Hydrocarbon recovery using fluids

Information

  • Patent Grant
  • 7770643
  • Patent Number
    7,770,643
  • Date Filed
    Tuesday, October 10, 2006
    18 years ago
  • Date Issued
    Tuesday, August 10, 2010
    14 years ago
Abstract
The recovery of hydrocarbons from hydrocarbon bearing rock, sands or other geological materials (collectively “rock”) uses a recovery fluid. In certain embodiments, the recovery fluid includes miscible compounds or an azeotrope-forming mixture (including an azeotrope), used alone or with other compositions. Two or more compounds in the recovery fluid yield a mixture with different and/or improved characteristics over those of one or more of the component compounds in both liquid and vapor states.
Description
BACKGROUND

The present disclosure relates to recovery of hydrocarbons, and more particularly, to the recovery of hydrocarbons using a recovery fluid.


The hydrocarbons residing in some geological formations are of a high viscosity. These high viscosity hydrocarbons are referred to generally as heavy oil, and can include high viscosity oil, tar, bitumen, and asphalt. Because of their high viscosity, these hydrocarbons are not mobile within the formation, and are thus difficult to recover. In the past, the high viscosity hydrocarbons remained untapped due to an inability to economically recover them. More recently, as the demand for oil has increased, commercial operations have expanded to the recovery of such heavy oil deposits. In some circumstances, the application of heated fluids (e.g., steam) or solvents to the formation are used to reduce the viscosity of the hydrocarbons. Reducing the viscosity of the hydrocarbons mobilizes them within the formation and permits their extraction to the surface. The methods by which heavy oils are recovered, however, are still evolving. Improvements in the operational efficiencies of these methods decrease the cost of recovering heavy oils and may make additional deposits economically viable.


SUMMARY

The concepts described herein encompass improvements to the recovery of hydrocarbons from hydrocarbon bearing rock, sands or other geological materials (collectively “rock”) using a recovery fluid. In certain embodiments, the recovery fluid includes a mixture of miscible compounds, such as an aqueous solution having a water-miscible solvent to hydrocarbons, used alone or with other compositions. In certain embodiments, the recovery fluid includes azeotrope-forming compounds, such as a base compound and a solvent to hydrocarbon, used alone or with other compositions. Two or more compounds in the recovery fluid that are miscible or that form an azeotropic mixture may yield different and/or improved characteristics over those of one or more of the component compounds in both liquid and vapor states.


Although there are many variations that fall within the scope of the concepts described herein, one aspect encompasses a method where a vaporized recovery fluid comprising an aqueous solution having a water-miscible solvent is received and at least a portion of the vapor is contacted with a hydrocarbon in rock.


Another aspect encompasses a method where a liquid recovery fluid comprising an aqueous solution having a water-miscible solvent is heated and at least a portion of the recovery fluid is introduced into a hydrocarbon bearing rock.


Another aspect encompasses a method where the viscosity of a hydrocarbon is lowered with an aqueous solution having a water-miscible solvent and the hydrocarbon is recovered.


In some instances, the rock is in-situ. The rock may also be at the surface. The recovery fluid can be a number of different compounds. In some instances, the water-miscible solvent includes a solvent that forms an azeotrope with water. One example class of solvents that are miscible in, and in some instances, form an azeotrope with water is alcohol. Some example alcohols that form an azeotrope with water include ethanol, diacetone alcohol, sec-butyl alcohol, isopropyl alcohol and others. The recovery fluid may also include an antioxidant, an oxygen scavenger, a corrosion inhibitor and/or other compounds, azeotropically (or that form azeotropes) with another compound or not.


The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.





DESCRIPTION OF DRAWINGS


FIGS. 1A-1B are schematic side cross-sectional views of an exemplary cyclic thermal recovery system.



FIG. 2 is a schematic side cross-sectional view of an exemplary vapor assisted gravity drainage thermal recovery system.



FIG. 3 is a schematic side cross-sectional view of an exemplary surface recovery system.



FIG. 4 is a flow diagram of a method for thermal recovery of high viscosity hydrocarbons.





Like reference symbols in the various drawings indicate like elements.


DETAILED DESCRIPTION

The concepts described herein encompass improvements to the recovery of hydrocarbons from hydrocarbon bearing rock, sands or other geological materials (collectively “rock”) using a recovery fluid. Certain embodiments are applicable to improving recovery of high viscosity hydrocarbons, such as heavy oil, tar and others, by using a heated recovery fluid to apply heat to, and thus lower the viscosity of, the hydrocarbons. The concepts described herein are also applicable to other types of hydrocarbon bearing rock.


In certain embodiments, the recovery fluid includes a mixture of miscible compounds, such as an aqueous solution having one or more water-miscible solvents, used alone or with other compositions. Additionally, or alternatively, the mixture may be an azeotrope-forming mixture. An azeotrope is a mixture of two or more compounds that retains the same composition in liquid state as in vapor state. In other words, the ratio of the two or more compounds does not change when a liquid azeotrope is vaporized. By using compounds that are miscible and/or that are azeotrope-forming, the two or more compounds yield a mixture with different and/or improved characteristics over those of one or more of the component compounds in both liquid and vapor states. A number of variations and examples are described below.


It is important to note that, in practice, the presence of contaminants in an otherwise azeotropic mixture slightly upsets the azeotropy. Thus, the terms azeotrope and azeotropic mixture are used herein to refer to mixtures that are ideal azeotropes, as well as mixtures that are substantially azeotropic, but not ideal, because they contain some relatively small amount of contaminant. For example, a binary azeotrope or binary mixture of azeotrope-forming solvents as used herein substantially consists of two compounds, but may have some relatively small amount of contaminant. A ternary azeotrope or ternary mixture of azeotrope-forming solvents as used herein substantially consists of three compounds, but may have some relatively small amount of contaminant. As used herein, an azeotrope-forming mixture is a mixture of two or more compounds that will form an azeotrope, but are not necessarily provided in the azeotropic proportions (weight, molar or volume). The term azeotrope-forming mixture is intended to also encompass mixtures that are forming or have formed an azeotrope. For example, two compounds form an azeotrope at a molar ratio of 95% of one compound and 5% of the other compound. An azeotrope-forming mixture encompasses both a mixture of the compounds in the 95% to 5% mole ratio as well as mixtures with other ratios. As used herein, a compound is miscible in another compound if the compounds form a homogeneous mixture regardless of the amount of either component present.


As will be discussed in more detail below, the concepts herein encompass using a recovery fluid in the recovery of hydrocarbons from rock by introducing the recovery fluid into the rock in-situ (i.e. in the earth) or by introducing the recovery fluid into rock that has been recovered to the surface. The mixture can be introduced into the rock alone or with other compounds that are miscible or form azeotropes or are not miscible or do not form azeotropes. The miscible compounds or azeotrope-forming compounds and any other compounds included therewith make up the recovery fluid. In thermal recovery operations, the recovery fluid can be introduced into the rock or contacted to the hydrocarbon as heated liquid, vapor or both.


The compounds of the recovery fluid can be selected according to the specific application in which the recovery fluid will be used. For example, the compounds can be selected to achieve a specified and/or optimum efficiency of the hydrocarbon, recovery, to change or improve the characteristics of the recovery fluid, and/or to achieve other objectives. The following discussion provides some examples and variations of how the compounds of the recovery fluid can be selected. The examples provided, however, are not exhaustive. Other examples exist and are within the scope of the concepts described herein.


In certain embodiments, the compounds of the recovery fluid can be selected based at least in part on how they interact in different states. For example, in thermal recovery operations, the recovery fluid may be handled or used in a liquid state, a vapor state or both. Thus, the recovery fluid characteristics in both liquid and vapor states can be considered when selecting the compounds. In some instances, the recovery fluid can include miscible compounds alone or in combination with one or more other compounds. Compounds that are miscible, such as water and water-miscible solvents, form a homogeneous mixture in both liquid and vapor states although the ratio of the compounds may be different in different states. In some instances, the recovery fluid can include miscible compounds that are azeotrope-forming. The azeotrope-forming compounds can be provided alone or in combination with one or more other compounds. Miscible compounds that are azeotrope-forming form a homogeneous mixture in both liquid and vapor states, and the portion that forms an azeotrope will achieve a specified ratio (the azeotropic ratio). If the azeotrope-forming compounds are provided in the azeotropic ratio, they will maintain the ratio in both liquid and vapor states. Whether azeotrope-forming or just miscible, any change in ratio may affect the characteristics of the resulting recovery fluid; however, some portion of the recovery fluid substantially operates as a single fluid in both liquid and vapor forms. The portion that operates as a single fluid can have characteristics contributed by both fluids as discussed in more detail below. In contrast, non-miscible compounds may operate separately in both liquid and vapor forms, and some instances, one compound may form a full or partial barrier between the hydrocarbons and the other compounds or compounds in the recovery fluid. The compound forming the barrier effectively insulates the hydrocarbons from the characteristics of the other compounds and may reduce the effectiveness of the recovery fluid by reducing specified effects of the insulated compounds.


