5898086 | Harris | Apr 1999 | A |
5905169 | Jacobson | May 1999 | A |
5906892 | Thompson et al. | May 1999 | A |
5908963 | Voss et al. | Jun 1999 | A |
5952538 | Vaughn et al. | Sep 1999 | A |
5959170 | Withers | Sep 1999 | A |
5968236 | Bassine | Oct 1999 | A |
5969195 | Stabel et al. | Oct 1999 | A |
5977402 | Sekiguchi et al. | Nov 1999 | A |
5983476 | Eshelman et al. | Nov 1999 | A |
5986158 | Van Broekhoven et al. | Nov 1999 | A |
5994604 | Reagen et al. | Nov 1999 | A |
5998679 | Miller | Dec 1999 | A |
5998686 | Clem et al. | Dec 1999 | A |
6002059 | Hellring et al. | Dec 1999 | A |
6015867 | Fushimi et al. | Jan 2000 | A |
6018088 | Olah | Jan 2000 | A |
6022929 | Chen et al. | Feb 2000 | A |
6034288 | Scott et al. | Mar 2000 | A |
6056804 | Keefer et al. | May 2000 | A |
6068679 | Zheng | May 2000 | A |
6072091 | Cosyns et al. | Jun 2000 | A |
6087294 | Klabunde et al. | Jul 2000 | A |
6090312 | Ziaka et al. | Jul 2000 | A |
6096932 | Subramanian | Aug 2000 | A |
6096933 | Cheung et al. | Aug 2000 | A |
6103215 | Zones et al. | Aug 2000 | A |
6107561 | Thompson | Aug 2000 | A |
6117371 | Mack | Sep 2000 | A |
6124514 | Emmrich et al. | Sep 2000 | A |
6127588 | Kimble et al. | Oct 2000 | A |
6130260 | Hall et al. | Oct 2000 | A |
6143939 | Farcasiu et al. | Nov 2000 | A |
6169218 | Hearn et al. | Jan 2001 | B1 |
6180841 | Fatutto et al. | Jan 2001 | B1 |
6187871 | Thompson et al. | Feb 2001 | B1 |
6187983 | Sun | Feb 2001 | B1 |
6203712 | Bronner et al. | Mar 2001 | B1 |
6207864 | Henningsen et al. | Mar 2001 | B1 |
6225517 | Nascimento et al. | May 2001 | B1 |
6248218 | Linkous et al. | Jun 2001 | B1 |
6265505 | McConville et al. | Jul 2001 | B1 |
6281405 | Davis et al. | Aug 2001 | B1 |
6320085 | Arvai et al. | Nov 2001 | B1 |
6337063 | Rouleau et al. | Jan 2002 | B1 |
6342200 | Rouleau et al. | Jan 2002 | B1 |
6368490 | Gestermann | Apr 2002 | B1 |
6369283 | Guram et al. | Apr 2002 | B1 |
6372949 | Brown et al. | Apr 2002 | B1 |
6376731 | Evans et al. | Apr 2002 | B1 |
6380328 | McConville et al. | Apr 2002 | B1 |
6380423 | Banning et al. | Apr 2002 | B2 |
6380444 | Bjerrum et al. | Apr 2002 | B1 |
6395945 | Randolph | May 2002 | B1 |
6403840 | Zhou et al. | Jun 2002 | B1 |
6406523 | Connor et al. | Jun 2002 | B1 |
6423211 | Randolph et al. | Jul 2002 | B1 |
6426441 | Randolph et al. | Jul 2002 | B1 |
6426442 | Ichikawa et al. | Jul 2002 | B1 |
6452058 | Schweizer et al. | Sep 2002 | B1 |
6455650 | Lipian et al. | Sep 2002 | B1 |
6462243 | Zhou et al. | Oct 2002 | B1 |
6465699 | Grosso | Oct 2002 | B1 |
6465969 | Zhou et al. | Oct 2002 | B1 |
6472345 | Hintermann et al. | Oct 2002 | B2 |
6472572 | Zhou et al. | Oct 2002 | B1 |
6475463 | Elomari et al. | Nov 2002 | B1 |
6475464 | Rouleau et al. | Nov 2002 | B1 |
6479705 | Murata et al. | Nov 2002 | B2 |
6482997 | Petit-Clair et al. | Nov 2002 | B2 |
6486368 | Zhou et al. | Nov 2002 | B1 |
6495484 | Holtcamp | Dec 2002 | B1 |
6509485 | Mul et al. | Jan 2003 | B2 |
6511526 | Jagger et al. | Jan 2003 | B2 |
6514319 | Keefer et al. | Feb 2003 | B2 |
6518474 | Sanderson et al. | Feb 2003 | B1 |
6518476 | Culp et al. | Feb 2003 | B1 |
6525228 | Chauvin et al. | Feb 2003 | B2 |
6525230 | Grosso | Feb 2003 | B2 |
6528693 | Gandy et al. | Mar 2003 | B1 |
6538162 | Chang et al. | Mar 2003 | B2 |
6540905 | Elomari | Apr 2003 | B1 |
6545191 | Stauffer | Apr 2003 | B1 |
6547958 | Elomari | Apr 2003 | B1 |
6548040 | Rouleau et al. | Apr 2003 | B1 |
6552241 | Randolph et al. | Apr 2003 | B1 |
6566572 | Okamoto et al. | May 2003 | B2 |
6572829 | Linkous et al. | Jun 2003 | B2 |
6585953 | Roberts et al. | Jul 2003 | B2 |
6616830 | Elomari | Sep 2003 | B2 |
6620757 | McConville et al. | Sep 2003 | B2 |
6632971 | Brown et al. | Oct 2003 | B2 |
6635793 | Mul et al. | Oct 2003 | B2 |
6641644 | Jagger et al. | Nov 2003 | B2 |
6646102 | Boriack et al. | Nov 2003 | B2 |
6669846 | Perriello | Dec 2003 | B2 |
6672572 | Werlen | Jan 2004 | B2 |
6679986 | Da Silva et al. | Jan 2004 | B1 |
6680415 | Gulotty, Jr. et al. | Jan 2004 | B1 |
6692626 | Keefer et al. | Feb 2004 | B2 |
6692723 | Rouleau et al. | Feb 2004 | B2 |
6710213 | Aoki et al. | Mar 2004 | B2 |
6713087 | Tracy et al. | Mar 2004 | B2 |
6713655 | Yilmaz et al. | Mar 2004 | B2 |
RE38493 | Keefer et al. | Apr 2004 | E |
6723808 | Holtcamp | Apr 2004 | B2 |
6727400 | Messier et al. | Apr 2004 | B2 |
6740146 | Simonds | May 2004 | B2 |
6753390 | Ehrman et al. | Jun 2004 | B2 |
6765120 | Weber et al. | Jul 2004 | B2 |
6797845 | Hickman et al. | Sep 2004 | B1 |
6797851 | Martens et al. | Sep 2004 | B2 |
6821924 | Gulotty, Jr. et al. | Nov 2004 | B2 |
6822123 | Stauffer | Nov 2004 | B2 |
6822125 | Lee et al. | Nov 2004 | B2 |
6825307 | Goodall | Nov 2004 | B2 |
6825383 | Dewkar et al. | Nov 2004 | B1 |
6831032 | Spaether | Dec 2004 | B2 |
6838576 | Wicki et al. | Jan 2005 | B1 |
6841063 | Elomari | Jan 2005 | B2 |
6852896 | Stauffer | Feb 2005 | B2 |
6866950 | Connor et al. | Mar 2005 | B2 |
6869903 | Matsunaga | Mar 2005 | B2 |
6875339 | Rangarajan et al. | Apr 2005 | B2 |
6878853 | Tanaka et al. | Apr 2005 | B2 |
6888013 | Paparatto et al. | May 2005 | B2 |
6900363 | Harth et al. | May 2005 | B2 |
