Claims
- 1. A process of upgrading a sulfur-containing, olefinic feed fraction boiling in the gasoline boiling range which comprises paraffins including n-paraffins, olefins and aromatics, the process comprising:
- contacting the sulfur-containing feed fraction in a first step under mild cracking conditions comprising temperature between 400.degree. F. and 800.degree. F. with a solid acidic catalyst consisting essentially of ZSM-5 zeolite having an acid activity comprising an alpha value between 20 and 800 to convert olefins present in the feed to aromatics and aromatic side-chains and to crack low octane paraffins and olefins in the feed and form an intermediate product,
- contacting the intermediate product with a hydrodesulfurization catalyst under a combination of elevated temperature, elevated pressure and an atmosphere comprising hydrogen, to convert sulfur-containing compounds in the intermediate product to inorganic sulfur compounds and produce at least a 90 weight percent yield, based on said feed fraction, of a desulfurized product comprising a normally liquid fraction in the gasoline boiling range containing less than 50 weight percent C.sub.6 -C.sub.10 aromatics.
- 2. The process as claimed in claim 1 in which said feed fraction comprises a light naphtha fraction having a boiling range within the range of C.sub.6 to 330.degree. F.
- 3. The process as claimed in claim 1 in which said feed fraction comprises a full range naphtha fraction having a boiling range within the range of C.sub.5 to 420.degree. F.
- 4. The process as claimed in claim 1 in which said feed fraction comprises a heavy naphtha fraction having a boiling range within the range of 330.degree. to 500.degree. F.
- 5. The process as claimed in claim 1 in which said feed fraction comprises a heavy naphtha fraction having a boiling range within the range of 330.degree. to 412.degree. F.
- 6. The process as claimed in claim 1 in which said feed is a catalytically cracked olefinic naphtha fraction.
- 7. The process as claimed in claim 1 in which the hydrodesulfurization catalyst comprises a Group VIII and a Group VI metal.
- 8. The process as claimed in claim 1 in which the first stage is carried out at a pressure of about 50 to 1500 psig, a space velocity of about 0.5 to 10 LHSV, and a hydrogen to hydrocarbon ratio of about 0 to 5000 standard cubic feet of hydrogen per barrel of feed.
- 9. The process as claimed in claim 8 in which the first step is carried out at a pressure of about 50 to 1500 psig, a space velocity of about 0.5 to 10 LHSV, and a hydrogen to hydrocarbon ratio of about 500 to 5000 standard cubic feet of hydrogen per barrel of feed.
- 10. The process as claimed in claim 1 in which the hydrodesulfurization is carried out at a temperature of about 400.degree. to 800.degree. F., a pressure of about 50 to 1500 psig, a space velocity of about 0.5 to 10 LHSV, and a hydrogen to hydrocarbon ratio of about 500 to 5000 standard cubic feet of hydrogen per barrel of feed.
- 11. The process as claimed in claim 10 in which the hydrodesulfurization is carried out at a temperature of about 500.degree. to 750.degree. F., a pressure of about 300 to 1000 psig, a space velocity of about 1 to 6 LHSV, and a hydrogen to hydrocarbon ratio of about 1000 to 2500 standard cubic feet of hydrogen per barrel of feed.
- 12. A process of upgrading a sulfur-containing naphtha feed fraction boiling in the gasoline boiling range which contains mononuclear aromatics and olefins together with paraffins, which process comprises:
- in a first upgrading step, converting olefins present in the feed to aromatics and aromatic side chains, cracking low octane paraffins and olefins in the feed under mild cracking conditions comprising temperature between 400.degree. F. and 800.degree. F. to form an intermediate product by contacting the sulfur-containing naphtha feed fraction with an intermediate pore size zeolite catalyst consisting essentially of ZSM-5 having an acid activity comprising an alpha value between 20 and 800,
- hydrodesulfurizing the intermediate product in the presence of a hydrodesulfurization catalyst under a combination of elevated temperature, elevated pressure and an atmosphere comprising hydrogen, to convert sulfur-containing compounds in the intermediate product to inorganic sulfur compounds and produce a desulfurized product in which the aromatic content is not more than 25 percent greater than that of the feed at a total liquid yield of at least 90 volume percent relative to the feed.
- 13. The process as claimed in claim 12 in which the feed fraction has an olefin content of 10 to 20 weight percent, a sulfur content from 100 to 5,000 ppmw and a nitrogen content of 5 to 250 ppmw.
- 14. The process as claimed in claim 12 in which the first stage upgrading is carried out at a pressure of about 300 to 1000 psig, a space velocity of about 1 to 6 LHSV, and a hydrogen to hydrocarbon ratio of about 100 to 2500 standard cubic feet of hydrogen per barrel of feed.
- 15. The process as claimed in claim 12 in which the hydrodesulfurization is carried out at a temperature of about 500.degree. to 800.degree. F., a pressure of about 300 to 1000 psig, a space velocity of about 1 to 6 LHSV, and a hydrogen to hydrocarbon ratio of about 1000 to 2500 standard cubic feet of hydrogen per barrel of feed.
- 16. The process as claimed in claim 12 which is carried out in cascade mode with the entire effluent from the first reaction passed to the second reaction zone.
CROSS REFERENCE TO RELATED APPLICATIONS
This application is a continuation of application Ser. No. 08/499,240, filed Jul. 7, 1995, now abandoned, which is related to Ser. No. 07/850,106, filed 12 Mar. 1992, now U.S. Pat. No. 5,409,596, which is a continuation-in-part of prior application Ser. No. 07/745,311, filed 15 Aug. 1991, now U.S. Pat. No. 5,346,609, which describe processes for producing low sulfur gasolines. Reference is made to these two applications for details of these processes. This application is also related to application Ser. No. 08/499,239, now abandoned, filed concurrently (Mobil Case 7699) which describes a similar process in which a benzene-rich stream such as reformate is added during the processing to produce incremental product octane and reduce the level of benzene in the added feedstream.
US Referenced Citations (14)
Foreign Referenced Citations (1)
| Number |
Date |
Country |
| 420326B1 |
Feb 1995 |
EPX |
Continuations (1)
|
Number |
Date |
Country |
| Parent |
499240 |
Jul 1995 |
|