Hydrocyanation of 2-pentenenitrile

Information

  • Patent Grant
  • 8394981
  • Patent Number
    8,394,981
  • Date Filed
    Monday, February 7, 2011
    14 years ago
  • Date Issued
    Tuesday, March 12, 2013
    11 years ago
Abstract
The invention provides a process for hydrocyanation, comprising: contacting 2-pentenenitrile with hydrogen cyanide at a temperature in the range of about 0° C. to about 150° C. in the presence of at least one Lewis acid promoter and a catalyst precursor composition, wherein the catalyst precursor composition comprises a zero-valent nickel and at least one bidentate phosphite ligand selected from a member of the group represented by Formula I and Formula II, in which all like reference characters have the same meaning, except as further explicitly limited:
Description
FIELD OF THE INVENTION

This invention relates to the hydrocyanation of 2-pentenenitrile to produce adiponitrile and other dinitriles. More particularly, this invention relates to a process for the hydrocyanation of 2-pentenenitrile using a catalyst precursor composition comprising a zero-valent nickel and at least one bidentate phosphite ligand.


BACKGROUND OF THE INVENTION

Hydrocyanation catalyst systems, particularly pertaining to the hydrocyanation of olefins, are well known in the art. For example, systems useful for the hydrocyanation of 1,3-butadiene to form 3-pentenenitrile (3PN) and for the subsequent hydrocyanation of 3PN to form adiponitrile (ADN), are known in the commercially important nylon synthesis field. The hydrocyanation of olefins using transition metal complexes with monodentate phosphite ligand is well documented in the prior art. See, for example, U.S. Pat. Nos. 3,496,215; 3,631,191; 3,655,723 and 3,766,237; and Tolman, C. A., McKinney, R. J., Seidel, W. C., Druliner, J. D., and Stevens, W. R., Advances in Catalysis, Vol. 33, page 1 (1985). Improvements in the zero-valent nickel catalyzed hydrocyanation of ethylenically unsaturated compounds with the use of certain multidentate phosphite ligands are also disclosed. Such improvements are described, for example, in U.S. Pat. Nos. 5,821,378; 5,981,772; 6,020,516; and 6,284,865.


The hydrocyanation of activated olefins such as conjugated olefins (e.g., 1,3-butadiene and styrene) and strained olefins (e.g., norbornene) can proceed at useful rates without the use of a Lewis acid promoter. However the hydrocyanation of unactivated olefins, such as 1-octene and 3PN, requires the use of at least one Lewis acid promoter to obtain industrially useful rates and yields for the production of linear nitriles, such as n-octyl cyanide and adiponitrile, respectively.


The use of a promoter in the hydrocyanation reaction is disclosed, for example, in U.S. Pat. No. 3,496,217. This patent discloses an improvement in hydrocyanation using a promoter selected from a large number of metal cation compounds as nickel catalyst promoters with a wide variety of counterions. U.S. Pat. No. 3,496,218 discloses a nickel hydrocyanation catalyst promoted with various boron-containing compounds, including triphenylboron and alkali metal borohydrides. U.S. Pat. No. 4,774,353 discloses a process for the preparation of dinitriles, including ADN, from unsaturated nitriles, including pentenenitriles (PN), in the presence of a zero-valent nickel catalyst and a triorganotin promoter. Moreover, U.S. Pat. No. 4,874,884 discloses a process for producing ADN by the zero-valent nickel catalyzed hydrocyanation of pentenenitriles in the presence of a synergistic combination of promoters selected in accordance with the desired reaction kinetics of the ADN synthesis. Furthermore, the use of Lewis acids to promote the hydrocyanation of pentenenitriles to produce ADN using zero-valent nickel catalysts with multidentate phosphite ligands is also disclosed. See, for example, U.S. Pat. Nos. 5,512,696; 5,723,641; 5,959,135; 6,127,567; and 6,646,148.


A recognized shortcoming of the catalyst systems and processes described above is the inability to hydrocyanate the conjugated 2-pentenenitrile isomers, 2PN. U.S. Pat. No. 3,564,040 describes that 3PN is slowly isomerized to 2PN during the hydrocyanation process, and the 2PN so produced is treated as a yield loss. Furthermore, 2PN has been shown to be both a catalyst inhibitor and a catalyst poison as the concentration increases. In order to mitigate this poisoning effect, 2PN is typically separated before recovered pentenenitrile is recycled to the reactor.