6902602 | Keefer et al. | Jun 2005 | B2 |
6903171 | Rhodes et al. | Jun 2005 | B2 |
6909024 | Jones et al. | Jun 2005 | B1 |
6921597 | Keefer et al. | Jul 2005 | B2 |
6933417 | Henley et al. | Aug 2005 | B1 |
6946566 | Yaegashi et al. | Sep 2005 | B2 |
6953868 | Boaen et al. | Oct 2005 | B2 |
6953873 | Cortright et al. | Oct 2005 | B2 |
6956140 | Ehrenfeld | Oct 2005 | B2 |
6958306 | Holtcamp | Oct 2005 | B2 |
6984763 | Schweizer et al. | Jan 2006 | B2 |
7001872 | Pyecroft et al. | Feb 2006 | B2 |
7002050 | Santiago Fernandez et al. | Feb 2006 | B2 |
7011811 | Elomari | Mar 2006 | B2 |
7019182 | Grosso | Mar 2006 | B2 |
7026145 | Mizrahi et al. | Apr 2006 | B2 |
7026519 | Santiago Fernandez et al. | Apr 2006 | B2 |
7037358 | Babicki et al. | May 2006 | B2 |
7045670 | Johnson et al. | May 2006 | B2 |
7049388 | Boriack et al. | May 2006 | B2 |
7053252 | Boussand et al. | May 2006 | B2 |
7057081 | Allison et al. | Jun 2006 | B2 |
7060865 | Ding et al. | Jun 2006 | B2 |
7064238 | Waycuilis | Jun 2006 | B2 |
7064240 | Ohno et al. | Jun 2006 | B2 |
7067448 | Weitkamp et al. | Jun 2006 | B1 |
7083714 | Elomari | Aug 2006 | B2 |
7084308 | Stauffer | Aug 2006 | B1 |
7091270 | Zilberman et al. | Aug 2006 | B2 |
7091387 | Fong et al. | Aug 2006 | B2 |
7091391 | Stauffer | Aug 2006 | B2 |
7094936 | Owens et al. | Aug 2006 | B1 |
7098371 | Mack et al. | Aug 2006 | B2 |
7105710 | Boons et al. | Sep 2006 | B2 |
7138534 | Forlin et al. | Nov 2006 | B2 |
7141708 | Marsella et al. | Nov 2006 | B2 |
7145045 | Harmsen et al. | Dec 2006 | B2 |
7148356 | Smith, III et al. | Dec 2006 | B2 |
7148390 | Zhou et al. | Dec 2006 | B2 |
7151199 | Martens et al. | Dec 2006 | B2 |
7161050 | Sherman et al. | Jan 2007 | B2 |
7169730 | Ma et al. | Jan 2007 | B2 |
7176340 | Van Broekhoven et al. | Feb 2007 | B2 |
7176342 | Bellussi et al. | Feb 2007 | B2 |
7182871 | Perriello | Feb 2007 | B2 |
7193093 | Murray et al. | Mar 2007 | B2 |
7196239 | Van Egmond et al. | Mar 2007 | B2 |
7199083 | Zevallos | Apr 2007 | B2 |
7199255 | Murray et al. | Apr 2007 | B2 |
7208641 | Nagasaki et al. | Apr 2007 | B2 |
7214750 | McDonald et al. | May 2007 | B2 |
7220391 | Huang et al. | May 2007 | B1 |
7226569 | Elomari | Jun 2007 | B2 |
7226576 | Elomari | Jun 2007 | B2 |
7230150 | Grosso et al. | Jun 2007 | B2 |
7230151 | Martens et al. | Jun 2007 | B2 |
7232872 | Shaffer et al. | Jun 2007 | B2 |
7238846 | Janssen et al. | Jul 2007 | B2 |
7244795 | Agapiou et al. | Jul 2007 | B2 |
7244867 | Waycuilis | Jul 2007 | B2 |
7250107 | Benazzi et al. | Jul 2007 | B2 |
7250542 | Smith, Jr. et al. | Jul 2007 | B2 |
7252920 | Kurokawa et al. | Aug 2007 | B2 |
7253327 | Janssens et al. | Aug 2007 | B2 |
7253328 | Stauffer | Aug 2007 | B2 |
7265193 | Weng et al. | Sep 2007 | B2 |
7267758 | Benazzi et al. | Sep 2007 | B2 |
7268263 | Frey et al. | Sep 2007 | B1 |
7271303 | Sechrist et al. | Sep 2007 | B1 |
7273957 | Bakshi et al. | Sep 2007 | B2 |
7282603 | Richards | Oct 2007 | B2 |
7285698 | Liu et al. | Oct 2007 | B2 |
7304193 | Frey et al. | Dec 2007 | B1 |
7342144 | Kaizik et al. | Mar 2008 | B2 |
7348295 | Zones et al. | Mar 2008 | B2 |
7348464 | Waycuilis | Mar 2008 | B2 |
7357904 | Zones et al. | Apr 2008 | B2 |
7361794 | Grosso | Apr 2008 | B2 |
7390395 | Elomari | Jun 2008 | B2 |
20020102672 | Mizrahi | Aug 2002 | A1 |
20020198416 | Zhou et al. | Dec 2002 | A1 |
20030004380 | Grumann | Jan 2003 | A1 |
20030065239 | Zhu | Apr 2003 | A1 |
20030069452 | Sherman et al. | Apr 2003 | A1 |
20030078456 | Yilmaz et al. | Apr 2003 | A1 |
20030120121 | Sherman et al. | Jun 2003 | A1 |
20030125589 | Grosso | Jul 2003 | A1 |
20030166973 | Zhou et al. | Sep 2003 | A1 |
20040006246 | Sherman et al. | Jan 2004 | A1 |
20040062705 | Leduc | Apr 2004 | A1 |
20040152929 | Clarke | Aug 2004 | A1 |
20040158107 | Aoki | Aug 2004 | A1 |
20040158108 | Snoble | Aug 2004 | A1 |
20040187684 | Elomari | Sep 2004 | A1 |
20050047927 | Lee et al. | Mar 2005 | A1 |
20050148805 | Jones | Jul 2005 | A1 |
20050171393 | Lorkovic | Aug 2005 | A1 |
20050192468 | Sherman et al. | Sep 2005 | A1 |
20050215837 | Hoffpauir | Sep 2005 | A1 |
20050234276 | Waycuilis | Oct 2005 | A1 |
20050245772 | Fong | Nov 2005 | A1 |
20050245777 | Fong | Nov 2005 | A1 |
20050267224 | Herling | Dec 2005 | A1 |
20060025617 | Begley | Feb 2006 | A1 |
20060100469 | Waycuilis | May 2006 | A1 |
20060135823 | Jun | Jun 2006 | A1 |
20060138025 | Zones | Jun 2006 | A1 |
20060138026 | Chen | Jun 2006 | A1 |
20060149116 | Slaugh | Jul 2006 | A1 |
20060229228 | Komon et al. | Oct 2006 | A1 |
20060229475 | Weiss et al. | Oct 2006 | A1 |
20060270863 | Reiling | Nov 2006 | A1 |
20060288690 | Elomari | Dec 2006 | A1 |
20070004955 | Kay | Jan 2007 | A1 |
20070078285 | Dagle | Apr 2007 | A1 |
20070100189 | Stauffer | May 2007 | A1 |
20070129584 | Basset | Jun 2007 | A1 |
20070142680 | Ayoub | Jun 2007 | A1 |
20070148067 | Zones | Jun 2007 | A1 |
20070148086 | Zones | Jun 2007 | A1 |
20070149778 | Zones | Jun 2007 | A1 |
20070149789 | Zones | Jun 2007 | A1 |
20070149819 | Zones | Jun 2007 | A1 |
20070149824 | Zones | Jun 2007 | A1 |
20070149837 | Zones | Jun 2007 | A1 |
20070197801 | Bolk | Aug 2007 | A1 |
20070197847 | Liu | Aug 2007 | A1 |