In certain embodiments, the thermal characteristics of a recovery fluid, such as heat capacity, boiling point, freezing point and vapor pressure, can be changed by combining the base compound with another compound or compounds that are miscible or that in some compositional ratio form an azeotrope. The thermal characteristics of the resulting mixture will be different from the thermal characteristics of the base compound or mixture. At the azeotropic composition, the azeotrope will act as a single fluid in both liquid and vapor states. For example, in thermal recovery of high viscosity hydrocarbons, it is often desirable to increase the heat capacity and lower the boiling point of the recovery fluid to improve its efficiency as a heat transfer medium. A higher heat capacity enables the fluid to store, and subsequently transmit, more heat into the hydrocarbons and surrounding formation. A lower boiling point enables the fluid to achieve a vapor and begin to store latent heat at a lower temperature. The more heat the recovery fluid can transmit into the hydrocarbons and surrounding formation, the more effective the heated fluid treatment operations will be at mobilizing the hydrocarbons. Achieving a specified change in viscosity of the hydrocarbons (and correspondingly, a change in mobility) with a more efficient recovery fluid, requires less recovery fluid and/or less energy (i.e., fuel) to heat the recovery fluid.


A thermal characteristic of a base compound or mixture can be changed toward a specified value by combining the base compound with a compound or compounds having a thermal characteristic closer to the specified value than the base compound, equal to the specified value, or greater than the specified value. For example, the heat capacity of a base compound or mixture, whether initially an efficient heat transfer medium or not, can be raised by adding compounds that are miscible in or that form an azeotrope with the base compound and have a higher heat capacity than the base compound. Likewise, the heat capacity can be lowered by adding compounds that are miscible in or that form an azeotrope with the base compound and have a lower heat capacity. Although this example is concentrating on only one thermal characteristic, it is likely that combining a base compound with additional compounds will change more than one thermal characteristic of the recovery fluid. Thus, when selecting the compounds of the recovery fluid, the resulting values for a number of thermal characteristics can be taken into account.


In certain embodiments, the recovery fluid may be selected to have other characteristics appropriate for hydrocarbon removal. A solvent property that is particularly appropriate for hydrocarbon removal is the oil/water partitioning coefficient. The oil/water partitioning coefficient P(oil/water) is the ratio, at equilibrium, of the concentration of a compound in oil or a hydrocarbon such as octane to the concentration of the compound in water. In the case of octane and water:

P(octane/water)=concentration in octane/concentration in water

The partitioning coefficient (P) is thus the quotient of two concentrations in octane and water, respectively, and may be provided as the logarithm to the base 10 (for example, as LogP(octane/water).


For example, a base compound or mixture that is an efficient heat transfer medium can be mixed with an additional miscible or azeotropic-forming compound or compounds that are solvents to the hydrocarbons or that have a specified octane/water partitioning coefficient. In certain embodiments, the octane/water partitioning coefficient of the additional compounds can be 0.01 or greater, and in some instances 0.1 or greater. The resulting mixture can lower the viscosity of the hydrocarbons by both transferring heat to the hydrocarbons and at least partially dissolving the hydrocarbons. The result is an improvement in the effectiveness of the thermal recovery operations. Such a mixture can achieve a specified change in viscosity of the hydrocarbons using less recovery fluid and/or less fuel to heat the recovery fluid. Because effective solvents may not be efficient heat transfer mediums, or may not be as efficient as other compounds, the compound or mixture selected for its properties as an effective heat transfer medium can at least partially compensate for the deficiency of the solvent in this respect. The mixture may be more efficient at heat transfer than each solvent alone and a better solvent to hydrocarbon than the compound(s) selected for their heat transfer characteristics. Additionally, because the miscible compounds remain mixed in both liquid and vapor states, the mixture may be more effective than a solvent and an efficient heat transfer medium that are co-injected and that do not homogenously mix. For instance, using the barrier example discussed above, a solvent that is co-injected with a more efficient heat transfer medium (the two being non-miscible) can form a barrier between the hydrocarbons and the more efficient heat transfer medium. The barrier insulates the more efficient heat transfer medium and reduces the effectiveness of the co-injected fluids at transferring heat to the formation.


In certain embodiments, the corrosive nature of a base compound or mixture can be mitigated by combining it with another miscible or azeotrope-forming compound or compounds. In one instance, corrosion inhibitors can be added to an efficient heat transfer medium to form a mixture that is less corrosive to equipment used in the hydrocarbon recovery process or in other processes using the recovery fluid than the efficient heat transfer medium alone. If the corrosion inhibitor is miscible in or azeotropic-forming with the base compound, at least a portion of the mixture will remain homogeneously mixed with the base compound in both liquid and vapor states. If the corrosion inhibitor and base compound are in azeotropic proportions, the corrosive nature of the mixture does not change when, for example in thermal recovery operations, the mixture is heated to form vapor.


In certain embodiments, the tendency of a base compound or mixture to oxidize the hydrocarbons can be reduced by combining it with another miscible or azeotrope-forming compound or mixture. In one instance, using miscible azeotrope-forming oxygen scavengers and/or antioxidants with an efficient heat transfer medium yields a mixture that has a reduced tendency to oxidize the hydrocarbon. If the oxygen scavengers and/or antioxidants are miscible in or azeotropic-forming with the base compound or mixture, at least a portion of the mixture will remain homogeneously mixed with the base compound in both liquid and vapor states. If the oxygen scavengers and/or antioxidants are combined with the base compound or mixture in azeotropic proportions, the oxidizing nature of the mixture does not change when the mixture changes state between a liquid and a vapor. It is believed that oxidation of the hydrocarbon contributes to viscosity growth, and thus hinders hydrocarbon recovery.


In certain embodiments, the amount in a recovery fluid of a compound or mixture that is expensive or difficult to obtain, handle and/or dispose of can be reduced by combining it with another miscible or azeotrope-forming compound or mixture. For example, a base compound may have desirable characteristics for thermal recovery operations, but may be expensive or difficult to obtain, handle and/or dispose of. The expense or difficulty can be mitigated by combining the base compound with another miscible or azeotrope-forming compound that is less expensive or difficult to obtain, handle and/or dispose of, but that may or may not have the desirable characteristics to the same degree as the base compound. The resulting mixture may be less expensive or difficult to obtain, handle and/or dispose of than the base compound, and may have improved characteristics for thermal recovery over the second compound.


In certain embodiments, the recovery fluid can include compounds selected to work well with other compounds in the recovery fluid. For example, a first compound or mixture has desirable characteristics for hydrocarbon recovery, but a low affinity for a second compound or mixture. The first compound may be mixed with a third compound or mixture having on a higher affinity for the second compound and that is also miscible in or azeotrope-forming with the first compound. The resulting mixture may then have a higher affinity for the second compound than the first compound alone. Due to the higher affinity, the mixture can more readily mix (azeotropically or not) with the second compound. Likewise, the affinity of a first compound for a second compound can be reduced by mixing the first compound with a third compound that is miscible in or azeotrope-forming with the first compound and that has a lower affinity for the second compound. Due to the lower affinity, the mixture will resist mixing with the second compound. If the added compounds (e.g., third compound) are miscible in or azeotropic-forming with the first compound, at least a portion of the mixture will remain homogeneously mixed with the first compound in both liquid and vapor states. If the added compounds are combined with the first compound in azeotropic proportions, the affinity characteristics of the mixture do not change when the mixture changes state between a liquid and a vapor. In some instances, the affinity of the recovery fluid for corrosion inhibitors, anti-oxidants, oxygen scavengers, and other compounds can be increased by using a mixture of miscible or azeotrope-forming compounds.


Although each of the examples above has been discussed separately, a mixture of miscible or azeotrope-forming compounds may be formulated in accordance with combinations and permutations of some or all of the examples above. For example, azeotropes may be formed with three or more components and/or by selecting components that perform more than one function. For example, a solvent may be selected that also reduces the tendency of the base fluid to oxidize hydrocarbons or changes the affinity of the base for another compound. In another example, an efficient heat transfer medium can be selected to reduce the tendency of a solvent to corrode equipment. It should be understood that other examples exist and are within the scope of the concepts described herein. Also, in certain embodiments, the mixture of azeotrope-forming compounds can be optimized considering a desire to lower or raise the boiling point of the base fluid to make the heat exchange process more efficient, a desire to reduce corrosion of downhole components, and a desire to improve the effectiveness of the viscosity reduction both in terms of reducing the injected fluid volume and heat requirements.


In one embodiment, the recovery fluid includes water. Water is common in heated fluid injection (steam injection) for extraction of high viscosity hydrocarbons, because water is inexpensive, readily available and, due to its high latent heat in vapor form, efficient at transferring heat to the hydrocarbons. There are many water-miscible solvents and many that are azeotrope-forming with the water, particularly those solvents that are able to hydrogen bond with water. Some water-miscible or azeotrope-forming solvents have octane/water partitioning coefficients of 0.01 or greater, and some 0.1 or greater.