In order to address the negative effects of 2PN, U.S. Pat. No. 3,564,040 describes a method to maintain the steady-state concentration of 2PN below 5 mole percent as based on the nitriles present in the reaction mixture. Because trans-2PN is difficult to separate from a mixture of 3PN and 4PN by distillation due to their close relative volatilities, the disclosed method involves the catalytic isomerization of trans-2PN to cis-2PN followed by fractional distillation of the mixture of PN isomers to remove the more volatile cis-2PN isomer. The catalyst systems used to isomerize trans-2PN to cis-2PN are those that also serve to hydrocyanate PN to ADN, in particular, nickel catalysts derived from monodentate phosphite ligands as described in U.S. Pat. Nos. 3,496,217 and 3,496,218.


Alternative catalyst systems for the isomerization of trans-2PN to cis-2PN are disclosed in U.S. Pat. Nos. 3,852,325 and 3,852,327. The primary advantage of the catalyst systems described therein is in avoiding appreciable carbon-carbon double bond migration in the PN isomers, which allows for the isomerization of trans-2PN to cis-2PN without substantial further isomerization of the 3PN to 2PN. The catalysts described in U.S. Pat. No. 3,852,325 are compounds of the general formula R3C—X, such as triphenylmethyl bromide, wherein R is an aryl radical having up to 18 carbon atoms and —X is of the group consisting of —H, —Cl, —Br, —I, —SH, —B(C6H5)4, —PF6, AsF6, —SbF6 and —BF4, while the catalyst systems described in U.S. Pat. No. 3,852,327 are Lewis acid/Lewis base compositions, such as combinations of zinc chloride with triphenylphosphine.


A different method of removing the 2PN from mixtures of PN isomers containing 3PN and 4-pentenenitrile (4PN) is disclosed in U.S. Pat. No. 3,865,865. The 2PN and/or 2-methyl-2-butenenitriles (2M2BN) can be selectively separated from a mixture of PN isomers containing 3PN and 4PN by contacting the mixture of nitriles with an aqueous solution of a treating agent comprising sulfite and bisulfite ions and ammonium or alkali metal cations to produce an aqueous phase containing the bisulfite adduct of the 2PN and/or 2M2BN and an organic phase containing the 3PN and 4PN, substantially free of 2PN or 2M2BN. The recovered organic phase can provide a feed material of PN for further hydrocyanation to produce adiponitrile with greatly reduced amounts of the undesired by-product 2PN that are detrimental to catalyst efficiency.


Recently, a class of hydrocyanation catalysts comprised of zero-valent nickel and a bidentate phosphite ligand have been described that are generally more active than the hydrocyanation catalyst comprised of monodentate phosphites and nickel. As a result, this class of catalysts may be used effectively at much lower concentrations and over a broader range of reaction conditions. U.S. Pat. No. 5,688,986 reveals that at least one member of this class of catalysts are capable of hydrocyanating olefins conjugated to nitriles, for example 2PN. However, we have observed that this ability is not a general feature of this class of catalysts. It therefore would be desirable to identify hydrocyanation catalyst systems that can be resistant to the inhibiting and poisoning effects of 2PN. Also desirable would be processes which use such catalyst systems to produce the valuable products 3PN, 4PN, and/or ADN from 2PN, such as by the isomerization of 2PN to form 3PN and/or 4PN and by the hydrocyanation of 2PN to form ADN.


SUMMARY OF THE INVENTION

In a first aspect, the present invention can provide a process for hydrocyanation, comprising: contacting 2-pentenenitrile with hydrogen cyanide at a temperature in the range of about 0° C. to about 150° C. in the presence of at least one Lewis acid promoter and a catalyst precursor composition, wherein the catalyst precursor composition comprises a zero-valent nickel and at least one bidentate phosphite ligand selected from a member of the group represented by Formula I and Formula II, in which all like reference characters have the same meaning, except as further explicitly limited:




embedded image



wherein R1 and R5 are independently selected from the group consisting of C1 to C5 hydrocarbyl; and R2, R3, R4, R6, R7 and R8 are independently selected from the group consisting of H and C1 to C4 hydrocarbyl.


In another aspect, the present invention can provide a process for hydrocyanation as disclosed above, wherein the Lewis acid promoter comprises at least one compound selected from the group consisting of ZnCl2 and FeCl2 or a combination of such members.


In another aspect, the present invention can provide a process for hydrocyanation as disclosed above, wherein the reaction temperature is in the range of about 25° C. to about 80° C.


In another aspect, the present invention can provide a process for hydrocyanation as disclosed above, wherein the molar ratio of the Lewis acid promoter to the nickel present in the reaction ranges from about 1:10 to about 10:1.


