Hydrocarbon conversion

Abstract
A catalyst comprising at least one metal selected from the group consisting of Group 8 metals, Group 9 metals, Group 10 metals and combinations thereof, an organic compound, and a solid acid and a method of making said catalyst is disclosed. The catalyst can be used in a hydrocarbon conversion process.
Description

This invention relates to the conversion of hydrocarbons. More particularly, this invention relates to the conversion of hydrocarbons in the presence of an organometallic complex on a solid acid support component.


BACKGROUND OF THE INVENTION

Regulations in future motor fuel specifications are expected to continue the trend of reducing the amount of volatile C4 and C5 paraffins present in gasoline. However, C4 and C5 paraffins are relatively unreactive and have no functional groups with which chemical transformations can be made. Therefore, strong acid catalysts or activation with organometallic reagents are the possible routes to conversion.


SUMMARY OF THE INVENTION

It is thus an object of the present invention to provide a novel composition.


It is yet another object of the present invention to provide a process for the conversion of hydrocarbon feedstocks.


In accordance with the present invention, the inventive composition comprises, consists of, or consists essentially of:

    • a) at least one metal selected from the group consisting of Group 8 metals, Group 9 metals, Group 10 metals, and combinations thereof,
    • b) a cyclooctadiene; and
    • c) beta zeolite.


The second embodiment of the present invention includes a novel method comprising, consisting of, or consisting essentially of:

    • a) admixing
      • 1) a liquid and
      • 2) a complex comprising
        • i) an organometallic compound wherein the organic component is cyclooctadiene and the metal is selected from the group consisting of Group 8 metals, Group 9 metals, Group 10 metals, and combinations thereof, to form a mixture thereof, and
    • b) incorporating the mixture into or onto beta zeolite.


The third embodiment is a process comprising, consisting of, or consisting essentially of:

    • contacting a hydrocarbon feed with a catalyst in a reaction zone under reaction conditions wherein said catalyst comprises:
    • a) a complex comprising
      • i) at least one metal selected from the group consisting of Group 8 metals, Group 9 metals, Group 10 metals, and combinations thereof; and
      • ii) an organic compound; and
    • b) a support component comprising a solid acid.


Other aspects, objectives, and advantages of the present invention will be apparent from the detailed description of the invention and the appended claims.







DETAILED DESCRIPTION OF THE INVENTION

In accordance with the present invention, the inventive composition comprises, consists of, or consists essentially of:

    • a) at least one metal selected from the group consisting of Group 8 metals, Group 9 metals, Group 10 metals, and combinations thereof;
    • b) a cyclooctadiene; and
    • c) beta zeolite.


In accordance with the present invention, the second embodiment of the present invention comprises, consists of, or consists essentially of:

    • a) admixing
      • 1) a liquid and
      • 2) a complex comprising
        • i) an organometallic compound wherein the organic component is cyclooctadiene and the metal is selected from the group consisting of Group 8 metals, Group 9 metals, Group 10 metals, and combinations thereof, to form a mixture thereof, and
    • b) incorporating the mixture into or onto beta zeolite.


The Periodic Table referred to in this application is the IUPAC Periodic Table of the Elements.


The inventive composition and the catalyst employed in the inventive process comprises a complex containing at least one metal selected from the group consisting of Group 8 metals, Group 9 metals, Group 10 metals, and combinations thereof. A complex is defined as the species formed by the reaction of a metal atom or ion with ligands. A ligand is defined as an anion or molecule that forms one or more coordinate covalent bonds to metal ions.


The at least one Group 8, 9 or 10 metal can be selected from the group consisting of iridium, rhodium, platinum, nickel, cobalt, palladium, iron, ruthenium, osmium, and combinations of any two or more thereof. Preferably, the metal is iridium or platinum.


Generally, the metal is present in the catalyst composition in a weight percent in the range of from about 0.01 to about 10 weight percent, preferably in the range of from about 0.1 to about 5 weight percent and most preferably in the range of from 0.2 to 2 weight percent based on the total weight of the catalyst composition.


Any suitable organic compound can be used. Most preferably, this compound is cyclooctadiene.


The composition can further comprise a compound having the formula R3X. Any suitable compound having the formula R3X can be used in the process of the present invention. Generally, “R” can be selected from the group consisting of hydrogen, an alkyl, an alkenyl, an alkynyl, cycloalkyls, cycloalkenyls, cycloalkynyls, aryls, substituted aryls, and substituted organic compounds. Generally, “X” is a Group 15 element selected from the group consisting of nitrogen, phosphorus, antimony, and bismuth. Preferably, the Group 15 element is phosphorus.


