The invention is generally directed toward hydroclones and cyclonic separation of fluids.
Hydroclones are commonly used to separate suspended particles from liquids. In a typical embodiment, pressurized feed liquid (e.g. waste water) is introduced into a conically shaped chamber under conditions that create a vortex within the chamber. Feed liquid is introduced near the top of a conical chamber and an effluent stream is discharged near the bottom of the chamber. Centrifugal forces associated with the vortex urge denser particles towards the periphery of the chamber. As a result, liquid located near the center of the vortex has a lower concentration of particles than that at the periphery. This “cleaner” liquid can then be withdrawn from a central region of the hydroclone. Examples of hydroclones are described in: U.S. Pat. No. 3,061,098, U.S. Pat. No. 3,529,724, U.S. Pat. No. 5,104,520, U.S. Pat. No. 5,407,584 and U.S. Pat. No. 5,478,484. Separation efficiency can be improved by including a filter within the chamber such that a portion of the liquid moving to the center of the chamber passes through the filter. In such embodiments, cyclonic separation is combined with cross-flow filtration. Examples of such embodiments are described in: U.S. Pat. No. 7,632,416, U.S. Pat. No. 7,896,169, US2011/0120959 and US2012/0010063. While such hybrid designs improve separation efficiency, further improvements are desired.
The invention includes multiple embodiments of hydroclones, separation systems including hydroclones and methods for performing fluid separations using the same. In one embodiment, the invention includes a hydroclone including a tank having a fluid inlet, a filtered fluid outlet, an effluent outlet, a process fluid outlet and an inner peripheral wall centered about an axis and enclosing a plurality of aligned chambers including: i) a vortex chamber in fluid communication with the fluid inlet, and ii) an effluent separation chamber in fluid communication with the vortex chamber and which is adapted for receiving unfiltered fluid therefrom, wherein the effluent separation chamber is in fluid communication with the process fluid outlet and an effluent outlet. The hydroclone further includes a vortex flow barrier located between the vortex chamber and effluent separation chamber which is adapted to maintain vortex fluid flow in the vortex chamber, disrupt the vortex as fluid flows between chambers and allow a reduced rotational velocity fluid flow within the effluent separation chamber. A filter assembly is located within the vortex chamber and encloses a filtrate chamber. A fluid treatment pathway extends from the fluid inlet and about the filter assembly and is adapted to generate a vortex fluid flow about the filter assembly. The filtrate chamber is in fluid communication with the filtered fluid outlet such that fluid passing through the filter assembly may enter the filtrate chamber and may exit the tank by way of the filtered fluid outlet.
Various aspects of the invention may be better understood by reference to the following description taken in conjunction with the accompanying drawings wherein like numerals have been used throughout the various views to designate like parts. The depictions are illustrative and are not intended to be to scale or otherwise limit the invention.
The present invention generally relates to the hydroclone filtration devices and related methods of conducting cyclonic separation. For purposes of the present description, the term “hydroclone” refers to a filtration device that at least partially relies upon centrifugal forces generated by vortex fluid flow to separate constituents from a fluid mixture. Examples include the separation of solid particles from a liquid mixture (e.g. aqueous mixtures) and separation of mixtures including liquids of differing densities (e.g. oil and water). In one embodiment, the invention combines cyclonic separation, cross-flow filtration and particulate settling (e.g. sedimentation or flocculation) within a recirculation loop as part of a separation system. As used herein, the term “system” refers to an interconnected assembly of components. The invention finds utility in a variety of applications including the treatment of: pulp effluent generating by paper mills, process water generated by oil and gas recovery, bilge water, and municipal and industrial waste water.