In another aspect, the present invention can provide a process for hydrocyanation as disclosed above, where the catalyst precursor composition further comprises at least one monodentate phosphite ligand.


In another aspect, the present invention can provide a process for hydrocyanation as disclosed above, wherein the bidentate phosphite ligand is selected from a member of the group represented by Formula I and Formula II, wherein R1 is methyl, ethyl, isopropyl or cyclopentyl; R2 is H or methyl; R3 is H or a C1 to C4 hydrocarbyl; R4 is H or methyl; R5 is methyl, ethyl or isopropyl; and R6, R7 and R8 are independently selected from the group consisting of H and C1 to C4 hydrocarbyl.


In another aspect, the present invention can provide a process for hydrocyanation as disclosed above, wherein the bidentate phosphite ligand is selected from a member of the group represented by Formula I, wherein R1, R4, and R5 are methyl; R2, R6, R7 and R8 are H; and R3 is C1 to C4 hydrocarbyl.


In another aspect, the present invention can provide a process for hydrocyanation as disclosed above, wherein the bidentate phosphite ligand is selected from a member of the group represented by Formula I, wherein R1 is isopropyl; R2 is H; R3 is C1 to C4 hydrocarbyl; R4 is H or methyl; R5 is methyl or ethyl; R6 and R8, are H or methyl; and R7 is H, methyl or tertiary-butyl.


In another aspect, the present invention can provide a process for hydrocyanation as disclosed above, wherein the bidentate phosphite ligand is selected from a member of the group represented by Formula II, wherein R1 is isopropyl or cyclopentyl; R5 is methyl or isopropyl; and R2, R6, R7, and R8 are H.


In yet another aspect, the present invention can provide a process for producing adiponitrile, comprising: contacting 2-pentenenitrile with hydrogen cyanide at a temperature in the range of about 0° C. to about 150° C. in the presence of at least one Lewis acid promoter and a catalyst precursor composition, wherein the catalyst precursor composition comprises a zero-valent nickel and at least one bidentate phosphite ligand selected from a member of the group represented by Formula I and Formula II, in which all like reference characters have the same meaning, except as further explicitly limited:




embedded image



wherein R1 and R5 are independently selected from the group consisting of C1 to C5 hydrocarbyl; and R2, R3, R4, R6, R7 and R8 are independently selected from the group consisting of H and C1 to C4 hydrocarbyl.


In another aspect, the present invention can provide a process for producing adiponitrile as disclosed above, wherein the Lewis acid promoter comprises at least one compound selected from the group consisting of ZnCl2 and FeCl2 or a combination of such members.


In another aspect, the present invention can provide a process for producing adiponitrile as disclosed above, wherein the reaction temperature is in the range of about 25° C. to about 80° C.


In another aspect, the present invention can provide a process for producing adiponitrile as disclosed above, wherein the molar ratio of the Lewis acid promoter to the nickel present in the reaction ranges from about 1:10 to about 10:1.


In another aspect, the present invention can provide a process for producing adiponitrile as disclosed above, wherein the catalyst precursor composition further comprises at least one monodentate phosphite ligand.


In another aspect, the present invention can provide a process for producing adiponitrile as disclosed above, wherein the bidentate phosphite ligand is selected from a member of the group represented by Formula I and Formula II, wherein R1 is methyl, ethyl, isopropyl or cyclopentyl; R2 is H or methyl; R3 is H or a C1 to C4 hydrocarbyl; R4 is H or methyl; R5 is methyl, ethyl or isopropyl; and R6, R7 and R8 are independently selected from the group consisting of H and C1 to C4 hydrocarbyl.


In another aspect, the present invention can provide a process for producing adiponitrile as disclosed above, wherein the bidentate phosphite ligand is selected from a member of the group represented by Formula I, wherein R1, R4, and R5 are methyl; R2, R6, R7 and R8 are H; and R3 is C1 to C4 hydrocarbyl.


In another aspect, the present invention can provide a process for producing adiponitrile as disclosed above, wherein the bidentate phosphite ligand is selected from a member of the group represented by Formula I, wherein R1 is isopropyl; R2 is H; R3 is C1 to C4 hydrocarbyl; R4 is H or methyl; R5 is methyl or ethyl; R6 and R8 are H or methyl; and R7 is H, methyl or tertiary-butyl.


In another aspect, the present invention can provide a process for producing adiponitrile as disclosed above, wherein the bidentate phosphite ligand is selected from a member of the group represented by Formula II, wherein R1 is isopropyl or cyclopentyl; R5 is methyl or isopropyl; and R2, R6, R7, and R8 are H.