One class of solvents that are miscible with water are alcohols (monols and diols). For example, the water miscible compounds or mixtures of azeotropic-forming compounds for use as a recovery fluid can include water and one or more of ethanol, methanol, diacetone alcohol, sec-butyl alcohol, ethylene glycol, hexylene glycol, isopropyl alcohol and/or others. These listed example alcohols are relatively inexpensive and readily available in bulk on the commercial market, thus making them suitable for use in large scale hydrocarbon recovery.


Of the listed example alcohols, ethanol and methanol are fuels. One use for hydrocarbons is as fuel. The portion of the recovery fluid remaining in the recovered hydrocarbon is typically removed from the hydrocarbon in surface based processing operations and treated and/or disposed of. A fuel based water miscible solvent or azeotrope-forming solvent maybe recovered from the hydrocarbons and the fuel used or sold. These water miscible solvents or azeotrope-forming solvents also generally depress the freezing point of water solutions. Another of the listed examples, ethylene glycol and hexylene glycol, substantially lower the freezing point of water and can freeze protect the recovery fluids when stored at the surface in colder climates.


In addition to monols and diols, some azeotropic-forming solvents with water include hydrocarbons, chlorohydrocarbons, carboxylic acids, aldehydes, amines, ketones, and ethers. Specific examples of azeotropic-forming solvents include carbon disulfide, trichloromethane, formaldehyde, formic acid, 1,2-diaminoethane, acetonitrile, propenal, 2-propanone, methyl acetate, methoxyacetaldehyde, propanoic acid, propane, propanol, 2-methoxyethanol, ethylacetate, butane, butanol, butanone, butanoic acid, 1,4-dioxane, 2ethoxyethanol, diethylether, furfural, pyridine, pentane, pentanol, benzene, aniline, phenol, cyclohexanol, hexanol, benzyl alcohol, and dibutyl ether.


It is important to note that although the recovery fluid is discussed in several (though not all) instances above as being a water based, the recovery fluid can include any miscible or azeotrope-forming compounds in any proportion and is not limited to those that are aqueous.


Referring now to FIG. 1A, an exemplary system 10 for thermal recovery of high viscosity hydrocarbons using cyclic heated fluid injection is depicted. FIG. 1 shows a well bore 12 extending from the surface 14 into a subterranean zone 16. The subterranean zone 16 is an interval of or all of a hydrocarbon bearing formation having high viscosity hydrocarbons therein. In one instance, the subterranean zone 16 includes an oil sand, such as a tar sand or bituminous sand. In another instance, the subterranean zone 16 includes a formation with heavy crude oil. In other instances, the subterranean zone 16 can be other hydrocarbon bearing formations.


An injection string 18 extends from about the surface 14 into the subterranean zone 16. In FIG. 1A, the injection string 18 includes a seal 20, such as a packer or other downhole sealing device, selectively actuable into sealing engagement with the wall of the well bore 12. When set, the seal 20 isolates a portion of the well bore 12 in the subterranean zone 16 from the remaining uphole portion of the well bore 12. The injection string 18 additionally includes a downhole heated fluid generator 22 positioned downhole from the seal 20. A reservoir 24 of recovery fluid, such as the recovery fluid described above, is maintained at the surface 14, and can be communicated to the heated fluid generator 22. Likewise, a liquid or gaseous fuel supply 26 and air supply 28 can supply fuel and air to the heated fluid generator 22.


In operation, the seal 20 is set and the heated fluid generator 22 operated to combust the fuel and air. The combustion heats the recovery fluid. In certain embodiments, the recovery fluid is received by the heated fluid generator 22 as a liquid and heated to vaporize at least a portion thereof. The vapor and/or heated recovery liquid are introduced into the subterranean zone 16, and are sometimes introduced along with exhaust from the combustion process.


Of note, the injection string 18 of FIG. 1A is configured for downhole heated fluid generation. In other instances, the injection string 18 can be configured for surface heated fluid generation. If the heated recovery fluid is generated at the surface (via a surface based heated fluid generator), the injection string 18 may omit the downhole heated fluid generator 22, and heated recovery fluid may be communicated down the injection string 18.


In either instance, downhole or surface heated fluid generation, the heated recovery fluid enters the subterranean zone 16 and operates to lower the viscosity of the hydrocarbons therein. After a specified amount of heated recovery fluid has been introduced into the subterranean zone 16, the injection string 18 is removed from the well bore 12 and well bore 12 is shut-in for a period of time to allow the subterranean zone 16 to soak. Thereafter, as seen in FIG. 1B, a production string 30 is placed in the well-bore 12 and operated to produce hydrocarbons from the subterranean zone 16 to the surface 14. In some instances, the production string 30 may include an artificial lift system 32 (e.g. pump, gas lift or other system) to facilitate the production operations. For example, if the pressure of the subterranean zone 16 is too low to drive the hydrocarbons to the surface 14, the artificial lift system 32 may be operated to produce the hydrocarbons.


After producing for a period of time, the production string 30 may be withdrawn from the well bore 12 and the well permanently shut in. In other instances, the production string 30 may be replaced by the injection string 18, and the injection string 18 used to introduce additional heated fluid into the subterranean zone 16. As above, the injection string 18 is then withdrawn, the well shut-in, and the production string 30 replaced and used to produce hydrocarbons. One or more additional cycles of injection/production may be performed over the life of the well.


Referring now to FIG. 2, an exemplary system 50 for thermal recovery of high viscosity hydrocarbons using vapor assisted gravity drainage is depicted. FIG. 2 shows two well bores, an injection well bore 52 and a recovery well bore 54, extending from the surface 14 into the subterranean zone 16. The injection well bore 52 and the recovery well bore 54 deviate at a high angle from vertical (substantially horizontal shown) and extend substantially parallel to one another in the subterranean zone 16. The injection well bore 52 resides above the recovery well bore 54. An injection string 18 extends from about the surface 14 into the subterranean zone 16 through the injection well bore 52. A production string 30 extends from about the surface 14 into the subterranean zone 16 through the recovery well bore 54. The heated fluid generator 22 receives a supply of fuel (from fuel supply 26), air (from air supply 28) and recovery fluid (from reservoir 24), combusts the fuel and air to generate heat, and applies the heat to the recovery fluid. In certain embodiments, the recovery fluid is received by the heated fluid generator 22 as a liquid and heated to vaporize at least a portion thereof. The vapor and/or heated recovery liquid are then introduced into the subterranean zone 16.


As above, the injection string 18 of FIG. 2 is configured for downhole heated fluid generation, and includes a seal 20 and a downhole heated fluid generator. In other instances, the injection string 18 can be configured for surface heated fluid generation by omitting the downhole heated fluid generator 22. The recovery fluid may then be heated at the surface and communicated down the injection string 18 to the subterranean zone 16.


In either instance, downhole or surface heated fluid generation, the heated recovery fluid enters the subterranean zone 16 about the injection well bore 52 and operates to lower the viscosity of the hydrocarbons surrounding the injection well bore 52. The reduction of viscosity mobilizes the hydrocarbons in the subterranean zone 16 and enables the hydrocarbons to flow, by force of gravity, downward to the recovery well bore 54. The hydrocarbons are then produced to the surface 14 through the recovery well bore 54. As above, in some instances, the production string 30 may include an artificial lift system 32 (e.g. pump, gas lift or other system) to facilitate the production operations. For example, if the pressure of the subterranean zone 16 is too low to drive the hydrocarbons to the surface 14, the artificial lift system 32 may be operated to produce the hydrocarbons.


Referring now to FIG. 3, an exemplary system 60 for thermal recovery of hydrocarbons that have been excavated to the surface is depicted. FIG. 3 shows a separator vessel 62, such as would be in a hydrocarbon extraction plant. The separator vessel 62 holds a mixture of a heated recovery fluid 64 and hydrocarbon bearing rock 64. Although depicted as whole pieces of rock 64, in some instances (e.g., oil sands) the rock 64 and recovery fluid 64 form a slurry. In the separator vessel 62, the recovery fluid 66 acts to reduce the viscosity of the hydrocarbons. In some instances, (e.g., oil sands) the rock 64 dissolves releasing the hydrocarbons. The recovery fluid 66, rock 64 and hydrocarbons separate by weight or by another mechanism in the vessel 62. Thereafter, the hydrocarbons are extracted from the vessel 62.


Although three exemplary systems for recovering hydrocarbons have been discussed above, it is important to note that the recovery fluids in accordance with the concepts herein can be used in numerous other recovery systems. Thus, the concepts described herein are not limited for use in only the specific exemplary systems described above.


Referring now to FIG. 4, an exemplary method 100 for recovering hydrocarbons from a hydrocarbon bearing rock is described. At operation 102 of the exemplary method 100 a recovery fluid is received. The recovery fluid may be as described above, and include an aqueous solution of water-miscible solvent, a mixture of azeotrope-forming solvents or an azeotrope alone, or may include an aqueous solution of water-miscible solvent, a mixture of azeotrope-forming solvents or an azeotrope and other compounds, azeotropic or not. As discussed above, the compounds of the recovery fluid can be selected according to the specific application in which the recovery fluid will be used. In some instances, the exemplary method 100 further includes selecting the components of the recovery fluid and/or preparing the recovery fluid.