One embodiment of the invention is illustrated in
A filter assembly (26) is preferably centrally located within the chamber (24) and is evenly spaced from the inner peripheral wall (22) of the tank (12). As best shown in
As best shown in
The subject hydroclone (10) may further include a cleaning assembly (50) for removing debris from the membrane surface (44) of the filter assembly (26). A representative embodiment is illustrated in
The feed fluid inlet pressure and spacing between the outer periphery of the filter assembly (26) and the inner peripheral wall (22) of the tank (12) can be optimized to create and maintain a vortex fluid flow within the chamber (24). In order to further facilitate the creation and maintenance of vortex fluid flow, the fluid inlet (14) preferably directs incoming feed fluid on a tangential path about the vortex chamber, as indicated in
A vortex flow barrier (34) is preferably located between the vortex and effluent separation chambers (24, 30). The vortex flow barrier (34) is designed to maintain vortex fluid flow in the vortex chamber (24), disrupt the vortex as fluid flows from the vortex chamber (24) into the effluent separation chamber (30), and reduce the rotational fluid flow within the effluent separation chamber (30). The vortex flow barrier (24) accomplishes this by directing fluid flow between the vortex and effluent separation (24, 30) chambers to locations adjacent to the inner peripheral wall (22) of the tank (12). In a preferred embodiment illustrated in
The effluent separation chamber (30) is adapted to enhance separation of particles by reducing and redirecting fluid velocity. The effluent separation chamber (30) is designed so that the bulk of the fluid moves along the fluid treatment pathway (28) through a region within the effluent separation chamber (300 where they accelerate away from the effluent outlet (18), and in this region their motion changes from moving toward the effluent outlet (18) to moving away from the effluent outlet (18). In preferred embodiments, this is at least partially accomplished by including a fluid treatment pathway (28) that follows a serpentine path from the vortex chamber (24) to the fluid outlet (20) which promotes the separation and settling of particles from the bulk fluid flow due to gravity. That is, by blocking a direct or near linear fluid pathway within the effluent separation chamber (30), solids tend to settle out of the more dynamic fluid flow, exiting the tank (12) via the process fluid outlet (20).
As illustrated in
In operation, pressurized feed fluid (e.g. preferably from 4 to 120 psi) enters the tank (12) via the fluid inlet (14) and follows along fluid treatment pathway (28) which generates a vortex about the filter assembly (26). Centrifugal forces urge denser materials toward the inner peripheral wall (22) of the tank (12) while less dense liquid flows radially inward toward the filter assembly (26). A portion of this liquid flows through the filter assembly (26) into a filtrate chamber (46) and may subsequently exit the tank (12) as “filtrate” by way of the filtered fluid outlet (16). The remaining “non-filtrate” flows from the vortex chamber (24) to the effluent separation chamber (30). The vortex flow barrier (34) directs the majority (e.g. preferably at least 50%, 75%, and in some embodiments at least 90%) of such volumetric flow to locations along or adjacent (e.g. within at least 50 mm, 25 mm or even 10 mm) to an inner peripheral wall (22) of the tank (12). This arrangement is believed to maintain vortex flow within the vortex chamber (24) while disrupting the vortex flow as fluid enters the effluent separation chamber (30). Fluid flow slows in the effluent separation chamber (30) and denser materials (e.g. particles) preferentially settle toward the center of the effluent separation chamber (30), enter into the effluent opening (38) and may then exit the tank by way of effluent outlet (18). The effluent outlet (18) may optionally include a valve (37) (e.g. one-way check value or pump) to selectively control removal of effluent from the tank (12). The remaining liquid (hereinafter referred to as “process fluid”) in the effluent separation chamber (30) flows out of the tank (12) by way of the process fluid outlet (20). In most applications, process fluid represents a mid-grade product that may be re-used, disposed of, or recycled back to the fluid inlet (14) for further treatment. “Filtrate” typically represents a high grade product that may be re-used or disposed of. “Effluent” represents a low grade product that may be further treated or disposed of. However, it should be appreciated that in some applications, effluent may represent a valuable product.
In another embodiment, the subject hydroclone (10) forms part of a separation system that includes a feed pump (Y) in fluid communication with the fluid inlet (14) that is adapted for introducing a liquid mixture (feed) into the fluid inlet (14) and a recirculation pump (Z) in fluid communication with the process fluid outlet (20) and fluid inlet (14). The recirculation pump (Z) is adapted for introducing process liquid from the process fluid outlet (20) to the fluid inlet (14). The recirculation pump (Z) along with the process fluid outlet (20), fluid inlet (14) and fluid treatment pathway (28) collectively define a recirculation loop (A).