DETAILED DESCRIPTION OF THE INVENTION

The invention provides a process for hydrocyanation of 2PN in the presence of at least one Lewis acid and a specified catalyst precursor composition. The 2PN can be present in a mixture of nonconjugated unsaturated nitriles. Additionally, the invention provides a process for producing ADN from 2PN in the presence of at least one Lewis acid and a specified catalyst precursor composition. Furthermore, it has been discovered that the catalyst precursor compositions of the present invention have the ability to alter the ratio of cis- and trans-2PN as well as the ability to isomerize 2PN to 3PN and 4PN in the presence of HCN.


The processes of the invention may comprise the use of a catalyst precursor composition that can resist the inhibiting and poisoning effects of the conjugated pentenenitrile isomer 2PN. The use of the broader class of catalysts, of which these bidentate phosphite ligands and catalyst precursor compositions are a subset, for the hydrocyanation of 3PN has been disclosed in U.S. Pat. Nos. 6,127,567 and 6,171,996.


ADN is of particular interest because it is a commercially versatile and important intermediate in the industrial production of nylon polyamides useful in forming films, fibers, and molded articles.


As used herein, the term “2PN” refers to 2-pentenenitrile and 2-pentenenitriles and includes both cis-2-pentenenitrile (cis-2PN) and trans-2-pentenenitrile (trans-2PN), unless otherwise specified. Similarly, the term “3PN” refers to 3-pentenenitrile and 3-pentenenitriles and includes both cis-3-pentenenitrile (cis-3PN) and trans-3-pentenenitrile (trans-3PN), unless otherwise specified. The term “4PN” refers to 4-pentenenitrile. The term “nonconjugated unsaturated nitriles” means unsaturated nitriles other than 2PN and includes 3PN, 4PN, and nonconjugated methylbutenenitriles. The term “unsaturated nitriles” includes 2PN, 3PN, 4PN, and methylbutenenitriles.


The 2PN useful in the present invention can be prepared by the reaction of hydrogen cyanide with 1,3-butadiene (BD). Using transition metal




embedded image



complexes with monodentate phosphites (for example, U.S. Pat. Nos. 3,496,215; 3,631,191; 3,655,723; and 3,766,237) and zero-valent nickel catalysts with multidentate phosphite ligands (for example, U.S. Pat. Nos. 5,821,378; 5,981,772; 6,020,516; and 6,284,865), the predominant pentenenitrile product formed by the hydrocyanation of BD is trans-3PN. As described in the prior art, the branched BD hydrocyanation product, 2-methyl-3-butenenitrile (2M3BN), can be isomerized to trans-3PN using the same catalyst compositions employed for the hydrocyanation of BD. See, for example, U.S. Pat. Nos. 3,536,748 and 3,676,481. The predominant trans-3PN product from the hydrocyanation of BD and isomerization of 2M3BN also contains smaller quantities of 4PN, cis-3PN, trans-2PN, cis-2PN, and 2-methyl-2-butenenitriles.




embedded image


The 2PN useful in the present invention can be made in larger quantities during the hydrocyanation of 3PN and/or 4PN to form ADN, among other dinitriles, from the concurrent isomerization of 3PN to 2PN, as described in the prior art. Separation of the cis-2PN isomer by the fractional distillation of mixtures of PN isomers, as disclosed in the art, can provide a source of isolated 2PN to be used with the present invention. See, for example, U.S. Pat. No. 3,852,327. 2PN produced by a different process or prepared in a separate manufacturing facility may also be used.


The catalyst precursor composition comprises a zero-valent nickel and at least one bidentate phosphite ligand selected from a member of the group represented by Formula I and Formula II, in which all like reference characters have the same meaning, except as further explicitly limited:




embedded image



wherein R1 and R5 are independently selected from the group consisting of C1 to C5 hydrocarbyl, and R2, R3, R4, R6, R7 and R8 are independently selected from the group consisting of H and C1 to C4 hydrocarbyl.


It will be recognized that Formula I and Formula II are two-dimensional representations of three-dimensional molecules and that rotation about chemical bonds can occur in the molecules to give configurations differing from those shown. For example, rotation about the carbon-carbon bond between the 2- and 2′-positions of the biphenyl and octahydrobinaphthyl bridging groups of Formula I and Formula II, respectively, can bring the two phosphorus atoms of each Formula in closer proximity to one another and can allow the phosphite ligand to bind to a single nickel atom in a bidentate fashion. The term “bidentate” is well known in the art and means both phosphorus atoms of the ligand are bonded to a single nickel atom.