Preferably, the compound is an organophosphine. Preferred organophosphines include, but are not limited to, triphenylphosphine and tricyclohexylphosphine. The organophosphine can be a part of an organophosphine-containing compound. The R3X compound can bind to the metal and can become part of the complex.


The catalyst also includes a support component comprising a solid acid. Any solid acid can be used, including, but not limited to a zeolite, sulfated zirconias, acidic aluminas, chlorided alumina, non-zeolite aluminum/silicon compounds, aluminum fluoride, acid-washed clay, and combinations thereof. Preferably, the solid acid is a zeolite. Most preferably, it is beta zeolite (as defined in U.S. Pat. No. 3,308,069, the disclosure of which is incorporated herein by reference).


If a zeolite is used, it preferably has a constraint index (as defined in U.S. Pat. No. 4,097,367, the disclosure of which is incorporated herein by reference) of about 0.4 to about 12. Most preferably, it has a constraint index in the range of from 0.4 to 1.


The inventive composition and the catalyst employed in the inventive process can be prepared by a method comprising, consisting of, or consisting essentially of:

    • a) admixing
      • 1) a liquid and
      • 2) a complex comprising
        • i) an organometallic compound wherein the organic component is cyclooctadiene and the metal is selected from the group consisting of Group 8 metals, Group 9 metals, Group 10 metals, and combinations thereof, to form a mixture thereof, and
    • b) incorporating the mixture into or onto beta zeolite.


In the inventive process, the catalyst can generally be prepared by admixing a liquid and a complex comprising an organic compound and at least one metal selected from the group consisting of Group 8 metals, Group 9 metals, Group 10 metals, and combinations thereof to form a mixture thereof. The term “admixing” as used herein, denotes mixing components in any order and/or any combination or sub-combination. Any suitable means for admixing the components can be used to achieve the desired dispersion of such components. Examples of suitable admixing include, but are not limited to, mixing tumblers, stationary shelves or troughs, Euro Star mixers, which are of the batch or continuous type, impact mixers, magnetic stirrers, mechanical stirrers, and the like.


The liquid can be any solvent capable of dispersing and/or dissolving a complex comprising at least one organic compound and at least one metal selected from the group consisting of Group 8 metals, Group 9 metals, Group 10 metals, and combinations thereof. Preferably, the liquid can be selected from the group consisting of water, light hydrocarbons, aromatics, alcohols, acetone, toluene and halogenated hydrocarbons. More preferably, the liquid is toluene or dichloromethane.


Any suitable organic compound can be used. Preferably, the organic compound is cyclooctadiene.


Any suitable compound having the formula R3X can also be used in the preparation of the catalyst for the inventive process. R is generally selected from the group consisting of hydrogen, an alkyl, an alkenyl, an alkynyl, cycloalkyls, cycloalkenyls, cycloalkynyls, aryls, substituted aryls, and substituted organic compounds. X is generally selected from the group consisting of nitrogen, phosphorus, arsenic, antimony, and bismuth.


Preferably, if an R3X compound is used, the compound is an organophosphine. Preferably, it is in the form of an organophosphine or in the form of one or more organophosphine-containing compounds. Preferably, the organophosphine is in the form of triphenylphosphine or tricyclohexylphosphine.


The mixture is added to the solid acid by means of incorporation.


A preferred method of incorporating is to impregnate using any conventional incipient wetness impregnation technique (i.e., essentially completely or partially filling the pores of substrate material with a solution of the incorporating elements) for impregnating a substrate. This preferred method uses an impregnating solution comprising the desirable concentration of the complex to ultimately provide the catalyst used in the inventive process. The amount of liquid that can be absorbed by the solid acid is determined by the following method:


To one-gram of the solid acid, the solvent is added drop wise until the liquid becomes visible around the particles. The required amount of solvent can be calculated by the weight difference. The complex is dissolved in exactly the amount of a suitable solvent that is required to fill all pores of the support. The solution is then added drop wise to the solid acid and then dried in a nitrogen stream, heat and/or under a vacuum.


If a single-step impregnation is not possible, then the process can be completed in several steps. The complex can be added to the solvent, the solvent is then added to the solid acid via incipient wetness, as described above, and the resulting substance is then dried. Then the process can be repeated until the desired amount of the complex is added.