The use of both a feed pump (Y) and recirculation pump (Z) provide improved efficiencies over single pump designs allowing economical operation when multiple passes through the recirculation loop are used to remove particles. When each pass through the effluent separation chamber (30) has relatively low recovery of particles, several passes through the system are needed on average to remove each particle. Within the vortex chamber (24), pressure must exceed the trans-membrane pressure, and uniform flux along the fluid treatment path (28) is more readily attained when systems are designed for a higher trans-membrane pressure. Since pressure drops associated with each pass are cumulative, a system designed around a single pump can have substantial efficiency losses through re-pressurization of each pass. By contrast, if a feed pump (Y) is used to provide a pressurized liquid to a pressurized recirculation loop driven by a second pump (Z), the energy losses on successive passes associated with re-pressurizing to a trans-membrane pressure and any filtrate back-pressure are avoided. The recirculation pump (Z) needs only to supply energy to drive fluid through the recirculation loop, and, in some embodiments, create relative motion between the membrane surface (44) and cleaning assembly (50). In a preferred embodiment, the recirculation pump (Z) is adapted for introducing a volume of process liquid into the fluid inlet (14) that is at least twice, more preferably three times, the volume of feed liquid introduced by the feed pump (Y). While not shown, the system (10) may include additional pumps and corresponding valves for facilitating movement of liquids and solids.
The subject hydroclones provide superior separation efficiencies as compared with previous designs. These efficiencies allow the hydroclone to be used in a broader range of applications; particular in embodiments where process fluid is recycled and optionally blended with make-up feed fluid. Broadly stated, feed fluid is subjected to a synergistic combination of multiple separation processes within a single device. Specifically, feed fluid is subject to cyclonic separation based at least partially upon density with denser material (e.g. particles, liquids) being urged toward the inner periphery of the tank. Fluid passing through the filter assembly is additionally subjected to cross-flow filtration. The subject inlet feed shield prevents the membrane used in cross-flow filtration from being subject to excessive wear or fouling attributed to the feed pressures and feed content associated with cyclonic separations. The entire subject matter of each of the US patents mentioned herein references are fully incorporated by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2013/042127 | 5/22/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/181028 | 12/5/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
431448 | Dixon | Jul 1890 | A |
1107485 | Bowser | Aug 1914 | A |
1919653 | Hill | Jul 1933 | A |
2706045 | Large | Apr 1955 | A |
2788087 | Lenehan | Apr 1957 | A |
2917173 | Rakowsky | Dec 1959 | A |
3061098 | Brezinski | Oct 1962 | A |
3219186 | Polhemus et al. | Nov 1965 | A |
3285422 | Wiley | Nov 1966 | A |
3529544 | Oki | Sep 1970 | A |
3529724 | Maciula et al. | Sep 1970 | A |
3822533 | Oranje | Jul 1974 | A |
3893914 | Bobo | Jul 1975 | A |
3947364 | Laval, Jr. | Mar 1976 | A |
4062766 | Duesling | Dec 1977 | A |
4120783 | Baummer | Oct 1978 | A |
4146468 | Wilson | Mar 1979 | A |
4159073 | Liller | Jun 1979 | A |
4178258 | Papay et al. | Dec 1979 | A |