The term “hydrocarbyl” is well known in the art and designates a hydrocarbon molecule from which at least one hydrogen atom has been removed. Such molecules can contain single, double, or triple bonds.


The term “aryl” is well known in the art and designates an aromatic hydrocarbon molecule from which at least one hydrogen atom has been removed.


Examples of suitable aryl groups include those containing 6 to 10 carbon atoms, which can be unsubstituted or singly or multiply substituted. Suitable substituents include, for example, C1-C4 hydrocarbyl, or halogen such as fluorine, chlorine or bromine, or halogenated hydrocarbyl such a trifluoromethyl, or aryl such as phenyl.


Each catalyst precursor composition useful in the present invention may be considered a “precursor” composition in that the zero-valent nickel at some point becomes bound to a bidentate phosphite ligand, and further in all likelihood, additional reactions occur during hydrocyanation, such as, for example, complexing of the initial catalyst composition to an ethylenically unsaturated compound.


As used herein, the term “catalyst precursor composition” also includes within its meaning recycled catalyst, that is, a catalyst precursor composition comprising a zero-valent nickel and at least one bidentate phosphite ligand which, having been used in the process of the invention, is returned or may be returned to the process and used again.


The catalyst precursor compositions may further comprise at least one monodentate phosphite ligand, provided that the monodentate phosphite ligand does not detract from the beneficial aspects of the invention. The monodentate phosphite ligand may be present as an impurity from synthesis of the bidentate phosphite ligand, as disclosed in U.S. Pat. No. 6,069,267, or the monodentate phosphite ligand may be added as an additional component of the catalyst precursor composition.


The catalyst precursor compositions may further comprise at least one Lewis acid promoter.


The bidentate phosphite ligand is selected from a member of the group represented by Formula I and Formula II, in which all like reference characters have the same meaning, except as further explicitly limited:




embedded image



wherein


R1 and R5 are independently selected from the group consisting of C1 to C5 hydrocarbyl, and R2, R3, R4, R6, R7 and R8 are independently selected from the group consisting of H and C1 to C4 hydrocarbyl. For example, the bidentate phosphite ligand can be selected from a member of the group represented by Formula I and Formula II, wherein


R1 is methyl, ethyl, isopropyl or cyclopentyl;


R2 is H or methyl;


R3 is H or C1 to C4 hydrocarbyl;


R4 is H or methyl;


R5 is methyl, ethyl or isopropyl; and


R6, R7 and R8 are independently selected from the group consisting of H and C1 to C4 hydrocarbyl.


As additional examples, the bidentate phosphite ligand can be selected from a member of the group represented by Formula I wherein R1, R4 and R5 are methyl; and R2, R6, R7 and R8 are independently selected from the group consisting of H and R3 is C1 to C4 hydrocarbyl. Alternatively, the bidentate phosphite ligand can be selected from a member of the group represented by Formula I wherein R1 is isopropyl; R2 is H; R3 is a C1 to C4 hydrocarbyl; R4 is H or methyl; R5 is methyl or ethyl; R6 and R8 are H or methyl; and R7 is H, methyl or tertiary-butyl; or the bidentate phosphite ligand can be selected from a member of the group represented by Formula II, wherein R1 is isopropyl or cyclopentyl; R5 is methyl or isopropyl; and R6, R7, and R8 are H.


The bidentate phosphite ligands useful in the catalyst precursor compositions employed in the present invention may be prepared by any suitable synthetic means known in the art, for example as described in U.S. Pat. Nos. 6,171,996, 5,512,696, 6,069,267, and 2004/0106815, all of which are incorporated herein by reference. For example, the reaction of two equivalents of an ortho-substituted phenol with phosphorus trichloride gives the corresponding phosphorochloridite. The reaction of the phosphorochloridite with the desired substituted biphenol or octahydrobinaphthol in the presence of triethylamine gives the bidentate phosphite ligand. The crude bidentate phosphite ligand can be worked up by the process described in U.S. Pat. No. 6,069,267. As disclosed therein, the bidentate phosphite ligand product mixture can typically contain the desired product in about 70% to about 90% selectivity, with other phosphite by-products such as monodentate phosphites making up the balance of the product mixture. The bidentate phosphite ligand itself or these bidentate/monodentate phosphite ligand mixtures are suitable for use with the present invention.


