Analysis of gas samples is required in various scientific, environmental and resource contexts. As an example, in oil and natural gas exploration, drilling, recovery and storage, periodic sampling of recovered gases and fluid are required for subsequent isotopic analysis. In the oil industry, “mud” is a colloquial term for a viscous slurry that is pumped into drills as they penetrate the substrate. This “mud” is returned to the surface and contains gases that are released from the rock as the drill penetrates. Significant data is acquired from the analysis of these gases.
New techniques have been developed which now allow the isotopic analysis of very small samples of hydrocarbon gases that are collected from “mud.” Mud gases as they are released are mixtures of hydrocarbon gases and air. In this analytical effort the mixture of hydrocarbon gases is separated by gas chromatography. Gas chromatography will separate out air, carbon dioxide, and the hydrocarbons which will include methane, ethane, propane, butanes, (Iso and N) and pentanes (Iso and N) as examples. After separation, the samples then undergo oxidation by being heated in a combustion furnace in the presence of a metal oxide. The combustion of the hydrocarbons produces carbon dioxide and water.
Hydrocarbons contain two natural stable isotopes, i.e., 12C and 13C. The carbon dioxide resulting from the combustion of a hydrocarbons will also be composed of these two isotopes. The ratios of these two isotopes, the isotopic composition, will vary with the type of hydrocarbon analyzed and the hydrocarbon's origin. For example, storage gas and native gas may be distinguished by their isotopic compositions. Thermogenic gas and microbial gas may be distinguished as well.
Previous apparatus for the preparation of hydrocarbon samples have utilized non isothermic conditions for chromatography. In fact, varying temperatures were used to facilitate the separation of the sample. This caused a significant increase in the amount of time necessary for sample preparation due to heatup/cooldown cycles. Previous systems utilizes pure inert gasses for the carrier gas. To recharge the oxidizing agent in combustion furnaces it becomes necessary to take the furnace offline and run oxygen through the oxidizing agent to recharge it again producing significant delays in analysis. The use of single columns to separate hydrocarbons is problematic in producing the necessary isolation of hydrocarbons in the sample and taking significant periods of time.
The apparatus presented here uses an electronically controlled injection mechanism, here a syringe and computer controlled servomotor, for injecting a measured quantity of sample gas into an isothermal environment for chromatography in conjunction with separate columns tuned to isolate specific hydrocarbons. This system greatly speeds the analytic process and further allows for more discreet isolation of the hydrocarbons in the sample. Further, a mixture of an inert gas mixed with a small percentage of oxygen allows the continuous recharging of the oxidizing agent within the combustion furnace. The efficient use of carrier gas is also exhibited here by shunting used carrier gas from the open split back into the water separator to carry away water removed from the sample. The coiled use of water separating tubing is seen here which greatly increases the efficiency of water separation with a given space. A stainless steel wire is used as a stylet within the water separating tube to increase the area of gas in contact with the tubing wall also increasing the efficiency of water separation and strengthening the tubing structure. This apparatus also makes use of an on/off valve to eliminate the constant flow of expensive reference gas. The use of the valve is made possible by a reference gas injector that allows only a small amount of reference gas to be pulsed into the mass spectrometer and this is further facility by pressure differentials caused by capillaries joining the reference gas injector and open split. This apparatus can be utilized on almost any currently available brand of isotope ratio mass spectrometer.
Turning to
When valve block 2 is in a mode to inject sample into the system for analysis valve 58 is configured to accept sample gas from gas chromatograph input line 55. As the syringe plunger 1 is depressed, the sample is moved into gas chromatograph 5. Once a sample to be analyzed has passed valve 58 the valve is fluidly connected to carrier gas line 54, and the flow of carrier gas will then move the sample through the system. After separation, each component individually moves to the combustion furnace 6 where it is oxidized to carbon dioxide and water. From the combustion furnace 6 the combustion products from each component moves to water separator input line 64, then into water separator 7 where water is removed from the sample leaving dry carbon dioxide. The sample then moves to open split 8 via open split input line 70. For purposes of mass spectrographic analysis, reference gas of known isotopic composition is received from reference gas source 10A. In this case carbon dioxide is the reference gas and may be delivered into the open split 8 immediately after the sample gas pulse. The carrier gas and sample gas or reference gas all enter mass spectrometer 9 via spectrometer input line 70a. Reference gas from reference gas injector 11 enters the open split through reference gas injector output line 69.
The introduction of carrier gas from carrier gas source 10 into the system at other points serves other functions. Combustion furnace carrier gas input line 62 delivers carrier gas into eighth GC valve 87, a three way valve, and into the sample circuit. When seventh GC valve 86, also a three way valve, is configured to vent the gas chromatograph, combustion furnace carrier gas input line 62 provides a continuous source of carrier gas, keeping the remainder of the system pressurized so that the introduction of air and contaminants is eliminated.