20070213545 | Bolk | Sep 2007 | A1 |
20070238905 | Arredondo | Oct 2007 | A1 |
20070238909 | Gadewar et al. | Oct 2007 | A1 |
20070251382 | Gadewar | Nov 2007 | A1 |
20070276168 | Garel | Nov 2007 | A1 |
20070284284 | Zones | Dec 2007 | A1 |
20080171898 | Waycuilis | Jul 2008 | A1 |
20080183022 | Waycuilis | Jul 2008 | A1 |
20080188697 | Lorkovic | Aug 2008 | A1 |
20080269534 | Lorkovic | Oct 2008 | A1 |
20080314758 | Grosso | Dec 2008 | A1 |
20090069606 | Komon | Mar 2009 | A1 |
20090127156 | Tung | May 2009 | A1 |
20100096588 | Gadewar | Apr 2010 | A1 |
20100099928 | Gadewar | Apr 2010 | A1 |
20100099929 | Gadewar | Apr 2010 | A1 |
20100099930 | Stoimenov | Apr 2010 | A1 |
20100105972 | Lorkovic | Apr 2010 | A1 |
20100121119 | Sherman | May 2010 | A1 |
Number | Date | Country |
---|---|---|
0210054 | Aug 2004 | BR |
1099656 | Apr 1981 | CA |
1101441 | May 1981 | CA |
1202610 | Apr 1986 | CA |
2447761 | Nov 2002 | CA |
2471295 | Jul 2003 | CA |
2542857 | May 2005 | CA |
2236126 | Aug 2006 | CA |
2203115 | Sep 2006 | CA |
2510093 | Dec 2006 | CA |
0021497 | Jan 1981 | EP |
0164798 | Dec 1985 | EP |
0418971 | Mar 1991 | EP |
0418974 | Mar 1991 | EP |
0418975 | Mar 1991 | EP |
0510238 | Oct 1992 | EP |
0526908 | Feb 1993 | EP |
0346612 | Aug 1993 | EP |
0560546 | Sep 1993 | EP |
0976705 | Jul 1998 | EP |
1186591 | Mar 2002 | EP |
1253126 | Oct 2002 | EP |
1312411 | May 2003 | EP |
1395536 | Mar 2004 | EP |
1404636 | Apr 2004 | EP |
1235769 | May 2004 | EP |
1435349 | Jul 2004 | EP |
1440939 | Jul 2004 | EP |
1474371 | Nov 2004 | EP |
1235772 | Jan 2005 | EP |
1661620 | May 2006 | EP |
1760057 | Mar 2007 | EP |
1689728 | Apr 2007 | EP |
1808227 | Jul 2007 | EP |
1837320 | Sep 2007 | EP |
5125 | Jan 1912 | GB |
156122 | Mar 1922 | GB |
294100 | Jun 1929 | GB |
363009 | Dec 1931 | GB |
402928 | Dec 1933 | GB |
474922 | Nov 1937 | GB |
536491 | May 1941 | GB |
553950 | Jun 1943 | GB |
586483 | Mar 1947 | GB |
775590 | May 1957 | GB |
793214 | Apr 1958 | GB |
796048 | Jun 1958 | GB |
796085 | Jun 1958 | GB |
883256 | Nov 1961 | GB |
950975 | Mar 1964 | GB |
950976 | Mar 1964 | GB |
991303 | May 1965 | GB |
995960 | Jun 1965 | GB |
1015033 | Dec 1965 | GB |
1104294 | Feb 1968 | GB |
1133752 | Nov 1968 | GB |
1172002 | Nov 1969 | GB |
1212240 | Nov 1970 | GB |
1233299 | May 1971 | GB |
1253618 | Nov 1971 | GB |
1263806 | Feb 1972 | GB |
1446803 | Aug 1976 | GB |
1542112 | Mar 1979 | GB |
2095243 | Sep 1982 | GB |
2095245 | Sep 1982 | GB |
2095249 | Sep 1982 | GB |
2116546 | Sep 1982 | GB |
2120249 | Nov 1983 | GB |
2185754 | Jul 1987 | GB |
2191214 | Dec 1987 | GB |
2004-529189 | Sep 2004 | JP |
8300859 | Mar 1983 | WO |
8504863 | Nov 1985 | WO |
9008120 | Jul 1990 | WO |
9008752 | Aug 1990 | WO |
9118856 | Dec 1991 | WO |
9203401 | Mar 1992 | WO |
9212946 | Aug 1992 | WO |
9316798 | Sep 1993 | WO |
8504867 | Nov 1995 | WO |
9622263 | Jul 1996 | WO |
9744302 | Nov 1997 | WO |
9812165 | Mar 1998 | WO |
9907443 | Feb 1999 | WO |
0007718 | Feb 2000 | WO |
0009261 | Feb 2000 | WO |
0114300 | Mar 2001 | WO |
0138275 | May 2001 | WO |
0144149 | Jun 2001 | WO |
02094749 | Nov 2002 | WO |
02094750 | Nov 2002 | WO |
02094751 | Nov 2002 | WO |
02094752 | Nov 2002 | WO |
03000635 | Jan 2003 | WO |
03002251 | Jan 2003 | WO |
03018524 | Mar 2003 | WO |
03020676 | Mar 2003 | WO |
03022827 | Mar 2003 | WO |
03043575 | May 2003 | WO |
03051813 | Jun 2003 | WO |
03062143 | Jul 2003 | WO |
03062172 | Jul 2003 | WO |
03078366 | Sep 2003 | WO |
2004018093 | Mar 2004 | WO |
2004067487 | Aug 2004 | WO |
2005014168 | Feb 2005 | WO |
2005019143 | Mar 2005 | WO |
2005021468 | Mar 2005 | WO |
2005035121 | Apr 2005 | WO |
2005037758 | Apr 2005 | WO |
2005054120 | Jun 2005 | WO |
2005056525 | Jun 2005 | WO |
2005058782 | Jun 2005 | WO |
2005090272 | Sep 2005 | WO |
2005095310 | Oct 2005 | WO |
2005105709 | Nov 2005 | WO |
2005105715 | Nov 2005 | WO |
2005110953 | Nov 2005 | WO |
2005113437 | Dec 2005 | WO |
2005113440 | Dec 2005 | WO |
2006007093 | Jan 2006 | WO |
2006015824 | Feb 2006 | WO |
2006019399 | Feb 2006 | WO |
2006020234 | Feb 2006 | WO |
2006036293 | Apr 2006 | WO |
2006039213 | Apr 2006 | WO |
2006039354 | Apr 2006 | WO |
2006043075 | Apr 2006 | WO |
2006053345 | May 2006 | WO |
2006-067155 | Jun 2006 | WO |
2006067188 | Jun 2006 | WO |
2006067190 | Jun 2006 | WO |
2006067191 | Jun 2006 | WO |
2006067192 | Jun 2006 | WO |
2006067193 | Jun 2006 | WO |
2006069107 | Jun 2006 | WO |
2006071354 | Jul 2006 | WO |
2006076942 | Jul 2006 | WO |
2006083427 | Aug 2006 | WO |
2006-100312 | Sep 2006 | WO |
2006104909 | Oct 2006 | WO |
2006104914 | Oct 2006 | WO |
2006111997 | Oct 2006 | WO |
2006113205 | Oct 2006 | WO |
2006118935 | Nov 2006 | WO |
2007001934 | Jan 2007 | WO |
2007017900 | Feb 2007 | WO |
2007044139 | Apr 2007 | WO |
2007046986 | Apr 2007 | WO |
2007050745 | May 2007 | WO |
2007071046 | Jun 2007 | WO |
2007079038 | Jul 2007 | WO |
2007091009 | Aug 2007 | WO |
2007094995 | Aug 2007 | WO |
2007107031 | Sep 2007 | WO |
2007111997 | Oct 2007 | WO |
2007114479 | Oct 2007 | WO |
2007125332 | Nov 2007 | WO |
2007130054 | Nov 2007 | WO |
2007130055 | Nov 2007 | WO |
2007141295 | Dec 2007 | WO |
2007142745 | Dec 2007 | WO |