At operation 104 of the exemplary method 100, the recovery fluid is heated. In some instances, for example the embodiments discussed with respect to FIGS. 1A and 2, the recovery fluid is communicated from a source into a well bore and heated downhole. In other instances, the recovery fluid may be heated at the surface. In some instances, the recovery fluid is heated to form a vapor of 100% quality or less.


At operation 106 of the exemplary method 100 the recovery fluid is introduced into a rock, such as a hydrocarbon bearing rock. In some instances, the recovery fluid may be introduced into the rock while the rock resides in-situ (e.g., in the earth), for example as in the embodiments discussed with respect to FIGS. 1A and 2. In the embodiments discussed with respect to FIGS. 1A and 2, the recovery fluid is introduced into the rock through a well bore, but may be introduced into the rock in other manners. In some instances, the recovery fluid may be introduced into the rock after it has been excavated, for example as in the embodiments discussed with respect to FIG. 3. Introducing the recovery fluid into the rock lowers the viscosity of the hydrocarbons therein, and may mobilize the hydrocarbons to facilitate recovery.


At operation 108 of the exemplary method 100 the hydrocarbon is recovered from the rock. When the rock is in-situ and the recovery fluid introduced through a well bore, the hydrocarbon may be recovered from the same well bore through which the recovery fluid was introduced (e.g., FIGS. 1A and 1B) or may be recovered from a different well bore (e.g., FIG. 2). The hydrocarbon may be recovered from the rock and a number of other different manners.


Although depicted in FIG. 4 as occurring in a given order or with certain operations, method 100 can occur in other orders or no order and certain operations can be omitted and/or added. For example, introducing the recovery fluid into the hydrocarbon bearing rock at operation 106 can be performed concurrently with recovering the hydrocarbon at operation 108. In another example, heating the recovery fluid at operation 104 can be performed concurrently with introducing the recovery fluid into the hydrocarbon bearing rock at 106. In another example, heating the recovery fluid at operation 104 can be omitted, such as when the recovery fluid is received already heated or if it is not needed to heat the recovery fluid. It should be appreciated that numerous variations are within the scope of the concepts described herein.


A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments are within the scope of the following claims.