Computer control 100 communicates with reference gas valve 67, first three-way valve 51, second three-way valve 52, and third three-way valve 53, gas chromatograph input valve 58, GC valves first through eighth, electronic pressure control valves 1, 2 and 3, chromatograph oven, 59G, and cartridge heater 34 through relay 62a. Computer control 100 is a programmable micro controller manufactured by Advantech. Computer control 100 also causes reference gas valve 67 to open and allow reference gas to enter reference gas injector 11 and thereby create a pulse of reference gas moving into open split 8 and on into mass spectrometer 9 immediately after a sample gas pulse enters mass spectrometer 9. Computer control 100 also regulates the temperature of the combustion furnace by switching on and off cartridge heater 34 based on preprogrammed temperature parameters. Computer control 100 regulates the temperature of chromatograph oven 59G at approximately 80° C. allowing the chromatograph process to continue in isothermal conditions. Computer control 100 also communicates with first three-way valve 51, second three-way valve 52, and third three-way valve 53 in order to place them in purge mode P, syringe loading mode SL, sample injection mode SI and container pressurization mode CP discussed more fully infra.
Computer control 100 maintains the gas chromatograph 5 in fluid communication with carrier gas input line 54 through configuration of chromatograph input valve 58 at all times until valve block 2 is placed in sample injection mode SI. Chromatograph input valve 58 is then configured to shunt the sample gas into gas chromatograph 5. Computer control 100 also configures the array of GC valves, first through eighth in vent mode, backflush mode and combustion mode also discussed infra. When computer control 100 places seventh GC valve 86 in vent mode, or sixth GC valve 85 in backflush mode, it simultaneously configures eighth GC valve 87 to accept carrier gas through combustion furnace carrier gas input line 62 and shunts it into combustion furnace 6. An additional function of computer control 100 is the control of first, second and third electronic pressure control valves respectively 57, 59 and 59a. Second electronic pressure control valve 59 controls the pressure of carrier gas into gas chromatograph 5 through chromatograph flushing line 55b. First electronic pressure control valve 59a controls carrier gas input into gas chromatograph 5 through gas carrier line 54. while third electronic pressure control valve 57 delivers carrier gas to combustion furnace 6. The objective is to maintain constant flow rates through the lines which have electronic pressure control valves attached. For example, the back pressures exerted by the methane, ethane and propane columns vary and when a sample is being introduced into the various columns, the electronic pressure control 58a will increase or decrease pressure to achieve the desired flow rate which has been preprogrammed into computer control 100. Each column must have its backpressures factored into flow rate when backflushing is conducted and this is accomplished by second electronic pressure control 59. Because the backpressure of the combustion furnace changes over time, third electronic pressure control 57 is installed in furnace carrier gas input line 62.
Turning to
When valve block 2 is in the purge mode P, carrier gas coming from carrier gas source 10 through carrier gas line 54 enters the valve array simultaneously through ports 52b and port 51b. In this configuration port 51b is fluidly connected to 51c which in turn is fluidly connected to sample extractor 3. It can be seen that sample extractor 3 is being flushed with carrier gas. Simultaneously, carrier gas enters port 52b which is fluidly connected with port 52c which is turn is fluidly connected with port 53b which in turn is fluidly connected with port 53c which is fluidly connected to syringe 1. Here, carrier gas flushes syringe 1 and exits purge port 73, as long as syringe plunger 72 is retracted within the syringe to an extent that purge port 73 is open. In this fashion, sample gas remaining in the listed components of the system may be flushed with sample free carrier gas thus clearing the system for a new sample.
In the syringe loading mode SL, it is seen that sample extractor 3 is fluidly connected with port 51c which in turn is fluidly connected with 51a. 51a is, in turn, fluidly connected to 52a. 52a is fluidly connected to 52c and 52c is fluidly connected to 53b which is connected to 53c and then to syringe 1. In this mode, a servomotor will have fully inserted plunger 1a within the syringe body. The servomotor will operate to withdraw syringe plunger 1a creating a vacuum within the syringe which will draw the sample from the gas sampling container 4 through the three-way valve array and into syringe 1. The servomotor will stop retracting the syringe plunger 1a prior to the syringe plunger crossing purge port 73. In this fashion, syringe 1 will be loaded with sample to be analyzed. The servo can be programmed by means of computer control 100 to withdraw the syringe to any point so as to vary the amount of sample loaded.
In the sample injection mode SI, the sample is injected into the gas chromatograph 5. The flow sequence for sample injection mode is as follows: Syringe 1, port 53c, port 53a, GC input line 55, GC input valve 58, gas chromatograph 5. Servomotor 1b then moves plunger 1a fully into syringe 1 thereby compressing the sample and forcing it into gas chromatograph 5.
In the container pressurization mode CP, carrier gas source 10 is fluidly connected again through carrier gas line 54 to both ports 51b and 52b. Port 52b is closed, yet, port 51b is fluidly connected to port 51c. Thus the flow of the carrier gas is directed through sample extractor 3 into sample container 4. This results in the pressurization of the sample container and aids in the subsequent extraction of sample.