2008036562 | Mar 2008 | WO |
2008036563 | Mar 2008 | WO |
2008106319 | Sep 2008 | WO |
2008157043 | Dec 2008 | WO |
2008157044 | Dec 2008 | WO |
2008157045 | Dec 2008 | WO |
2008157046 | Dec 2008 | WO |
2008157047 | Dec 2008 | WO |
Entry |
---|
U.S. Appl. No. 60/487,364, filed Jul. 15, 2003, Lorkovic et al. |
U.S. Appl. No. 60/559,844, filed Apr. 6, 2004, Sherman et al. |
U.S. Appl. No. 60/765,115, filed Feb. 3, 2006, Gadewar et al. |
Abstract of JP2007045756, Hydrogenation method using diaphragm type hydrogenation catalyst, hydrogenation reaction apparatus and diaphragm type hydrogenation catalyst, Publication date: Feb. 22, 2007, Inventor: Shuji et al., esp@cenet database—worldwide. |
Abstract of JP2007061594, Method for decomposing organohalogen compound and mobile decomposition system, Publication date: Mar. 15, 2007, Inventor: Koichi et al., esp@cenet database—worldwide. |
Abstract of JP2007099729, Method for producing alpha-methylstyrene or cumene, Publication date: Apr. 19, 2007, Inventor: Toshio, esp@cenet database—worldwide. |
Abstract of RO119778, Process for preparing perchloroethylene, Publication date: Mar. 30, 2005, Inventor: Horia et al., esp@cenet database—worldwide. |
Abstract of WO0105737, Method for preparing a carboxylic acid, Publication date: Jan. 25, 2001, Inventor: Pascal et al., esp@cenet database—worldwide. |
Abstract of WO0105738, Method for preparing a carboxylic acid, Publication date: Jan. 25, 2001, Inventor: Pascal et al., esp@cenet database—worldwide. |
Abstract of WO2004092099, Method for producing cyclic enols, Publication date: Oct. 28, 2004, Inventor: Marko et al., esp@cenet database—worldwide. |
Abstract of WO2006063852, Electroluminescent polymers and use thereof, Publication date: Jun. 22, 2006, Inventor: Arne et al., esp@cenet database—worldwide. |
Abstract of WO2006136135, Method for decarboxylating C-C cross-linking of carboxylic acids with carbon electrophiles, Publication date: Dec. 28, 2006, Inventor: Goossen Lukas et al., esp@cenet database—worldwide. |
Abstract of WO2007028761, Method for chlorinating alcohols, Publication date: Mar. 15, 2007, Inventor: Rohde et al., esp@cenet database—worldwide. |
Abstract of WO2007128842, Catalytic transalkylation of dialkyl benzenes, Publication date: Nov. 15, 2007, Inventor: Goncalvesalmeida et al., esp@cenet database—worldwide. |
Abstract of WO2007137566, Method for catalytic conversion of organic oxygenated compounds from biomaterials, Publication date: Dec. 6, 2007, Inventor: Reschetilowski, esp@cenet database—worldwide. |
Abstract of WO9721656, Method for making fluoroalkanols, Publication date: Jun. 19, 1997, Inventor: Gillet, esp@cenet database—worldwide. |
Abstract of WO9950213, Method for producing dialkyl ethers, Publication date: Oct. 7, 1999, Inventor: Falkowski Juergen et al., esp@cenet database—worldwide. |
Adachi, et al.; Synthesis of Sialyl Lewis X Ganglioside Analogs Containing a Variable Length Spacer Between the Sugar and Lipophilic Moieties; J. Carbohydrate Chem., vol. 17, No. 4-5, (1998), pp. 595-607, XP009081720. |
Abstract of EP0039471, Process for the preparation of 2-chloro-1,1,1,2,3,3,3-heptafluoropropane, Publication date: Nov. 11, 1981, Inventor: Von Halasz, esp@cenet database—worldwide. |
Abstract of EP0101337, Process for the production of methylene chloride, Publication date: Feb. 22, 1984, Inventor: Olah et al., esp@cenet database—worldwide. |
Abstract of EP0407989, Method for the production of 1,1,1-trifluoro-2,2-dichloroethane by photochlorination, Publication date: Jan. 16, 1991, Inventor: Cremer et al., esp@cenet database—worldwide. |
Abstract of EP0442258, Process for the preparation of a polyunsaturated olefin, Publication date: Aug. 21, 1991, Inventor. Gaudin et al., esp@cenet database—worldwide. |
Abstract of EP0465294, Process for the preparation of unsaturated bromides, Publication date: Jan. 8, 1992, Inventor: Decaudin et al., esp@cenet database—worldwide. |
Abstract of EP0549387, Synthesis of n-perfluorooctylbromide, Publication date: Jun. 30, 1993, Inventor: Drivon et al, esp@cenet database—worldwide. |
Abstract of EP0850906, Process and apparatus for the etherification of olefinic hydrocarbon feedstocks, Publication date: Jul. 1, 1998, Inventor Masson, esp@cenet database—worldwide. |
Abstract of EP0858987, Process for the conversion of lighter alkanes to higher hydrocarbons, Publication date: Aug. 19, 1998, Inventor: Amariglio et al., esp@cenet database—worldwide. |
Bakker, et al.; An Exploratory Study of the Addition Reaction of Ethyleneglcol, 2-Chloroethanlo and 1, 3-Dichloro-2-Propanol to 1-Dodecene; J. Am. Oil Chem. Soc., vol. 44, No. 9 (1967), pp. 517-521; XP009081570. |
Abstract of EP0235110, Process for the stabilization of silicalite catalysts, Publication date: Sep. 2, 1987, Inventor: Debras et al., esp@cenet database—worldwide. |
Bouzide et al.; Highly Selective Silver (I) Oxide Mediated Monoprotection of Symmetricl Diols; Tetrahedron Letters, Elsevier, vol. 38, No. 34 (1997), pp. 5945-5948; XP004094157. |
Combined International Search Report and Written Opinion Dated Apr. 17, 2007 for PCT/US06/13394, in the name of GRT, Inc. |