In carrying out the inventive process, the reaction conditions in the reaction zone comprise a reaction temperature in the range of from about 100° C. to about 400° C. Preferably the reaction conditions include a reaction temperature in the range of from 200° C. to 300° C. Any suitable hydrocarbon feed can be used. Examples include, but are not limited to, alkanes with 2 to 10 carbon atoms per molecule. Preferably, the hydrocarbon feed is selected from the group consisting of normal pentane, isopentane, cyclopentane, cyclooctane or combinations thereof. Most preferably, it is a combination of isopentane and cyclooctane. Preferably, the inventive process is conducted in the absence of hydrogen.


The following example is presented to further illustrate the invention and is not to be considered as limiting the scope of the invention.


EXAMPLES
Example I

Zeolite beta (in the acid form), was impregnated with 0.1 grams of (triphenylphosphine)(cyclooctadiene)(pyridine)(iridium) hexafluorophosphate by incipient wetness. The iridium complex was dissolved in 3.5 grams of toluene. This solution was then added drop wise to 5 grams of zeolite beta extrudates and was dried with a purge of nitrogen.


A 3-gram quantity of the composition prepared above was placed in a stainless steel fixed bed reactor. The temperature was set to 258° C. under a nitrogen flow. A hydrocarbon feed was then introduced into the reactor. The outcome of this run was compared in Table I with a similar run using zeolite beta as a catalyst.

TABLE IIridium Complex on Z-βZ-βCatalystWt. %Wt. %Feed ComponentC4 minus0.260.22iC588.5588.56nC50.310.32cyC810.8410.84C5 Olefin00C6+ (excluding CyC8)0.040.06Reactor Temp, ° C.258316ProductsC4 minus0.3510.234iC580.7688.10nC50.720.32cyC83.4610.1C5 Olefin0.020.00C6+ (excluding CyC8)14.691.23
Z-β = zeolite beta

CyC8 = cyclooctane


As is evident from Table I, the isopentane conversion is greater using the iridium complex/beta zeolite catalyst than the run which uses zeolite beta alone as the catalyst.


While this invention has been described in detail for the purpose of illustration, it should not be construed as limited thereby, but intended to cover all changes and modifications within the spirit and scope thereof.