The catalyst precursor compositions employed for this process should ideally be substantially free of carbon monoxide, oxygen, and water and may be preformed or prepared in situ according to techniques well known in the art. The catalyst precursor composition may be formed by contacting the bidentate phosphite ligand with a zero-valent Ni complex having easily displaced ligands. Examples of such zero-valent nickel complexes include Ni(COD)2 (COD is 1,5-cyclooctadiene), Ni[P(O-o-C6H4—CH3)3]3 and Ni[P(O-o-C6H4—CH3)3]2(C2H4), all of which are known in the art, wherein 1,5-cyclooctadiene (COD), tris(ortho-tolyl)phosphite [P(O-o-C6H4—CH3)3], and ethylene (C2H4) are the easily displaced ligands. Alternatively, divalent nickel compounds can be combined with a reducing agent, to serve as a source of zero-valent nickel in the reaction, in the presence of the bidentate phosphite ligands of Formula I or Formula II. Suitable divalent nickel compounds include compounds of the formula NiZ2 where Z is halide, carboxylate, or acetylacetonate. Suitable reducing agents include metal borohydrides, metal aluminum hydrides, metal alkyls, Li, Na, K, Zn or H2. See, for example, U.S. Pat. No. 6,893,996. In the catalyst precursor composition, the bidentate phosphite ligand may be present in excess of what can theoretically be coordinated to the nickel at a given time.


The processes of this invention can be carried out in the presence of at least one Lewis acid promoter which affects both the activity and the selectivity of the catalyst system. The promoters exhibit Lewis acidity, as indicated by their ability to coordinate to either a metal-cyanide containing complex or an organonitrile, as measured spectroscopically by a shift in the infrared band assigned to the metal-cyanide or organonitrile stretch upon coordination to the promoter. An example of such a spectroscopically observed shift for a soluble promoter with a nickel-cyanide (Ni—CN) species is described in Advances in Catalysis, Vol. 33 (1985), pages 12-13. The Lewis acid promoters may comprise an inorganic or organometallic compound in which the cation is selected from the group consisting of scandium, titanium, vanadium, chromium, manganese, iron, cobalt, copper, zinc, boron, aluminum, yttrium, zirconium, niobium, molybdenum, cadmium, rhenium, lanthanum, erbium, ytterbium, samarium, tantalum, and tin, as is well-known in the art. Examples of Lewis acid promoters include, but are not limited to BPh3, ZnBr2, Znl2, ZnCl2, ZnSO4, CuCl2, CuCl, Cu(O3SCF3)2, CoCl2, CoI2, FeI2, FeCl3, FeCl2, FeCl2(THF)2, TiCl2, TiCl4(THF)2, MnCl2, ScCl3, AlCl3, (C8H17)AlCl2, (C8H17)2AlCl, (iso-C4H9)2AlCl, Ph2AlCl, PhAlCl2, ReCl5, ZrCl4, NbCl5, VCl3, CrCl2, MoCl5, YCl3, CdCl2, LaCl3, Er(O3SCF3)3, Yb(O2CCF3)3, SmCl3, B(C6H5)3, TaCl5, SnCl2, Ph3Sn(O3SC6H5CH3), and R9SnO3SCF3, where R9 is an alkyl or aryl group and Ph is phenyl), or a combination thereof. Preferred promoters include FeCl2 and ZnCl2. The molar ratio of promoter to Ni present in the reaction can, for example, range from about 1:10 to about 10:1.


The catalyst precursor composition may be dissolved in a solvent that is non-reactive toward, and miscible with, the hydrocyanation reaction mixture. Suitable solvents include, for example, aliphatic and aromatic hydrocarbons with 1 to 10 carbon atoms and nitrile solvents such as acetonitrile. Alternatively, 3PN, a mixture of isomeric pentenenitriles, a mixture of isomeric methylbutenenitriles, a mixture of isomeric pentenenitriles and isomeric methylbutenenitriles, or the reaction product from a previous reaction campaign may be used to dissolve the catalyst precursor composition.


The processes of the invention can be carried out with or without a solvent. When carried out with a solvent, the solvent should be liquid at the reaction temperature and pressure, and should be inert towards the 2PN and the catalyst. Examples of such solvents include hydrocarbons such as benzene or xylene, or nitriles such as 3PN, acetonitrile or benzonitrile.


The processes of the invention may typically be carried out at a temperature range from about 0° C. to about 150° C., for example from about 25° C. to about 80° C.


While atmospheric pressure is suitable for carrying out the processes of the invention, higher and lower pressures can be used. In this regard, pressures of from about 0.05 to about 10 atmospheres (about 5.0 to about 1013 kPa) may be used. Higher pressures, up to about 10,000 kPa or more, can be used, if desired, but any benefit that may be obtained thereby may not be justified in view of increased cost of such operations.