Gibson; Phase-Transfer Synthesis of Monoalkyl Ethers of Oligoethylene Glycols; Journal of Organic Chemistry, vol. 45, No. 6 (1980) pp. 1095-1098; XP002427776. |
Klabunde, Kenneth J., et al., Changes in Texture and Catalytic Activity of Nanocrystalline MgO during Its Transformation to MgC12 in the Reaction with 1-Chlorobutane, J. Phys. Chem. B 2001, 105, 3937-3941. |
Loiseau et al.; Multigram Synthesis of Well-Defined Extended Bifunctional Polyethylene Glycol (PEG) Chains; J. of Organic Chem., vol. 69, No. 3 (2004), pp. 639-647; XP002345040. |
Mihai et al.; Application of Bronsted-type LFER in the study of phospholipase C mechanism; J. Am. Chem. Soc., vol. 125, No. 11 (2003) pp. 3236-3242; XP002427799. |
Motupally et al., Recycling Chlorine from Hydrogen Chloride: A New and Economical Electrolytic Process, The Electrochemical Society Interface, Fall 1998. |
Nishikawa et al.; Ultrasonic Relaxations in Aqueous Solutions of Alcohols and the Balance Between Hydrophobicity and Hydrophilicity of the Solutes; J. Phys. Chem. vol. 97, No. 14 (1993), pp. 3539-3544; XP002427775. |
Prelog et al.; Chirale 2,2′-Polyoxaalkano-9,9′-Spirobifluorene; Helvetica Chimica ACTA, vol. 62, No. 7, (1979) pp. 2285-2302; XP002030901. |
Shimizu et al., Gas-Phase Electrolysis of Hydrobromic Acid Using PTFE-Bonded Carbon Eletrode, Int. J. Hydrogen Energy, vol. 13, No. 6. pp. 345-349, 1988. |
Velzen et al., HBr Electrolysis in the Ispra Mark 13A Flue Gas Desulphurization Process: Electrolysis in a DEM Cell, J. of Applied Electrochemistry, vol. 20, pp. 60-68, 1990. |
Whitesides et al.; Nuclear Magnetic Resonance Spectroscopy. The Effect of Structure on Magnetic Nonequivalence Due to Molecular Asymmetry; J. Am. Chem. Soc., vol. 86, No. 13 (1964), pp. 2628-2634; XP002427774. |
JLM Technology Ltd.; “The Miller GLS Technology for Conversion of Light Hydrocarbons to Alcohols” New Science for the Benefit of Humanity; May 31, 2000; pp. 1-10. |
Jaumain, Denis and Su, Bao-Lian; “Direct Catalytic Conversion of Chloromethane to Higher Hydrocarbons Over Various Protonic and Cationic Zeolite Catalysts as Studied by in-situ FTIR and Catalytic Testing”; 2000; pp. 1607-1612; Studies in Surface Science and Catalysis 130; Elsevier Science B.V. |
Taylor, Charles E.; “Conversion of Substituted Methanes Over ZSM-Catalysts”; 2000; pp. 3633-3638; Studies in Surface Science and Catalysis 130; Elsevier Science B.V. |
ZSM-5 Catalyst; http://chemelab.ucsd.edu/methanol/memos/ZSM-5.html; Nov. 6, 2003; p. 1. |
Final Report; “Abstract”; http://chemelab.ucsd.edu/methanol/memos/final.html; May 9, 2004; pp. 1-7. |
Driscoll, Daniel J.; “Direct Methane Conversion”; Federal Energy Technology Center, U.S. Department of Energy; M970779; 2001; pp. 1-10. |
Olah et al.; “Selective Monohalogenation of Methane over Supported Acid or Platinum Metal Catalysts and Hydrolysis of Methyl Halides . . . ”; J. American Chemical Society 1985, vol. 107; 0002-7863/85/1507-7097$01.50/0; pp. 7097-7105. |
Murray et al.; “Conversion of Methyl Halides to Hydrocarbons on Basic Zeolites: A Discovery by in Situ NMR”; J. American Chemical Society 1993, vol. 115; pp. 4732-4741. |
Lorkovic et al.; “A Novel Integrated Process for the Functionalization of Methane and Ethane: Bromine as Mediator”, Catalysis Today 98; 2004; pp. 317-322. |
Lorkovic et al.; “C1 Oxidative Coupling via Bromine Activation and Tandem Catalytic Condensation over CaO/Zeolite Composites II . . . ”; Catalysis Today 98; 2004; pp. 589-594. |
Olah et al.; “Antimony Pentafluoride/Graphite Catalyzed Oxidative Conversion of Methyl Halides with Copper Oxides (or Copper/Oxygen) to Dimethyl Ether”; J. Org. Chem. 1990, 55; 1990 American Chemical Society; pp. 4289-4293. |
Taylor, Charles E. et al.; “Direct Conversion of Methane to Liquid Hydrocarbons Through Chlorocarbon Intermediates”; 1988 Elsevier Science Publishers B.V. Amsterdam, Netherlands; pp. 483-489. |
Chang, Clarence D. et al.; “The Conversion of Methanol and Other O-Compounds to Hydrocarbons over Zeolite Catalysts”; Joumal of Catalysis 47; 1977; Academic Press, Inc.; pp. 249-259. |
Zhou, Xiao-Ping et al.; “An Integrated Process for Partial Oxidation of Alkanes”; Chem. Commun. 2003; The Royal Society of Chemistry 2003; pp. 2294-2295. |
Sun, Shouli et al.; “A General Integrated Process for Synthesizing Olefin Oxides”; Chem. Commun. 2004; The Royal Society of Chemistry 2004; pp. 2100-2101. |
Lorkovic, Ivan M. et al.; “C1 Oxidative Coupling via Bromine Activation and Tandem Catalytic Condensation and Neutralization over CaO/Zeolite Composites II . . . ”; Catalysis Today 98; 2004; pp. 589-594. |
Yilmaz, Aysen et al.; “Bromine Mediated Partial Oxidation of Ethane over Nanostructured Zirconia Supported Metal Oxide/Bromide”; Microporous and Mesporous Materials, 79; 2005; pp. 205-214. |
Taylor, Charles E.; “PETC's On-Site Natural Gas Conversion Efforts”; Preprints of the Fuel Division, 208th National Meeting of the American Chemical Society, 39 (4); 1994; pp. 1228-1232. |
Ione et al.; “Syntheses of Hydrocarbons from Compounds Containing One Carbon Atom Using Bifunctional Zeolite Catalysts”; Solid Fuel Chemistry (Khimiya Tverdogo Topliva); 1982; pp. 29-43; vol. 16, No. 6; Allerton Press. Inc. |