Claims
  • 1. A method, comprising: receiving a vaporized recovery fluid comprising an aqueous solution including a water-miscible solvent to hydrocarbons, the water-miscible solvent forming a homogeneous mixture with water regardless of an amount of water or water-miscible solvent; andlowering a viscosity of a hydrocarbon in a hydrocarbon bearing rock by contacting at least a portion of the vapor with the hydrocarbon in the rock.
  • 2. The method of claim 1 wherein the rock is in-situ.
  • 3. The method of claim 1 wherein the aqueous solution comprises an azeotrope-forming mixture.
  • 4. The method of claim 1 wherein the aqueous solution comprises an azeotrope.
  • 5. The method of claim 1 wherein water-miscible solvent comprises alcohol.
  • 6. The method of claim 1 wherein the recovery fluid comprises at least one of an antioxidant, an oxygen scavenger or a corrosion inhibitor.
  • 7. The method of claim 1 where the rock comprises at least one of a heavy oil reservoir or an oil sand.
  • 8. The method of claim 1 wherein the vapor is injected from a first well bore in the rock, and the method further comprises producing the hydrocarbons through a second well bore in the rock.
  • 9. The method of claim 1 wherein the vapor is injected from a well bore in the rock, and the method further comprises producing hydrocarbons from the well bore.
  • 10. The method of claim 1 wherein the aqueous solution comprises water and at least one of ethanol, diacetone alcohol, sec-butyl alcohol, or isopropyl alcohol.
  • 11. The method of claim 1 wherein the octane/water partitioning coefficient of the water-miscible solvent is 0.01 or greater.
  • 12. A method, comprising: receiving a vaporized recovery fluid comprising an aqueous solution including a water-miscible solvent to hydrocarbons; andcontacting at least a portion of the vapor with a hydrocarbon in rock, wherein the octane/water partitioning coefficient of the water-miscible solvent is 0.1 or greater.
  • 13. A method, comprising: heating a liquid recovery fluid comprising an aqueous solution including a water-miscible solvent, the water-miscible solvent forming a homogeneous mixture with water regardless of an amount of water or water-miscible solvent;introducing at least a portion of the recovery fluid into a hydrocarbon bearing rock; andlowering a viscosity of a hydrocarbon in the hydrocarbon bearing rock.
  • 14. The method of claim 13 wherein introducing at least a portion of the recovery fluid into the hydrocarbon bearing rock comprises introducing at least a portion of the recovery fluid in a vapor state.
  • 15. The method of claim 13 wherein the hydrocarbon bearing rock is in-situ.
  • 16. The method of claim 13 wherein the water-miscible solvent is azeotrope-forming with water.
  • 17. The method of claim 13 wherein the water-miscible solvent comprises alcohol.
  • 18. The method of claim 13 wherein heating the liquid recovery fluid is performed in a well bore.
  • 19. The method of claim 18 further comprising recovering hydrocarbons through the well bore or through a second well bore.
  • 20. The method of claim 13 wherein the octane/water partitioning coefficient of the water-miscible solvent is 0.01 or greater.
  • 21. A method, comprising: heating a liquid recovery fluid comprising an aqueous solution including a water-miscible solvent; andintroducing at least a portion of the recovery fluid into a hydrocarbon bearing rock, wherein the octane/water partitioning coefficient of the water-miscible solvent is 0.1 or greater.
  • 22. A method, comprising: lowering the viscosity of a hydrocarbon in rock at least in part by raising the temperature of the hydrocarbon with an aqueous solution including a water-miscible solvent to hydrocarbons, the water-miscible solvent forming a homogenous mixture with water regardless of an amount of water or water-miscible solvent; andrecovering the hydrocarbon from the rock.
  • 23. The method of claim 22 wherein lowering the viscosity comprises at least partially dissolving the hydrocarbon.
  • 24. The method of claim 22 wherein the water-miscible solvent is azeotrope forming with water.
  • 25. A method, comprising: receiving a vaporized recovery fluid comprising an aqueous solution including a water-miscible solvent to hydrocarbons, the water-miscible solvent forming a homogeneous mixture with water regardless of an amount of water or water-miscible solvent and the aqueous solution comprising an azeotrope-forming mixture; andcontacting at least a portion of the vapor with a hydrocarbon in rock.
  • 26. The method of claim 25, wherein the aqueous solution comprises water and at least one of ethanol, diacetone alcohol, sec-butyl alcohol, or isopropyl alcohol.
  • 27. A method, comprising: receiving a vaporized recovery fluid comprising an aqueous solution including a water-miscible solvent to hydrocarbons, the water-miscible solvent forming a homogeneous mixture with water regardless of an amount of water or water-miscible solvent and the aqueous solution comprising an azeotrope; andcontacting at least a portion of the vapor with a hydrocarbon in rock.
  • 28. A method, comprising: heating a liquid recovery fluid comprising an aqueous solution including a water-miscible solvent, the water-miscible solvent being azeotrope-forming with water; andintroducing at least a portion of the recovery fluid into a hydrocarbon bearing rock, wherein the octane/water partitioning coefficient of the water-miscible solvent is 0.1 or greater.
  • 29. A method, comprising: heating, in a well bore, a liquid recovery fluid comprising an aqueous solution including a water-miscible solvent; andintroducing at least a portion of the recovery fluid into a hydrocarbon bearing rock, wherein the octane/water partitioning coefficient of the water-miscible solvent is 0.1 or greater.
  • 30. The method of claim 29 further comprising recovering hydrocarbons through the well bore or through a second well bore.
  • 31. A method, comprising: receiving a vaporized recovery fluid comprising an aqueous solution including a water-miscible solvent to hydrocarbons, the water-miscible solvent forming a homogeneous mixture with water regardless of an amount of water or water-miscible solvent and having an octane/water partitioning coefficient of 0.01 or greater; andcontacting at least a portion of the vapor with a hydrocarbon in rock.
  • 32. A method, comprising: heating a liquid recovery fluid comprising an aqueous solution including a water-miscible solvent, the water-miscible solvent forming a homogeneous mixture with water regardless of an amount of water or water-miscible solvent and having an octane/water partitioning coefficient of 0.01 or greater; andintroducing at least a portion of the recovery fluid into a hydrocarbon bearing rock.
US Referenced Citations (686)
Number Name Date Kind
1263618 Squires Apr 1918 A
1342741 Day Jun 1920 A
1457479 Wolcott Jun 1923 A
1726041 Powell Aug 1929 A
1918076 Woolson Jul 1933 A
2173556 Hixon Sep 1939 A
2584606 Merriam et al. Feb 1952 A
2670802 Ackley Mar 1954 A
2734578 Walter Feb 1956 A
2767791 van Dijck Oct 1956 A
2825408 Watson Mar 1958 A
2862557 van Utenhove et al. Dec 1958 A
2880802 Carpenter Apr 1959 A
2889881 Trantham et al. Jun 1959 A
2901043 Campion et al. Aug 1959 A
2914309 Salomonsson Nov 1959 A
3040809 Pelzer Jun 1962 A
3055427 Pryor et al. Sep 1962 A
3113619 Reichle Dec 1963 A
3127935 Poettmann et al. Apr 1964 A
3129757 Sharp Apr 1964 A
3135326 Santee Jun 1964 A
3141502 Dew et al. Jul 1964 A
3154142 Latta Oct 1964 A
3156299 Trantham Nov 1964 A
3163215 Stratton Dec 1964 A
3174544 Campion et al. Mar 1965 A
3182722 Reed May 1965 A
3205944 Walton Sep 1965 A
3221809 Walton Dec 1965 A