The overall feed molar ratio of HCN to zero-valent nickel may, for example, be in the range of about 100:1 to about 3000:1, for example in the range of about 300:1 to about 2000:1. At reactor startup, the reaction vessel may be partially charged, for example, with either a solution of a catalyst precursor composition in substrate pentenenitriles or the reactor product from a previous reaction campaign, followed by initiation of all reactor feeds. Continuous reactor product removal may begin upon establishing the desired fluid levels within the reaction vessel or vessels.


HCN, substantially free of carbon monoxide, oxygen, ammonia, and water can be introduced to the reaction as a vapor, liquid, or mixtures thereof. As an alternative, a cyanohydrin can be used as the source of HCN. See, for example, U.S. Pat. No. 3,655,723.


The reaction medium may be agitated, such as by stirring or shaking. Alternatively, mixing of the reactants and the reaction mixture may be achieved through any means well known in the art that provides mass transfer sufficient to avoid areas of high and/or low reactant concentrations in the reaction mixture. The reaction product and components of the catalyst precursor composition can be recovered by conventional techniques known in the art, such as, for example, by liquid-liquid extraction as disclosed in U.S. Pat. No. 6,936,171, and by distillation. The reaction may be run in batch, semi-continuous, or continuous manner


Isomerization of 2PN to 3PN and 4PN in the presence of HCN can be useful in that it can provide the desired 3PN and 4PN isomers, which may be hydrocyanated to form ADN. Additionally, isomerization of 2PN to other PN isomers can be advantageous in that the amount of inhibiting 2PN is reduced. Alteration of the ratio of cis-2PN to trans-2PN can also be advantageous by enabling the purge of cis-2PN from pentenenitrile mixtures. In this way, 2PN can be purged from the 3PN, 4PN, and catalyst mixture which is recycled to the hydrocyanation reactor, and the build-up of 2PN is avoided.


Embodiments falling within the scope of the present invention may be further understood in view of the following non-limiting examples


EXAMPLES

The following procedures can be used to treat cis-2PN before its use in hydrocyanation reactions. Cis-2-pentenenitrile (98%) produced from a 1,3-butadiene and 3PN hydrocyanation process may be obtained commercially from the Sigma-Aldrich Chemical Company. Hydroperoxide impurities can be common in such a reagent and are typically detrimental to hydrocyanation catalyst performance. Hydroperoxide impurities can be measured and reduced in cis-2PN, if necessary, by titration, for example with triphenylphosphine, prior to purification by distillation. Distillation under a nitrogen atmosphere can be utilized to remove the majority of oxygen, water, and peroxides and heavy boilers by taking, for example, a forecut and a heartcut during the distillation. The purified cis-2PN of the heartcut can be transferred into a drybox filled with an inert gas such as nitrogen and can be dried further over 3 A molecular sieves (which have been previously dried and degassed under nitrogen).


The following experimental protocol was used for each of the experiments shown in Table I below.


A Ni(COD)2 (COD=1,5-cyclooctadiene) solution was prepared by dissolving Ni(COD)2 (0.039 g) in toluene (2.79 g). A toluene solution of a ligand of Formula I or Formula II (0.230 mL of 0.21 mol ligand/L of toluene) was treated with Ni(COD)2 solution (0.320 mL) and thoroughly mixed to provide a catalyst precursor solution. A cis-2-pentenenitrile (cis-2PN)/ZnCl2 solution was prepared by dissolving ZnCl2 (0.017 g in 1.02 g cis-2PN). A sample of catalyst solution (0.100 mL) was treated with cis-2PN/ZnCl2 solution (0.025 mL); and the mixture heated to 50° C. From a liquid, uninhibited, anhydrous HCN sample at ambient temperature, HCN vapor was continuously delivered to the reaction mixture over a period of 16 hours. After cooling to ambient temperature, the reaction mixture was treated with acetonitrile (0.125 mL) and analyzed by gas chromatography for the amount of adiponitrile (ADN), 2-methylglutaronitrile (MGN) and 2-ethylsuccinonitrile (ESN) produced. Table I reports the percentage of cis-2PN that was converted to dinitriles (ADN+MGN+ESN). In every case ADN comprised greater than 90% of the dinitriles produced. In the Tables, n-C3H7 is normal-propyl, i-C3H7 is iso-propyl, n-C4H9 is normal-butyl, n-Butyl is normal-butyl, sec-C4H9 is secondary-butyl, and t-C4H9 is tertiary-butyl groups.



