Olah, George A. et al.; “Hydrocarbons Through Methane Derivatives”; Hydrocarbon Chemistry; 1995; pp. 89-90; John Wiley & Sons, Inc. |
Akhrem, Irena S. et al.; “Ionic Bromination of Ethane and Other Alkanes (Cycloalkanes) with Bromine Catalyzed by the Polyhalomethane-2AIBr3 Aprotic Organic Superacids Under Mild Conditions”; Tetrahedron Letters, vol. 36, No. 51, 1995; pp. 9365-9368; Pergamon; Great Britain. |
Smirnov, Vladimir V. et al.; “Selective Bromination of Alkanes and Arylalkanes with CBr4”; Mendeleev Commun. 2000; pp. 175-176. |
Olah, George A.; “Electrophilic Methane Conversion”; Acc. Chem. Res. 1987, 20; pp. 422-428; American Chemical Society, Loker Hydrocarbon Research Institute and Dept. of Chemistry; University of Southern California. |
Olah, George A. et al.; “Antimony Pentafluoride/Graphite Catalyzed Oxidative Carbonylation of Methyl Halides with Carbon Monoxide and Copper Oxides (or Copper/Oxygen) to Methyl Acetate”; J. Org. Chem. 1990, 55; pp. 4293-4297; Loker Hydrocarbon Research Institute and Dept. of Chemistry; University of Southern California. |
Bagno, Alessandro et al.; “Superacid-Catalyzed Carbonylation of Methane, Methyl Halides, Methyl Alcohol, and Dimethyl Ether to Methyl Acetate and Acetic Acid”; J. Org. Chem. 1990, 55; pp. 4284-4289; Loker Hydrocarbon Research Institute; University of Southern California. |
Olah, George A. et al.; “Onium Ylide Chemistry. 1. Bifunctional Acid-Base-Catalyzed Conversion of Heterosubstituted Methanes into Ethylene and Derived Hydrocarbons. The Onium Ylide Mechanism of the C1-C2 Conversion”; J. Am. Chem. Soc. 1984, 106; pp. 2143-2149. |
Mochida, Isao et al.; “The Catalytic Dehydrohalogenation of Haloethanes on Solid Acids and Bases”; Bulletin of the Chemical Society of Japan, vol. 44; 1971; pp. 3305-3310. |
Richards, Ryan et al.; “Nanocrystalline Ultra High Surface Area Magnesium Oxide as a Selective Base Catalyst”; Scripta Materialia, 44; 2001; pp. 1663-1666; Elsevier Science Ltd. |
Sun, Naijian et al.; “Nanocrystal Metal Oxide—Chlorine Adducts: Selective Catalysts for Chlorination of Alkanes”; J. Am. Chem. Soc. 1999, 121; pp. 5587-5588; American Chemical Society. |
Mishakov, Ilya V. et al.; “Nanocrystalline MgO as a Dehydrohalogenation Catalyst”; Journal of Catalysis 206; 2002; pp. 40-48; Elsevier Science, USA. |
Wagner, George W. et al.; “Reactions of VX, GD, and HD with Nanosize CaO: Autocatalytic Dehydrohalogenation of HD”; J. Phys. Chem. B 2000, 104; pp. 5118-5123; 2000 American Chemical Society. |
Fenelonov, Vladimir B. et al.; “Changes in Texture and Catalytic Activity of Nanocrystalline MgO during Its Transformation to MgCl2 in the Reaction with 1-Chlorobutane”; J. Phys. Chem. B 2001, 105; pp. 3937-3941; 2001 American Chemical Society. |
http://webbook.nist.gov/; “Welcome to the NIST Chemistry WebBook”; 2005; U.S. Secretary of Commerce on Behalf of the United States of America. |
Claude, Marion C. et al.; “Monomethyl-Branching of Long n-Alkanes in the Range from Decane to Tetracosane on Pt/H-ZSM-22 Bifunctional Catalyst”; Journal of Catalysis 190; 2000; pp. 39-48. |
Thomas, J. M. et al.; “Synthesis and Characterization of a Catalytically Active Nickel-Silicoaluminophosphate Catalyst for the Conversion of Methanol to Ethene”; Chem. Mater.; 1991, 3; pp. 667-672; 1991 American Chemical Society. |
Thomas, John Meurig et al.; “Catalytically Active Centres in Porous Oxides: Design and Performance of Highly Selective New Catalysts”; Chem. Commun.; 2001; pp. 675-687. |
Lorkovic, Ivan et al.; “C1 Coupling via Bromine Activation and Tandem Catalytic Condensation and Neutralization over CaO/Zeolite Composites”; Chem. Commun., 2004; pp. 566-567. |
Tamura, Masuhiko et al.; “The Reactions of Grignard Reagents with Transition Metal Halides: Coupling, Disproportionation, and Exchange with Olefins”; Bulletin of the Chemical Society of Japan, vol. 44.; Nov. 1971; pp. 3063-3073. |
Weissermel, Klaus et al.; “Industrial Organic Chemistry”; 3rd Edition 1997. pp. 160-162, and 208. |
Abstract of BE812868, Aromatic hydrocarbons prodn. from chlorinated hydrocarbons, Publication date: Sep. 27, 1974, esp@cenet database—worldwide. |
Abstract of BE814900, Volatile aramatic cpds. prodn., Publication date: Sep. 2, 1974, esp@cenet database—worldwide. |
Abstract of CN1199039, Pentanol and its production process, Publication date: Nov. 18, 1998, Inventor: Kailun, esp@cenet database—worldwide. |
Abstract of CN1210847, Process for producing low carbon alcohol by directly hydrating low carbon olefines, Publication date: Mar. 17, 1999, Inventor: Zhenguo et al., esp@cenet database—worldwide. |
Abstract of CN1321728, Method for preparing aromatic hydrocarbon and hydrogen gas by using low-pressure gas, Publication date: Nov. 14, 2001, Inventor: Jie et al., esp@cenet database—worldwide. |
Abstract of CN1451721, Process for non-catalytic combustion deoxidizing coal mine gas for producing methanol, Publication date: Oct. 29, 2003, Inventor: Pengwan et al., esp@cenet database—worldwide. |
Abstract of CN1623969, Method for preparing 1, 4-benzene dimethanol, Publication date: Jun. 8, 2005, Inventor: Jiarong et al., esp@cenet database—worldwide. |