3232345 Trantham et al. Feb 1966 A
3237689 Justheim Mar 1966 A
3246693 Crider Apr 1966 A
3294167 Vogel Dec 1966 A
3310109 Marx et al. Mar 1967 A
3314476 Staples et al. Apr 1967 A
3315745 Rees, Jr. Apr 1967 A
3322194 Strubbar May 1967 A
3332482 Trantham Jul 1967 A
3334687 Parker Aug 1967 A
3342257 Jacobs et al. Sep 1967 A
3342259 Powell Sep 1967 A
3351132 Dougan et al. Nov 1967 A
3361201 Howard Jan 1968 A
3363686 Gilchrist Jan 1968 A
3363687 Dean Jan 1968 A
3379246 Sklar et al. Apr 1968 A
3379248 Strange Apr 1968 A
3406755 Sharp Oct 1968 A
3411578 Holmes Nov 1968 A
3412793 Needham Nov 1968 A
3412794 Craighead Nov 1968 A
3422891 Alexander et al. Jan 1969 A
3430700 Satter et al. Mar 1969 A
3441083 Fitzgerald Apr 1969 A
3454095 Messenger et al. Jul 1969 A
3454958 Parker Jul 1969 A
3456721 Smith Jul 1969 A
3490529 Parker Jan 1970 A
3490531 Dixon Jan 1970 A
3507330 Gill Apr 1970 A
3547192 Claridge et al. Dec 1970 A
3554285 Meldau Jan 1971 A
3605888 Crowson et al. Sep 1971 A
3608638 Terwilliger Sep 1971 A
3653438 Wagner Apr 1972 A
3685581 Hess et al. Aug 1972 A
3690376 Zwicky et al. Sep 1972 A
3703927 Harry Nov 1972 A
3724043 Eustance Apr 1973 A
3727686 Prates et al. Apr 1973 A
3759328 Ueber et al. Sep 1973 A
3771598 McBean Nov 1973 A
3782465 Bell et al. Jan 1974 A
3782472 Siess, Jr. Jan 1974 A
3796262 Allen et al. Mar 1974 A
3804169 Closmann Apr 1974 A
3805885 Van Huisen Apr 1974 A
3822747 Maguire, Jr. Jul 1974 A
3827495 Reed Aug 1974 A
3837402 Stringer Sep 1974 A
3838738 Redford et al. Oct 1974 A
3847224 Allen et al. Nov 1974 A
3872924 Clampitt Mar 1975 A
3892270 Lindquist Jul 1975 A
3905422 Woodward Sep 1975 A
3929190 Chang et al. Dec 1975 A
3931856 Barnes Jan 1976 A
3941192 Carlin et al. Mar 1976 A
3945679 Closmann et al. Mar 1976 A
3946809 Hagedorn Mar 1976 A
3954139 Allen May 1976 A
3958636 Perkins May 1976 A
3964546 Allen Jun 1976 A
3967853 Closmann et al. Jul 1976 A
3978920 Bandyopadhyay et al. Sep 1976 A
3993133 Clampitt Nov 1976 A
3994340 Anderson et al. Nov 1976 A
3994341 Anderson et al. Nov 1976 A
3997004 Wu Dec 1976 A
3999606 Bandyopadhyay et al. Dec 1976 A
4004636 Brown et al. Jan 1977 A
4007785 Allen et al. Feb 1977 A
4007791 Johnson Feb 1977 A
4008765 Anderson et al. Feb 1977 A
4019575 Pisio et al. Apr 1977 A
4019578 Terry et al. Apr 1977 A
4020901 Pisio et al. May 1977 A
4022275 Brandon May 1977 A
4022280 Stoddard et al. May 1977 A
4026358 Allen May 1977 A
4033411 Goins Jul 1977 A
4037655 Carpenter Jul 1977 A
4037658 Anderson Jul 1977 A
4049053 Fisher et al. Sep 1977 A
4066127 Harnsberger Jan 1978 A
4067391 Dewell Jan 1978 A
4068715 Wu Jan 1978 A
4068717 Needham Jan 1978 A
4078608 Allen et al. Mar 1978 A
4084637 Todd Apr 1978 A
4085799 Bousaid et al. Apr 1978 A
4085800 Engle et al. Apr 1978 A
4088188 Widmyer May 1978 A
4099564 Hutchison Jul 1978 A
4114687 Payton Sep 1978 A
4114691 Payton Sep 1978 A
4120357 Anderson Oct 1978 A
4124071 Allen et al. Nov 1978 A
4129183 Kalfoglou Dec 1978 A
4129308 Hutchison Dec 1978 A
4130163 Bombardieri Dec 1978 A
4133382 Cram et al. Jan 1979 A
4133384 Allen et al. Jan 1979 A
4140180 Bridges et al. Feb 1979 A
4140182 Vriend Feb 1979 A
4141415 Wu et al. Feb 1979 A
4144935 Bridges et al. Mar 1979 A
RE30019 Lindquist Jun 1979 E
4160479 Richardson et al. Jul 1979 A
4160481 Turk et al. Jul 1979 A
4174752 Slater et al. Nov 1979 A
4191252 Buckley et al. Mar 1980 A
4202168 Acheson et al. May 1980 A
4202169 Acheson et al. May 1980 A
4212353 Hall Jul 1980 A
4217956 Goss et al. Aug 1980 A
4228853 Harvey et al. Oct 1980 A
4228854 Sacuta Oct 1980 A
4228856 Reale Oct 1980 A
4246966 Stoddard et al. Jan 1981 A
4248302 Churchman Feb 1981 A
4249602 Burton, III et al. Feb 1981 A
4250964 Jewell et al. Feb 1981 A
4252194 Felber et al. Feb 1981 A
4257650 Allen Mar 1981 A
4260018 Shum et al. Apr 1981 A
4262745 Stewart Apr 1981 A
4265310 Britton et al. May 1981 A
4270609 Choules Jun 1981 A
4271905 Redford et al. Jun 1981 A
4274487 Hollingsworth et al. Jun 1981 A
4280559 Best Jul 1981 A
4282929 Krajicek Aug 1981 A
4284139 Sweany Aug 1981 A
RE30738 Bridges et al. Sep 1981 E
4289203 Swanson Sep 1981 A
4295980 Motz Oct 1981 A
4296814 Stalder et al. Oct 1981 A
4300634 Clampitt Nov 1981 A
4303126 Blevins Dec 1981 A
4305463 Zakiewicz Dec 1981 A
4306981 Blair, Jr. Dec 1981 A
4319632 Marr, Jr. Mar 1982 A
4319635 Jones Mar 1982 A
4325432 Henry Apr 1982 A
4326968 Blair, Jr. Apr 1982 A
4327805 Poston May 1982 A
4330038 Soukup et al. May 1982 A
4333529 McCorquodale Jun 1982 A
4344483 Fisher et al. Aug 1982 A
4344485 Butler Aug 1982 A
4344486 Parrish Aug 1982 A
4345652 Roque Aug 1982 A
4362213 Tabor Dec 1982 A
4372386 Rhoades et al. Feb 1983 A
4379489 Rollmann Apr 1983 A
4379592 Vakhnin et al. Apr 1983 A
4380265 Mohaupt Apr 1983 A
4380267 Fox Apr 1983 A
4381124 Verty et al. Apr 1983 A
4382469 Bell et al. May 1983 A
4385661 Fox May 1983 A
4387016 Gagon Jun 1983 A
4389320 Clampitt Jun 1983 A
4390062 Fox Jun 1983 A
4390067 Willman Jun 1983 A
4392530 Odeh et al. Jul 1983 A
4393937 Dilgren et al. Jul 1983 A
4396063 Godbey Aug 1983 A
4398602 Anderson Aug 1983 A
4406499 Yildirim Sep 1983 A
4407367 Kydd Oct 1983 A
4410216 Allen Oct 1983 A
4411618 Donaldson et al. Oct 1983 A
4412585 Bouck Nov 1983 A
4415034 Bouck Nov 1983 A
4417620 Shafir Nov 1983 A
4418752 Boyer et al. Dec 1983 A
4423779 Livingston Jan 1984 A
4427528 Lindörfer et al. Jan 1984 A
4429744 Cook Feb 1984 A
4429745 Cook Feb 1984 A
4434851 Haynes, Jr. et al. Mar 1984 A
4441555 Shu Apr 1984 A
4444257 Stine Apr 1984 A
4444261 Islip Apr 1984 A
4445573 McCaleb May 1984 A
4448251 Stine May 1984 A
4450909 Sacuta May 1984 A
4450911 Shu et al. May 1984 A
4452491 Seglin et al. Jun 1984 A
4453597 Brown et al. Jun 1984 A
4456065 Heim et al. Jun 1984 A
4456066 Shu Jun 1984 A
4456068 Burrill, Jr. et al. Jun 1984 A
4458756 Clark Jul 1984 A
4458759 Isaacs et al. Jul 1984 A
4460044 Porter Jul 1984 A
4465137 Sustek, Jr. et al. Aug 1984 A
4466485 Shu Aug 1984 A
4469177 Venkatesan Sep 1984 A
4471839 Snavely et al. Sep 1984 A
4473114 Bell et al. Sep 1984 A
4475592 Pachovsky Oct 1984 A
4475595 Watkins et al. Oct 1984 A
4478280 Hopkins et al. Oct 1984 A
4478705 Ganguli Oct 1984 A
4480689 Wunderlich Nov 1984 A
4484630 Chung Nov 1984 A
4485868 Sresty et al. Dec 1984 A
4487262 Venkatesan et al. Dec 1984 A
4487264 Hyne et al. Dec 1984 A
4488600 Fan Dec 1984 A
4488976 Dilgren et al. Dec 1984 A
4491180 Brown et al. Jan 1985 A
4498537 Cook Feb 1985 A
4498542 Eisenhawer et al. Feb 1985 A
4499946 Martin et al. Feb 1985 A
4501325 Frazier et al. Feb 1985 A
4501326 Edmunds Feb 1985 A
4501445 Gregoli Feb 1985 A
4503910 Shu Mar 1985 A
4503911 Hartman et al. Mar 1985 A
4508170 Littmann Apr 1985 A
4513819 Islip et al. Apr 1985 A
4515215 Hermes et al. May 1985 A
4516636 Doscher May 1985 A
4522260 Wolcott, Jr. Jun 1985 A
4522263 Hopkins et al. Jun 1985 A
4524826 Savage Jun 1985 A
4528104 House et al. Jul 1985 A
4530401 Hartman et al. Jul 1985 A
4532993 Dilgren et al. Aug 1985 A
4532994 Toma et al. Aug 1985 A
4535845 Brown et al. Aug 1985 A
4540049 Hawkins et al. Sep 1985 A
4540050 Huang et al. Sep 1985 A
4545435 Bridges et al. Oct 1985 A
4546829 Martin et al. Oct 1985 A
4550779 Zakiewicz Nov 1985 A
4556107 Duerksen et al. Dec 1985 A
4558740 Yellig, Jr. Dec 1985 A
4565245 Mims et al. Jan 1986 A
4565249 Pebdani et al. Jan 1986 A
4572296 Watkins Feb 1986 A
4574884 Schmidt Mar 1986 A
4574886 Hopkins et al. Mar 1986 A
4577688 Gassmann et al. Mar 1986 A
4579176 Davies et al. Apr 1986 A
4589487 Venkatesan et al. May 1986 A
4595057 Deming et al. Jun 1986 A
4597441 Ware et al. Jul 1986 A
4597443 Shu et al. Jul 1986 A
4598770 Shu et al. Jul 1986 A
4601337 Lau et al. Jul 1986 A
4601338 Prats et al. Jul 1986 A
4607695 Weber Aug 1986 A
4607699 Stephens Aug 1986 A