Claims
  • 1. A composition comprising: a) at least one metal selected from the group consisting of Group 8 metals, Group 9 metals, Group 10 metals, and combinations thereof; b) a cyclooctadiene; and c) beta zeolite.
  • 2. A composition in accordance with claim 1 wherein said at least one metal is selected from the group consisting of iridium, platinum, rhodium, nickel, cobalt, palladium, iron, ruthenium, osmium and combinations of two or more thereof.
  • 3. A composition in accordance with claim 1 wherein said at least one metal is iridium.
  • 4. A composition in accordance with claim 1 wherein said at least one metal is platinum.
  • 5. A composition in accordance with claim 1 wherein said at least one metal is rhodium.
  • 6. A composition in accordance with claim 1 wherein said at least one metal is nickel.
  • 7. A composition in accordance with claim 1 wherein said composition further comprises a compound having the formula R3X wherein R is selected from the group consisting of hydrogen, an alkyl, an alkenyl, an alkynyl, cycloalkyls, cycloalkenyls, cycloalkynyls, aryls, substituted aryls, and substituted organic compounds and X is a Group 15 element selected from the group consisting of nitrogen, phosphorus, arsenic, antimony, and bismuth.
  • 8. A composition in accordance with claim 7 wherein R is a phenyl group.
  • 9. A composition in accordance with claim 7 wherein R is a cyclohexyl group.
  • 10. A composition in accordance with claim 7 wherein X is phosphorus.
  • 11. A method for making a composition comprising: a) admixing 1) a liquid and 2) a complex comprising i) an organometallic compound comprising cyclooctadiene and a metal is selected from the group consisting of Group 8 metals, Group 9 metals, Group 10 metals, and combinations thereof, to form a mixture thereof, and b) incorporating said mixture into or onto beta zeolite.
  • 12. A method in accordance with claim 11 wherein said at least one metal is selected from the group consisting of iridium, platinum, rhodium, nickel, cobalt, palladium, iron, ruthenium, osmium and combinations of two or more thereof.
  • 13. A method in accordance with claim 11 wherein said at least one metal is iridium.
  • 14. A method in accordance with claim 11 wherein said at least one metal is platinum.
  • 15. A method in accordance with claim 11 wherein said at least one metal is rhodium.
  • 16. A method in accordance with claim 11 wherein said metal is nickel.
  • 17. A method in accordance with claim 11 wherein said liquid is selected from the group consisting of water, light hydrocarbons, aromatics, alcohols, acetone, toluene, and halogenated hydrocarbons.
  • 18. A method in accordance with claim 11 wherein said liquid is toluene.
  • 19. A method in accordance with claim 11 wherein said organometallic compound further comprises a compound having the formula R3X wherein R is selected from the group consisting of hydrogen, an alkyl, an alkenyl, an alkynyl, cycloalkyls, cycloalkenyls, cycloalkynyls, aryls, substituted aryls, and substituted organic compounds and X is a Group 15 element selected from the group consisting of nitrogen, phosphorus, arsenic, antimony, and bismuth.
  • 20. A method in accordance with claim 19 wherein R is a phenyl group.
  • 21. A method in accordance with claim 19 wherein R is a cyclohexyl group.
  • 22. A method in accordance with claim 19 wherein X is phosphorus.
  • 23. A process comprising: contacting a hydrocarbon feed with a catalyst in a reaction zone under reaction conditions wherein said catalyst comprises: a) a complex comprising i) at least one metal selected from the group consisting of Group 8 metals, Group 9 metals, Group 10 metals, and combinations thereof; and ii) an organic compound; and b) a support component comprising a solid acid.
  • 24. A process in accordance with claim 23 wherein said at least one metal is selected from the group consisting of iridium, rhodium, platinum, nickel, cobalt, palladium, iron, ruthenium, osmium, and combinations of two or more thereof.
  • 25. A process in accordance with claim 23 wherein said at least one metal is iridium.
  • 26. A process in accordance with claim 23 wherein said at least one metal is rhodium.
  • 27. A process in accordance with claim 23 wherein said at least one metal is platinum.
  • 28. A process in accordance with claim 23 wherein said at least one metal is nickel.
  • 29. A process in accordance with claim 23 wherein said at least one metal is present in said catalyst in a weight percent in the range of from about 0.01 to about 10 weight percent based on the total weight of said catalyst.
  • 30. A process in accordance with claim 23 wherein said at least one metal is present in said catalyst in a weight percent in the range of from about 0.1 to about 5 weight percent based on the total weight of said catalyst.
  • 31. A process in accordance with claim 23 wherein said at least one metal is present in said catalyst in a weight percent in the range of from about 0.2 to about 2.0 weight percent based on the total weight of said catalyst.
  • 32. A process in accordance with claim 23 wherein said solid acid is selected from the group consisting of a zeolite, sulfated zirconias, acidic aluminas, chlorided alumina, non-zeolite aluminum/silicon compounds, aluminum fluoride, acid-washed clay, and combinations thereof.
  • 33. A process in accordance with claim 23 wherein said solid acid is a zeolite.
  • 34. A process in accordance with claim 33 wherein said zeolite has a constraint index in the range of from about 0.4 to about 12.
  • 35. A process in accordance with claim 33 wherein said zeolite has a constraint index in the range of from 0.4 to 1.
  • 36. A process in accordance with claim 23 wherein said solid acid is zeolite beta.
  • 37. A process in accordance with claim 23 wherein said dehydrogenation reaction conditions comprise a reaction temperature in the range of from about 100° C. to about 500° C.
  • 38. A process in accordance with claim 23 wherein said reaction conditions comprise a reaction temperature in the range of from about 200° C. to about 350° C.
  • 39. A process in accordance with claim 23 wherein said reaction conditions include the absence of hydrogen.
  • 40. A process in accordance with claim 23 wherein said hydrocarbon feed comprises hydrocarbons having in the range of from 2 to 10 carbon atoms per molecule.
  • 41. A process in accordance with claim 23 wherein said hydrocarbon feed is selected from the group consisting of normal pentane, isopentane, cyclopentane, cyclooctane, and combinations of two or more thereof.
  • 42. A process in accordance with claim 23 wherein said hydrocarbon feed comprises a combination of isopentane and cyclooctane.
  • 43. A process in accordance with claim 23 wherein said catalyst further comprises a compound having the formula R3X wherein R is selected from the group consisting of hydrogen, an alkyl, an alkenyl, an alkynyl, cycloalkyls, cycloalkenyls, cycloalkynyls, aryls, substituted aryls, and substituted organic compounds and X is a Group 15 element selected from the group consisting of nitrogen, phosphorus, arsenic, antimony, and bismuth.
  • 44. A process in accordance with claim 43 wherein R is a phenyl group.
  • 45. A process in accordance with claim 43 wherein R is a cyclohexyl group.
  • 46. A process in accordance with claim 43 wherein X is phosphorus.