Abstract of CN1657592, Method for converting oil to multiple energy fuel product, Publication date: Aug. 24, 2005, Inventor: Li, esp@cenet database—worldwide. |
Abstract of CN1687316, Method for producing biologic diesel oil from rosin, Publication date: Oct. 26, 2005, Inventor: Jianchun et al., esp@cenet database—worldwide. |
Abstract of CN1696248, Method for synthesizing biologic diesel oil based on ion liquid, Publication date: Nov. 16, 2005, Inventor: Sun, esp@cenet database—worldwide. |
Abstract of CN1699516, Process for preparing bio-diesel-oil by using microalgae fat, Publication date: Nov. 23, 2005, Inventor: Miao, esp@cenet database—worldwide. |
Abstract of CN1704392, Process for producing alkylbenzene, Publication date: Dec. 7, 2005, Inventor: Gao, esp@cenet database—worldwide. |
Abstract of CN1724612, Biological diesel oil catalyst and method of synthesizing biological diesel oil using sai catalyst, Publication date: Jan. 25, 2006, Inventor: Gu, esp@cenet database—worldwide. |
Abstract of CN1986737, Process of producing biodiesel oil with catering waste oil, Publication date: Jun. 27, 2007, Inventor: Chen, esp@cenet database—worldwide. |
Abstract of CN100999680, Esterification reaction tech. of preparing biodiesel by waste oil, Publication date: Jul. 18, 2007, Inventor: Weiming, esp@cenet database—worldwide. |
Abstract of CN101016229, Refining method for bromomeoamyl alcohol, Publication date: Aug. 15, 2007, Inventor: Tian, esp@cenet database—worldwide. |
Abstract of DE3209964, Process for the preparation of chlorinated hydrocarbons, Publication date: Nov. 11, 1982, Inventor: Pyke et al., esp@cenet database—worldwide. |
Abstract of DE3210196, Process for the preparation of a monochlorinated olefin, Publication date: Jan. 5, 1983, Inventor: Pyke et al., esp@cenet database—worldwide. |
Abstract of DE3226028, Process for the preparation of monochlorinated olefin, Publication date: Feb. 3, 1983, Inventor: Pyke et al., esp@cenet database—worldwide. |
Abstract of DE3334225, Process for the preparation of 1, 2-dichloroethane, Publication date: Apr. 4, 1985, Inventor: Hebgen et al., esp@cenet database—worldwide. |
Abstract of DE4232056, 2,5-Di:methyl-hexane-2, 5-di:ol continuous prodn. from tert. butanol—by oxidative dimerisation in two phase system with vigorous stirring, using aq. phase with specified density to facilitate phase sepn., Publication date: Mar. 31, 1994, Inventor: Gnann et al., esp@cenet database—worldwide. |
Abstract of DE4434823, Continuous prodn. of hydroxy-benzyl alkyl ether, Publication date: Apr. 4, 1996, Inventor Stein et al., esp@cenet database—worldwide. |
Abstract of FR2692259, Aromatisation of 2-4C hydrocarbons—using a fixed-mobile-catalytic bed process, Publication date: Dec. 17, 1993, Inventor: Alario et al., esp@cenet database—worldwide. |
Abstract of FR2880019, Manufacturing 1, 2-dichloroethane, comprises cracking core hydrocarbonated source, separating into fractions, sending into chlorination reaction chamber and oxychlorination reaction chamber and separating from chambers, Publication date: Jun. 30, 2006, Inventor: Strebelle et al., esp@cenet database—worldwide. |
Abstract of FR2883870, Formation of 1, 2-dichloroethane useful in manufacture of vinyl chloride involves subjecting mixture of cracking products obtained by cracking of hydrocarbon source, to a succession of aqueous quenching, alkaline washing, and oxidation steps, Publication date: Oct. 6, 2006, Inventor. Balthasart et al., esp@cenet database—worldwide. |
Abstract of FR2883871, Preparing 1, 2-dichloroethane comprises cracking hydrocarbon to form mixture, sending mixture into storage reservoir, supplying mixture into chlorination and/or oxychloration reactor, and separating 1, 2-dichloroethane from reactor, Publication date: Oct. 6, 2006, Inventor: Balthasart et al., esp@cenet database—worldwide. |
Abstract of IT1255246, Process for the preparation of dinitrodiphenylmethanes, Publication date: Oct. 20, 1995, Applicant: Enichem Spa et al., esp@cenet database—worldwide. |
Abstract of IT1255358, Process for the synthesis of 1, 4-butanediol, Publication date: Oct. 31, 1995, Inventor: Marco, esp@cenet database—worldwide. |
Abstract of JP2142740, Production of fluoroalcohol, Publication date: May 31, 1990, Inventor: Tsutomu et al., esp@cenet database—worldwide. |
Abstract of JP2144150, Chemical process and catalyst used therefore, Publication date: Jun. 1, 1990, Inventor: Deidamusu et al., esp@cenet database—worldwide. |
Abstract of JP4305542, Production of halogenated hydrocarbon compounds, Publication date: Oct. 28, 1992, Inventor: Shinsuke et al., esp@cenet database—worldwide. |
Abstract of JP6172225, Method for fluorinating halogenated hydrocarbon, Publication date: Jun. 21, 1994, Inventor: Takashi et al., esp@cenet database—worldwide. |
Abstract of JP6206834, Production of tetrachloroethanes, Publication date: Jul. 26, 1994, Inventor: Toshiro et al., esp@cenet database—worldwide. |
Abstract of JP8266888, Method for decomposing aromatic halogen compound, Publication date: Oct. 15, 1996, Inventor: Yuuji et al., esp@cenet database—worldwide. |
Abstract of JP2001031605, Production of 3-hydroxy-1-cycloalkene, Publication date: Feb. 6, 2001, Inventor: Hideo et al, esp@cenet database—worldwide. |