4216095 | Ruff | Aug 1980 | A |
4298465 | Druffel | Nov 1981 | A |
4414112 | Simpson et al. | Nov 1983 | A |
4575406 | Slafer | Mar 1986 | A |
4596586 | Davies et al. | Jun 1986 | A |
4608169 | Arvanitakis | Aug 1986 | A |
4651540 | Morse | Mar 1987 | A |
4662909 | Durr | May 1987 | A |
4698156 | Bumpers | Oct 1987 | A |
4865751 | Smisson | Sep 1989 | A |
4931180 | Darchambeau | Jun 1990 | A |
5104520 | Maronde et al. | Apr 1992 | A |
5116516 | Smisson | May 1992 | A |
5188238 | Smisson et al. | Feb 1993 | A |
5227061 | Bedsole | Jul 1993 | A |
5277705 | Anderson et al. | Jan 1994 | A |
5407584 | Broussard, Sr. | Apr 1995 | A |
5466384 | Prevost et al. | Nov 1995 | A |
5478484 | Michaluk | Dec 1995 | A |
5593043 | Ozmerih | Jan 1997 | A |
5879545 | Antoun | Mar 1999 | A |
5972215 | Kammel | Oct 1999 | A |
6110242 | Young | Aug 2000 | A |
6117340 | Carstens | Sep 2000 | A |
6210457 | Siemers | Apr 2001 | B1 |
6238579 | Paxton et al. | May 2001 | B1 |
6251296 | Conrad et al. | Jun 2001 | B1 |
6511599 | Jaroszczyk et al. | Jan 2003 | B2 |
6531066 | Saunders et al. | Mar 2003 | B1 |
6613231 | Jitariouk | Sep 2003 | B1 |
6790346 | Caleffi | Sep 2004 | B2 |
6896720 | Arnold et al. | May 2005 | B1 |
7166230 | Nilsen et al. | Jan 2007 | B2 |
7316067 | Blakey | Jan 2008 | B2 |
7351269 | Yau | Apr 2008 | B2 |
7632416 | Levitt | Dec 2009 | B2 |
7651000 | Knol | Jan 2010 | B2 |
7785479 | Hosford | Aug 2010 | B1 |
7854779 | Oh | Dec 2010 | B2 |
7896169 | Levitt et al. | Mar 2011 | B2 |
7998251 | Pondelick et al. | Aug 2011 | B2 |
8201697 | Levitt et al. | Jun 2012 | B2 |
8663472 | Mallard et al. | Mar 2014 | B1 |
8701896 | Levitt et al. | Apr 2014 | B2 |
20030029790 | Templeton | Feb 2003 | A1 |
20030221996 | Svoronos et al. | Dec 2003 | A1 |
20040211734 | Moya | Oct 2004 | A1 |
20050109684 | DiBella et al. | May 2005 | A1 |
20070039900 | Levitt | Feb 2007 | A1 |
20070075001 | Knol | Apr 2007 | A1 |
20070187328 | Gordon | Aug 2007 | A1 |
20100044309 | Lee | Feb 2010 | A1 |
20100083832 | Pondelick et al. | Apr 2010 | A1 |
20100096310 | Yoshida | Apr 2010 | A1 |
20110120959 | Levitt et al. | May 2011 | A1 |
20110160087 | Zhao et al. | Jun 2011 | A1 |
20110220586 | Levitt | Sep 2011 | A1 |
20120010063 | Levitt et al. | Jan 2012 | A1 |
20120145609 | Caffell et al. | Jun 2012 | A1 |
20130126421 | Levitt et al. | May 2013 | A1 |
Number | Date | Country |
---|---|---|
4420760 | May 1995 | DE |
19914674 | Dec 2000 | DE |
10001737 | Oct 2001 | DE |
102005027509 | Dec 2006 | DE |
0375671 | Jun 1990 | EP |
0475252 | Mar 1992 | EP |
0380817 | Jan 1993 | EP |
0566792 | Oct 1993 | EP |
2082793 | Jul 2009 | EP |
2791904 | Oct 2000 | FR |
2007118 | May 1979 | GB |
2309182 | Jul 1997 | GB |
2423264 | Aug 2006 | GB |
2004105165 | Dec 2004 | KR |
899416 | May 2009 | KR |
0218056 | Mar 2002 | WO |
03026832 | Apr 2003 | WO |
2004064978 | Aug 2004 | WO |
2011160087 | Dec 2011 | WO |
2012154448 | Nov 2012 | WO |
2013181028 | Dec 2013 | WO |
2013181029 | Dec 2013 | WO |
Entry |
---|
The Chapter II International Report on Patentability for PCT/US2013/04217, dated Sep. 9, 2014. |
The Chapter II International Report on Patentability (IPEA/409) for PCT/US2013/042127, dated Sep. 16, 2014. |
DOW Water & Process Solutions, G. Onifer, Oct. 2010, Executive Summary: Clean Filtration Technologies, Inc Turboclone Filter. |
Clean Filtration Technologies, Inc. CFT Turboclone Demo System, 2010. |
Clean Filtration Technologies, Inc. CFT Turboclone TC-201 Technical Datasheet, 2010. |
Number | Date | Country | |
---|---|---|---|
61653788 | May 2012 | US |