Gas chromatograph 5 is illustrated in various modes in
When gas chromatograph 5 is in backflush mode or vent mode, the carrier gas stream is vented. This cuts off the carrier gas stream through the combustion furnace, water separator and most critically the open split. It is necessary for the open split to remain pressurized with carrier gas to prevent the introduction of air into open split 8 and then into mass spectrometer 9. To prevent this, when seventh GC valve 86 is in vent configuration, or sixth GC valve 85 is in backflush configuration, eighth GC valve 87 will simultaneously be configured so that carrier gas from line 62 is introduced into port 87a and on through the system to open split 8 maintaining carrier gas pressure within.
The path thorough the ethane column for all modes is as follows: port 81c, port 82b, port 82a, ethane column inlet line 93, ethane column first end 102, ethane column 89, ethane column second end 103, ethane column output line 94, port 83a of fourth GC valve 83, port 83b, port 84c of fifth GC valve.
The path through the propane column for all modes is as follows: port 81c, port 82b, port 82c, propane column input line 96, propane column first end 104, propane column 90, propane column second end 105, propane column output line 95, port 83c, port 83b and port 84c.
The venting modes for the ethane and propane columns are identical to that of the methane column from ports 80c through 81b and from ports 84b through 85a to vent. However, the ethane column is vented when ports 81b, 81c and 82b, 82a are fluidly connected and ports 83a, 83b and 84c, 84b are fluidly connected. The propane column is vented when ports 81b, 81c and 82b, 82c are fluidly connected and ports 84c, 84b and 83b, 83c are fluidly connected.
The combustion modes for the ethane, and propane columns are identical to that of the methane column from ports 80c through 81b and from ports 84b through combustion furnace. However, the ethane column is in combustion mode when ports 81b, 81c and 82b, 82a are fluidly connected and ports 83a, 83b and 84c, 84b are fluidly connected. The propane column is in combustion mode when ports 81b, 81c and 82b, 82c are fluidly connected and ports 84c, 84b and 83b, 83c are fluidly connected.
The backflush modes for the ethane, and propane columns are identical to that of the methane column from ports 80b through 81b and from ports 84b through 85a. The backflush mode for the ethane column is implemented when 83a, 83b and 84c, 84b are fluidly connected and 81b, 81c and 82b, 82a are fluidly connected. The backflush mode of the propane column would require ports 84c, 84b and 83b, 83c to be fluidly connected and ports 81b, 81c and 82b, 82c to be fluidly connected. For purposes of backflushing, carrier gas is drawn from the carrier gas source 10 by means of chromatograph flushing line 55b fluidly connected to the electronic pressure control 59.
The carrier gas utilized here is composed of approximately 99% helium and 1% oxygen. In traditional configurations, the oxidation material utilized in the combustion furnace must be taken off line and recharged with oxygen. With the use of the helium/oxygen carrier, the oxidation agent used in this system is continuously recharged eliminating the down time in traditional systems due to recharging.
Combustion Furnace 6 is composed of a standard cartridge heater 34, similar to Model # Hi-Temp manufactured by Fastheat. Cartridge heaters are used because they are inexpensive and easily replaceable. Cartridge heater 34 is connected to an electrical source through conductors 36. Combustion furnace tube 35, composed of metal tubing in this instance is coiled around the cartridge heater 34. It exhibits first combustion tube end 35a and second combustion tube end 35b. First combustion tube end 35c is fluidly connected to port 87b of eighth GC valve 87. Second combustion tube end 35c is fluidly connected to line 64. Combustion furnace tube 35 is packed with an oxidizing agent such as cupric oxide is used. Here the hydrocarbon pulses generated by the gas chromatograph are individually converted into carbon dioxide and water.
Water separator 7 is shown in
In this application, water separating tubing 18 has an inside diameter of approximately 0.7 millimeters. A corresponding length of stainless steel wire forming a stylet 20 of an outside diameter of approximately 0.5 millimeters is inserted through water separating tubing 18. Stylet 20 serves three functions. The first function is that the stainless steel wire allows tubing 18 to be formed into its coil shape, thereby increasing the length of water separating tubing 18 incorporated within water separator 7. The second function is that the presence of the stylet 20 which occupies a significant portion of the inside diameter of tubing 18 and forces the gas sample into close contact with the wall of water separating tube 18, consequently promoting the effectiveness of water removal from the sample gas stream flowing through water separating tubing 18. Finally, the stylet strengthens and stabilized the water separator tubing and making the structure much more durable.
The sample gas pulse is analyzed by the mass spectrometer as it enters that instrument. For accurate isotopic analysis it is also necessary to introduce a pulse of carbon dioxide of precisely known isotopic composition into the mass spectrometer, at a time very close to the time when the sample gas is analyzed. This pulse of gas of known composition is referred to as the reference gas and in the case of the current instrument, that reference gas is carbon dioxide. The mechanism for introducing that reference gas is identified as the reference gas injector 11, seen also in
Turning to
This application claims the benefit of earlier filed United State Provisional Application 60/585,239 filed Jul. 2, 2004.
| Filing Document | Filing Date | Country | Kind | 371c Date |
|---|---|---|---|---|
| PCT/US2005/024128 | 6/5/2005 | WO | 00 | 1/28/2008 |
| Number | Date | Country | |
|---|---|---|---|
| 60585239 | Jul 2004 | US |