Abstract of JP2004075683, Method for producing optically active halogenohydroxypropyl compound and glycidyl compound, Publication date: Mar. 11, 2004, Inventor: Keisuke et al., esp@cenet database—worldwide. |
Abstract of JP2004189655, Method for fluorinating with microwave, Publication date: Jul. 8, 2004, Inventor: Masaharu et al., esp@cenet database—worldwide. |
Abstract of JP2005075798, Method for Producing adamantyl ester compound, Publication date: Mar. 24, 2005, Inventor: Norihiro et al., esp@cenet databas—worldwide. |
Abstract of JP2005082563, Method for producing 1, 3-adamantanediol, Publication date: Mar. 31, 2005, Inventor: Norihiro et al., esp@cenet database—worldwide. |
Abstract of JP2005145977, Process for catalytically oxidizing olefin and cycloolefin for the purpose of forming enol, olefin ketone, and epoxide, Publication date: Jun. 9, 2005, Inventor: Cancheng et al., esp@cenet database—worldwide. |
Abstract of JP2005254092, Method of manufacturing alkynes, Publication date: Sep. 22, 2005, Inventor: Shirakawa Eiji, esp@cenet database—worldwide. |
Abstract of JP2006151892, Preparation method of alcohol derivative, Publication date: Jun. 15, 2006, Inventor: Baba Akio et al., esp@cenet database—worldwide. |
Abstract of JP2006152263, Organic-inorganic hybrid-type mesoporous material, method for producing the same, and solid catalyst, Publication date: Jun. 15, 2006, Inventor: Junko et al., esp@cenet database—worldwide. |
Abstract of JP2006193473, Aryl polyadamantane derivative having carboxy or acid anhydride group and method for producing the same, Publication date: Jul. 27, 2006, Inventor: Yasuto et al., esp@cenet database—worldwide. |
Abstract of JP2006231318, Phosphorus containing macromolecule immobilizing palladium catalyst and method for using the same, Publication date: Sep. 7, 2006, Inventor: Osamu et al., esp@cenet database—worldwide. |
Abstract of JP2006263567, Optical resolution method of optical isomer and optical resolution device, Publication date: Oct. 5, 2006, Inventor: Yoshikazu et al., esp@cenet database—worldwide. |
Abstract of JP2006265157, Method for catalytically activating silicated nucleating agent using phosphazene base, Publication date: Oct. 5, 2006, Inventor: Yoshinori et al., esp@cenet database—worldwide. |
Abstract of JP2006306758, Method for producing biaryl compound, Publication date: Nov. 9, 2006, Inventor: Yuji et al., esp@cenet database—worldwide. |
Abstract of JP2007001942, Production method of para-xylene, Publication date: Jan. 11, 2007, Inventor: Kazuyoshi, esp@cenet database—worldwide. |
Abstract of JP2007015994, Method for synthesizing organic compound in ultra high rate under high temperature and high pressure water, and system of high temperature and high pressure reaction, Publication date: Jan. 25, 2007, Inventor: Hajime et al., esp@cenet database—worldwide. |
U.S. Office Action from U.S. Appl. No. 10/826,885 dated Oct. 31, 2005. |
U.S. Office Action from U.S. Appl. No. 10/826,885 dated Apr. 19, 2006. |
U.S. Office Action from U.S. Appl. No. 10/826,885 dated Jul. 27, 2006. |
U.S. Office Action from U.S. Appl. No. 10/826,885 dated Nov. 2, 2006. |
U.S. Office Action from U.S. Appl. No. 10/826,885 dated Jan. 24, 2007. |
U.S. Office Action from U.S. Appl. No. 11/101,886 dated Jan. 24, 2007. |
U.S. Office Action from U.S. Appl. No. 11/254,438 dated Jan. 24, 2007. |
U.S. Office Action from U.S. Appl. No. 11/254,438 dated Nov. 1, 2007. |
U.S. Office Action from U.S. Appl. No. 10/893,418 dated Jan. 2, 2008. |
U.S. Office Action from U.S. Appl. No. 10/893,418 dated Jun. 14, 2007. |
U.S. Office Action from U.S. Appl. No. 11/091,130 dated Oct. 3, 2007. |
U.S. Office Action from U.S. Appl. No. 10/365,346 dated Jun. 12, 2006. |
U.S. Office Action from U.S. Appl. No. 11/103,326 dated Aug. 31, 2007. |
U.S. Office Action from U.S. Appl. No. 11/103,326 dated Dec. 6, 2006. |
U.S. Office Action from U.S. Appl. No. 11/098,997 dated Nov. 20, 2008. |
U.S. Office Action from U.S. Appl. No. 12/215,326 dated Feb. 10, 2009. |
U.S. Office Action from U.S. Appl. No. 10/430,240 dated Mar. 6, 2006. |
U.S. Office Action from U.S. Appl. No. 10/369,148 dated Oct. 16, 2006. |
U.S. Office Action from U.S. Appl. No. 10/369,148 dated Mar. 14, 2006. |
U.S. Office Action from U.S. Appl. No. 10/894,165 dated Aug. 16, 2006. |
U.S. Office Action from U.S. Appl. No. 12/080,594 dated Dec. 22, 2008. |
U.S. Office Action from U.S. Appl. No. 11/703,358 dated Jun. 11, 2008. |
Number | Date | Country | |
---|---|---|---|
20110034741 A1 | Feb 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12692831 | Jan 2010 | US |
Child | 12904030 | US | |
Parent | 11098997 | Apr 2005 | US |
Child | 12692831 | US | |
Parent | 10298440 | Nov 2002 | US |
Child | 10365346 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10430240 | Aug 2003 | US |
Child | 11098997 | US | |
Parent | 10365346 | Feb 2003 | US |
Child | 10430240 | US | |
Parent | 10208068 | Jul 2002 | US |
Child | 10298440 | US | |
Parent | 10054004 | Jan 2002 | US |
Child | 10208068 | US | |
Parent | 09951739 | Sep 2001 | US |
Child | 10054004 | US | |
Parent | 09886078 | Jun 2001 | US |
Child | 09951739 | US |