4607700 Duerksen et al. Aug 1986 A
4610304 Doscher Sep 1986 A
4612989 Rakach et al. Sep 1986 A
4612990 Shu Sep 1986 A
4615391 Garthoffner Oct 1986 A
4620592 Perkins Nov 1986 A
4620593 Haagensen Nov 1986 A
4635720 Chew Jan 1987 A
4637461 Hight Jan 1987 A
4637466 Hawkins et al. Jan 1987 A
4640352 Vanmeurs et al. Feb 1987 A
4640359 Livesey et al. Feb 1987 A
4641710 Klinger Feb 1987 A
4645003 Huang et al. Feb 1987 A
4645004 Bridges et al. Feb 1987 A
4646824 Huang et al. Mar 1987 A
4648835 Eisenhawer et al. Mar 1987 A
4651825 Wilson Mar 1987 A
4651826 Holmes Mar 1987 A
4653583 Huang et al. Mar 1987 A
4662438 Taflove et al. May 1987 A
4662440 Harmon et al. May 1987 A
4662441 Huang et al. May 1987 A
4665989 Wilson May 1987 A
4667739 Van Meurs et al. May 1987 A
4679626 Perkins Jul 1987 A
4682652 Huang et al. Jul 1987 A
4682653 Angstadt Jul 1987 A
4685515 Huang et al. Aug 1987 A
4687058 Casad et al. Aug 1987 A
4690215 Roberts et al. Sep 1987 A
4691773 Ward et al. Sep 1987 A
4693311 Muijs et al. Sep 1987 A
4694907 Stahl et al. Sep 1987 A
4697642 Vogel Oct 1987 A
4699213 Fleming Oct 1987 A
4700779 Huang et al. Oct 1987 A
4702314 Huang et al. Oct 1987 A
4702317 Shen Oct 1987 A
4705108 Little et al. Nov 1987 A
4706751 Gondouin Nov 1987 A
4707230 Ajami Nov 1987 A
4718485 Brown et al. Jan 1988 A
4718489 Hallam et al. Jan 1988 A
4727489 Frazier et al. Feb 1988 A
4727937 Shum et al. Mar 1988 A
4739831 Settlemeyer et al. Apr 1988 A
4753293 Bohn Jun 1988 A
4756369 Jennings, Jr. et al. Jul 1988 A
4757833 Danley Jul 1988 A
4759571 Stone et al. Jul 1988 A
4766958 Faecke Aug 1988 A
4769161 Angstadt Sep 1988 A
4775450 Ajami Oct 1988 A
4782901 Phelps et al. Nov 1988 A
4785028 Hoskin et al. Nov 1988 A
4785883 Hoskin et al. Nov 1988 A
4787452 Jennings, Jr. Nov 1988 A
4793415 Holmes et al. Dec 1988 A
4804043 Shu et al. Feb 1989 A
4809780 Shen Mar 1989 A
4813483 Ziegler Mar 1989 A
4817711 Jeambey Apr 1989 A
4817714 Jones Apr 1989 A
4818370 Gregoli et al. Apr 1989 A
4828030 Jennings, Jr. May 1989 A
4828031 Davis May 1989 A
4828032 Teletzke et al. May 1989 A
4834174 Vandevier May 1989 A
4834179 Kokolis et al. May 1989 A
4844155 Megyeri et al. Jul 1989 A
4846275 McKay Jul 1989 A
4850429 Mims et al. Jul 1989 A
4856586 Phelps et al. Aug 1989 A
4856587 Nielson Aug 1989 A
4860827 Lee et al. Aug 1989 A
4861263 Schirmer Aug 1989 A
4867238 Bayless et al. Sep 1989 A
4869830 Konak et al. Sep 1989 A
4874043 Joseph et al. Oct 1989 A
4884635 McKay et al. Dec 1989 A
4886118 Van Meurs et al. Dec 1989 A
4892146 Shen Jan 1990 A
4895085 Chips Jan 1990 A
4895206 Price Jan 1990 A
4896725 Parker et al. Jan 1990 A
4901795 Phelps et al. Feb 1990 A
4903766 Shu Feb 1990 A
4903768 Shu Feb 1990 A
4903770 Friedman et al. Feb 1990 A
4915170 Hoskin Apr 1990 A
4919206 Freeman et al. Apr 1990 A
4926941 Glandt et al. May 1990 A
4926943 Hoskin May 1990 A
4928766 Hoskin May 1990 A
4930454 Latty et al. Jun 1990 A
4940091 Shu et al. Jul 1990 A
4945984 Price Aug 1990 A
4947933 Jones et al. Aug 1990 A
4961467 Pebdani Oct 1990 A
4962814 Alameddine Oct 1990 A
4964461 Shu Oct 1990 A
4966235 Gregoli et al. Oct 1990 A
4969520 Jan et al. Nov 1990 A
4974677 Shu Dec 1990 A
4982786 Jennings, Jr. Jan 1991 A
4983364 Buck et al. Jan 1991 A
4991652 Hoskin et al. Feb 1991 A
5010953 Friedman et al. Apr 1991 A
5013462 Danley May 1991 A
5014787 Duerksen May 1991 A
5016709 Combe et al. May 1991 A
5016710 Renard et al. May 1991 A
5016713 Sanchez et al. May 1991 A
5024275 Anderson et al. Jun 1991 A
5027898 Naae Jul 1991 A
5036915 Wyganowski Aug 1991 A
5036917 Jennings, Jr. et al. Aug 1991 A
5036918 Jennings, Jr. et al. Aug 1991 A
5040605 Showalter Aug 1991 A
5042579 Glandt et al. Aug 1991 A
5046559 Glandt Sep 1991 A
5046560 Teletzke et al. Sep 1991 A
5052482 Gondouin Oct 1991 A
5054551 Duerksen Oct 1991 A
5056596 McKay et al. Oct 1991 A
5058681 Reed Oct 1991 A
5060726 Glandt et al. Oct 1991 A
5065819 Kasevich Nov 1991 A
5083612 Ashrawi Jan 1992 A
5083613 Gregoli et al. Jan 1992 A
5085275 Gondouin Feb 1992 A
5099918 Bridges et al. Mar 1992 A
5101898 Hong Apr 1992 A
5105880 Shen Apr 1992 A
5109927 Supernaw et al. May 1992 A
5123485 Vasicek et al. Jun 1992 A
5131471 Duerksen et al. Jul 1992 A
5145002 McKay Sep 1992 A
5145003 Duerksen Sep 1992 A
5148869 Sanchez Sep 1992 A
5156214 Hoskin et al. Oct 1992 A
5167280 Sanchez et al. Dec 1992 A
5172763 Mohammadi et al. Dec 1992 A
5174377 Kumar Dec 1992 A
5178217 Mohammadi et al. Jan 1993 A
5186256 Downs Feb 1993 A
5199490 Surles et al. Apr 1993 A
5201815 Hong et al. Apr 1993 A
5215146 Sanchez Jun 1993 A
5215149 Lu Jun 1993 A
5236039 Edelstein et al. Aug 1993 A
5238066 Beattie et al. Aug 1993 A
5246071 Chu Sep 1993 A
5247993 Sarem et al. Sep 1993 A
5252226 Justice Oct 1993 A
5271693 Johnson et al. Dec 1993 A
5273111 Brannan et al. Dec 1993 A
5277830 Hoskin et al. Jan 1994 A
5279367 Osterloh Jan 1994 A
5282508 Ellingsen et al. Feb 1994 A
5289881 Schuh Mar 1994 A
5293936 Bridges Mar 1994 A
5295540 Djabbarah et al. Mar 1994 A
5297627 Sanchez et al. Mar 1994 A
5305829 Kumar Apr 1994 A
5318124 Ong et al. Jun 1994 A
5325918 Berryman et al. Jul 1994 A
5339897 Leaute Aug 1994 A
5339898 Yu et al. Aug 1994 A
5339904 Jennings, Jr. et al. Aug 1994 A
5350014 McKay Sep 1994 A
5358054 Bert Oct 1994 A
5361845 Jamaluddin et al. Nov 1994 A
5377757 Ng Jan 1995 A
5404950 Ng et al. Apr 1995 A
5407009 Butler et al. Apr 1995 A
5411086 Burcham et al. May 1995 A
5411089 Vinegar et al. May 1995 A
5411094 Northrop May 1995 A
5413175 Edmunds May 1995 A
5415231 Northrop et al. May 1995 A
5417283 Ejiogu et al. May 1995 A
5431224 Laali Jul 1995 A
5433271 Vinegar et al. Jul 1995 A
5449038 Horton et al. Sep 1995 A
5450902 Matthews Sep 1995 A
5456315 Kisman et al. Oct 1995 A
5458193 Horton et al. Oct 1995 A
5464309 Mancini et al. Nov 1995 A
5483801 Craze Jan 1996 A
5503226 Wadleigh Apr 1996 A
5511616 Bert Apr 1996 A
5513705 Djabbarah et al. May 1996 A
5531272 Ng et al. Jul 1996 A
5534186 Walker et al. Jul 1996 A
5547022 Juprasert et al. Aug 1996 A
5553974 Nazarian Sep 1996 A
5560737 Schuring et al. Oct 1996 A
5565139 Walker et al. Oct 1996 A
5589775 Kuckes Dec 1996 A
5607016 Butler Mar 1997 A
5607018 Schuh Mar 1997 A
5626191 Greaves et al. May 1997 A
5626193 Nzekwu et al. May 1997 A
5635139 Holst et al. Jun 1997 A
5650128 Holst et al. Jul 1997 A
5660500 Marsden, Jr. et al. Aug 1997 A
5677267 Suarez et al. Oct 1997 A
5682613 Dinatale Nov 1997 A
5709505 Williams et al. Jan 1998 A
5713415 Bridges Feb 1998 A
5738937 Baychar Apr 1998 A
5765964 Calcote et al. Jun 1998 A
5771973 Jensen et al. Jun 1998 A
5788412 Jatkar Aug 1998 A
RE35891 Jamaluddin et al. Sep 1998 E
5803171 McCaffery et al. Sep 1998 A
5803178 Cain Sep 1998 A
5813799 Calcote et al. Sep 1998 A
5823631 Herbolzheimer et al. Oct 1998 A
5860475 Ejiogu et al. Jan 1999 A
5899274 Frauenfeld et al. May 1999 A
5923170 Kuckes Jul 1999 A
5931230 Lesage et al. Aug 1999 A
5941081 Burgener Aug 1999 A
5957202 Huang Sep 1999 A
5984010 Elias et al. Nov 1999 A
6000471 Langset Dec 1999 A
6004451 Rock et al. Dec 1999 A
6012520 Yu et al. Jan 2000 A
6015015 Luft et al. Jan 2000 A
6016867 Gregoli et al. Jan 2000 A
6016868 Gregoli et al. Jan 2000 A
6026914 Adams et al. Feb 2000 A
6039121 Kisman Mar 2000 A
6048810 Baychar Apr 2000 A
6050335 Parsons Apr 2000 A
6056057 Vinegar et al. May 2000 A
6102122 de Rouffignac Aug 2000 A
6109358 McPhee et al. Aug 2000 A
6148911 Gipson et al. Nov 2000 A
6158510 Bacon et al. Dec 2000 A
6158513 Nistor et al. Dec 2000 A
6167966 Ayasse et al. Jan 2001 B1
6173775 Elias et al. Jan 2001 B1
6186232 Isaacs et al. Feb 2001 B1
6189611 Kasevich Feb 2001 B1
6205289 Kobro Mar 2001 B1
6230814 Nasr et al. May 2001 B1
6257334 Cyr et al. Jul 2001 B1
6263965 Schmidt et al. Jul 2001 B1
6276457 Moffatt et al. Aug 2001 B1
6285014 Beck et al. Sep 2001 B1
6305472 Richardson et al. Oct 2001 B2
6318464 Mokrys Nov 2001 B1
6325147 Doerler et al. Dec 2001 B1
6328104 Graue Dec 2001 B1
6353706 Bridges Mar 2002 B1
6357526 Abdel-Halim et al. Mar 2002 B1
6409226 Slack et al. Jun 2002 B1
6412557 Ayasse et al. Jul 2002 B1
6413016 Nelson et al. Jul 2002 B1
6454010 Thomas et al. Sep 2002 B1
6536523 Kresnyak et al. Mar 2003 B1
6554067 Davies et al. Apr 2003 B1
6561274 Hayes et al. May 2003 B1
6581684 Wellington et al. Jun 2003 B2
6588500 Lewis Jul 2003 B2
6591906 Wellington et al. Jul 2003 B2
6591908 Nasr Jul 2003 B2
6607036 Ranson et al. Aug 2003 B2
6631761 Yuan et al. Oct 2003 B2
6662872 Gutek et al. Dec 2003 B2
6666666 Gilbert et al. Dec 2003 B1
6681859 Hill Jan 2004 B2
6688387 Wellington et al. Feb 2004 B1
6702016 de Rouffignac et al. Mar 2004 B2
6712136 de Rouffignac et al. Mar 2004 B2
6712150 Misselbrook et al. Mar 2004 B1
6715546 Vinegar et al. Apr 2004 B2
6715547 Vinegar et al. Apr 2004 B2
6715548 Wellington et al. Apr 2004 B2
6715549 Wellington et al. Apr 2004 B2
6719047 Fowler et al. Apr 2004 B2
6722429 de Rouffignac et al. Apr 2004 B2
6722431 Karanikas et al. Apr 2004 B2
6725920 Zhang et al. Apr 2004 B2
6729394 Hassan et al. May 2004 B1
6729395 Shahin, Jr. et al. May 2004 B2
6729397 Zhang et al. May 2004 B2
6729401 Vinegar et al. May 2004 B2
6732794 Wellington et al. May 2004 B2
6732795 de Rouffignac et al. May 2004 B2
6732796 Vinegar et al. May 2004 B2
6733636 Heins May 2004 B1
6736215 Maher et al. May 2004 B2
6736222 Kuckes et al. May 2004 B2
6739394 Vinegar et al. May 2004 B2
6742588 Wellington et al. Jun 2004 B2
6742593 Vinegar et al. Jun 2004 B2
6745831 de Rouffignac et al. Jun 2004 B2
6745832 Wellington et al. Jun 2004 B2
6745837 Wellington et al. Jun 2004 B2
6755246 Chen et al. Jun 2004 B2
6758268 Vinegar et al. Jul 2004 B2
6782947 de Rouffignac et al. Aug 2004 B2
6789625 de Rouffignac et al. Sep 2004 B2
6794864 Mirotchnik et al. Sep 2004 B2
6805195 Vinegar et al. Oct 2004 B2
6814141 Huh et al. Nov 2004 B2
20010009830 Baychar Jul 2001 A1
20010017206 Davidson et al. Aug 2001 A1
20010018975 Richardson et al. Sep 2001 A1
20020029881 de Rouffignac et al. Mar 2002 A1
20020033253 Rouffignac et al. Mar 2002 A1
20020038710 Maher et al. Apr 2002 A1
20020040779 Wellington et al. Apr 2002 A1
20020046838 Karanikas et al. Apr 2002 A1
20020056551 Wellington et al. May 2002 A1
20020104651 McClung, III Aug 2002 A1
20020148608 Shaw Oct 2002 A1
20020157831 Kurlenya et al. Oct 2002 A1
20030000711 Gutek et al. Jan 2003 A1
20030009297 Mirotchnik et al. Jan 2003 A1
20030015458 Nenniger et al. Jan 2003 A1
20030042018 Huh et al. Mar 2003 A1
20030044299 Thomas et al. Mar 2003 A1
20030051875 Wilson Mar 2003 A1
20030062159 Nasr Apr 2003 A1
20030062717 Thomas et al. Apr 2003 A1
20030079877 Wellington et al. May 2003 A1
20030080604 Vinegar et al. May 2003 A1
20030090424 Brune et al. May 2003 A1
20030098605 Vinegar et al. May 2003 A1
20030102123 Wittle et al. Jun 2003 A1
20030102124 Vinegar et al. Jun 2003 A1
20030102126 Sumnu-Dindoruk et al. Jun 2003 A1
20030102130 Vinegar et al. Jun 2003 A1
20030111223 Rouffignac et al. Jun 2003 A1
20030116315 Wellington et al. Jun 2003 A1
20030127226 Heins Jul 2003 A1
20030129895 Baychar Jul 2003 A1
20030131993 Zhang et al. Jul 2003 A1
20030131994 Vinegar et al. Jul 2003 A1
20030131995 de Rouffignac et al. Jul 2003 A1
20030131996 Vinegar et al. Jul 2003 A1
20030136476 O'Hara et al. Jul 2003 A1
20030141053 Yuan et al. Jul 2003 A1
20030141065 Karanikas et al. Jul 2003 A1
20030141066 Karanikas et al. Jul 2003 A1
20030141067 Rouffignac et al. Jul 2003 A1
20030141068 de Rouffignac et al. Jul 2003 A1
20030155111 Vinegar et al. Aug 2003 A1
20030159828 Howard et al. Aug 2003 A1
20030164234 de Rouffignac et al. Sep 2003 A1
20030164239 Wellington et al. Sep 2003 A1
20030173072 Vinegar et al. Sep 2003 A1
20030173080 Berchenko et al. Sep 2003 A1
20030173081 Vinegar et al. Sep 2003 A1
20030173082 Vinegar et al. Sep 2003 A1
20030173086 Howard et al. Sep 2003 A1
20030178191 Maher et al. Sep 2003 A1
20030183390 Veenstra et al. Oct 2003 A1
20030192691 Vinegar et al. Oct 2003 A1
20030192693 Wellington Oct 2003 A1
20030196788 Vinegar et al. Oct 2003 A1
20030196789 Wellington et al. Oct 2003 A1
20030196801 Vinegar et al. Oct 2003 A1
20030196810 Vinegar et al. Oct 2003 A1
20030201098 Karanikas et al. Oct 2003 A1
20030205378 Wellington et al. Nov 2003 A1
20030209348 Ward et al. Nov 2003 A1
20030223896 Gilbert et al. Dec 2003 A1
20040007500 Kresnyak Jan 2004 A1
20040020642 Vinegar et al. Feb 2004 A1
20040040715 Wellington et al. Mar 2004 A1
20040050547 Limbach Mar 2004 A1
20040112586 Matthews et al. Jun 2004 A1
20040116304 Wu et al. Jun 2004 A1
20040118783 Myers et al. Jun 2004 A1
20040140095 Vinegar et al. Jul 2004 A1
20040140096 Sandberg et al. Jul 2004 A1
20040144540 Sandberg et al. Jul 2004 A1
20040144541 Picha et al. Jul 2004 A1
20040145969 Bai et al. Jul 2004 A1
20040146288 Vinegar et al. Jul 2004 A1
20040154793 Zapadinski Aug 2004 A1
20040177966 Vinegar et al. Sep 2004 A1
20040204324 Baltoiu et al. Oct 2004 A1
20040211554 Vinegar et al. Oct 2004 A1
20040211569 Vinegar et al. Oct 2004 A1
20040261729 Sarkar Dec 2004 A1
20050006097 Sandberg et al. Jan 2005 A1
20050026094 Sanmiguel et al. Feb 2005 A1
20060172893 Todd et al. Aug 2006 A1
20080053920 Pakulski et al. Mar 2008 A1
Foreign Referenced Citations (96)
Number Date Country
0 088 376 Sep 1983 EP
0 144 203 Jun 1985 EP
0 158 486 Oct 1985 EP
0 226 275 Jun 1987 EP
0 261 793 Mar 1988 EP
0 269 231 Jun 1988 EP
0 283 602 Sep 1988 EP
0 295 712 Dec 1988 EP
0 341 976 Nov 1989 EP
0 387 846 Sep 1990 EP
0 420 656 Apr 1991 EP
0 747 142 Dec 1996 EP
2 852 713 Sep 2004 FR
1 457 696 Dec 1976 GB
1 463 444 Feb 1977 GB
2 031 975 Apr 1980 GB
1 585 742 Mar 1981 GB
2 062 065 May 1981 GB
2 138 869 Oct 1984 GB
2 156 400 Oct 1985 GB
2 164 978 Apr 1986 GB
2 177 141 Jan 1987 GB
2 196 665 May 1988 GB
2 219 818 Dec 1989 GB
2 257 184 Jan 1993 GB
2 272 465 May 1994 GB
2 286 001 Aug 1995 GB
2 340 152 Feb 2000 GB
2 357 528 Jun 2001 GB
2 362 333 Nov 2001 GB
2 363 587 Jan 2002 GB
2 391 890 Feb 2004 GB
2 391 891 Feb 2004 GB
2 403 443 Dec 2004 GB
WO 8201214 Apr 1982 WO
WO 8603251 Jun 1986 WO
WO 8707293 Dec 1987 WO
WO 8912728 Dec 1989 WO
WO 9218748 Oct 1992 WO
WO 9316338 Aug 1993 WO
WO 9323134 Nov 1993 WO
WO 9421886 Sep 1994 WO
WO 9421889 Sep 1994 WO
WO 9516512 Jun 1995 WO
WO 9616729 Jun 1996 WO
WO 9632566 Oct 1996 WO
WO 9635858 Nov 1996 WO
WO 9701017 Jan 1997 WO
WO 9712119 Apr 1997 WO
WO 9735090 Sep 1997 WO
WO 9804807 Feb 1998 WO
WO 9837306 Aug 1998 WO
WO 9840603 Sep 1998 WO
WO 9840605 Sep 1998 WO
WO 9845733 Oct 1998 WO
WO 9850679 Nov 1998 WO
WO 9930002 Jun 1999 WO
WO 9967503 Dec 1999 WO
WO 9967504 Dec 1999 WO
WO 9967505 Dec 1999 WO
WO 0023688 Apr 2000 WO
WO 0025002 May 2000 WO
WO 0066882 Nov 2000 WO
WO 0067930 Nov 2000 WO
WO 0106089 Jan 2001 WO
WO 0127439 Apr 2001 WO
WO 0181239 Nov 2001 WO
WO 0181505 Nov 2001 WO
WO 0181710 Nov 2001 WO
WO 0181715 Nov 2001 WO
WO 0192673 Dec 2001 WO
WO 0192684 Dec 2001 WO
WO 0192768 Dec 2001 WO
WO 02086018 Oct 2002 WO
WO 02086276 Oct 2002 WO
WO 03010415 Feb 2003 WO
WO 03036033 May 2003 WO
WO 03036038 May 2003 WO
WO 03036039 May 2003 WO
WO 03036043 May 2003 WO
WO 03038230 May 2003 WO
WO 03038233 May 2003 WO
WO 03040513 May 2003 WO
WO 03040762 May 2003 WO
WO 03053603 Jul 2003 WO
WO 03054351 Jul 2003 WO
WO 03062596 Jul 2003 WO
WO 03100257 Dec 2003 WO
WO 2004038173 May 2004 WO
WO 2004038174 May 2004 WO
WO 2004038175 May 2004 WO
WO 2004050567 Jun 2004 WO
WO 2004050791 Jun 2004 WO
WO 2004097159 Nov 2004 WO
WO 2005007776 Jan 2005 WO
WO 2005012688 Feb 2005 WO
Related Publications (1)
Number Date Country
20080083534 A1 Apr 2008 US