TABLE I






Ligand








% c2PN


Example
Formula
R1
R2
R3
R4
R5
R6
R7
R8
Conversion

























1
I
Me
H
Me
Me
Me
H
H
H
7


2
I
Me
H
Me
Me
Me
H
Me
H
14


3
I
Me
H
Me
Me
Me
H
H
Me
5


4
I
Me
H
Me
Me
Me
H
Me
Me
5


5
I
Me
H
Me
Me
Me
Me
H
H
2


6
I
Me
H
Me
H
Me
H
Me
H
2


7
I
Me
H
Me
Me
C2H5
H
H
H
1


8
I
Me
H
Me
Me
i-C3H7
H
H
Me
0.4


9
I
Me
H
Me
Me
n-C3H7
H
H
H
0.4


10
I
Me
H
Me
Me
i-C3H7
H
H
H
0.1


11
I
Me
H
i-C3H7
Me
Me
H
H
H
0.5


12
I
Me
H
n-C4H9
Me
Me
H
H
H
20


13
I
Me
H
t-C4H9
Me
Me
H
H
H
6


14
I
Me
H
H
Me
i-C3H7
H
H
H
1


15
I
Me
H
H
Me
sec-C4H9
H
H
H
0.1


16
I
Me
Me
Me
Me
Me
H
H
H
51


17
I
C2H5
H
C2H5
C2H5
Me
H
H
H
0.7


18
I
C2H5
H
t-C4H9
H
Me
H
H
H
0.3


19
I
i-C3H7
H
H
H
i-C3H7
H
H
H
0.7


20
I
i-C3H7
H
H
Me
Me
H
H
H
7


21
I
i-C3H7
H
H
Me
Me
H
Me
H
4


22
I
i-C3H7
H
H
Me
Me
H
H
H
2


23
I
i-C3H7
H
H
Me
Me
Me
H
H
1


24
I
i-C3H7
H
H
Me
Me
H
H
Me
0.4


25
I
i-C3H7
H
Me
H
Me
H
H
H
6


26
I
i-C3H7
H
Me
H
Me
H
Me
H
5


27
I
i-C3H7
H
Me
Me
Me
H
H
H
14


28
I
i-C3H7
H
Me
Me
Me
H
t-C4H9
H
43


29
I
i-C3H7
H
Me
Me
Me
H
H
Me
32


30
I
i-C3H7
H
Me
Me
Me
H
Me
H
31


31
I
i-C3H7
H
Me
Me
C2H5
H
H
H
21


32
I
i-C3H7
H
Me
Me
i-C3H7
H
H
H
0.3


33
I
i-C3H7
H
Me
Me
i-C3H7
H
H
Me
0.1


34
I
i-C3H7
H
C2H5
H
Me
H
H
H
3


35
I
i-C3H7
H
C2H5
Me
Me
H
H
H
21


36
I
i-C3H7
H
C2H5
Me
i-C3H7
H
H
H
2


37
I
i-C3H7
H
i-C3H7
H
Me
H
H
H
1


38
I
i-C3H7
H
n-C3H7
Me
Me
H
H
H
19


39
I
i-C3H7
H
i-C3H7
Me
Me
H
H
H
8


40
I
i-C3H7
H
n-C3H7
Me
i-C3H7
H
H
H
1


41
I
i-C3H7
H
t-C4H9
Me
Me
H
H
H
5


42
I
i-C3H7
H
t-C4H9
H
Me
H
H
H
0.6


43
I
cyclopentyl
H
H
Me
n-C3H7
H
H
H
0.3


44
II
C2H5
H


i-C3H7
H
H
H
2


45
II
i-C3H7
H


i-C3H7
H
H
H
30


46
II
cyclopentyl
H


Me
H
H
H
46


47
II
cyclopentyl
H


i-C3H7
H
H
H
5









Examples 48-69

The following experimental protocol was used for each of the experiments shown in Table II below.


A Ni(COD)2 (COD=1,5-cyclooctadiene) solution was prepared by dissolving Ni(COD)2 in toluene. A toluene solution of a ligand of Formula I or II was treated with the Ni(COD)2 solution and thoroughly mixed to provide a catalyst precursor solution. A cis-2PN/promoter solution was prepared by dissolving the appropriate promoter in cis-2PN. A sample of catalyst solution was treated with the cis-2PN/promoter solution, and the mixture adjusted to the reaction temperature. During the reaction times listed below, HCN vapor was continuously delivered to the 2PN catalyst solution from a liquid, uninhibited, anhydrous HCN sample at ambient temperature. The specified temperature was maintained during the reaction period. After the reaction was terminated, the mixture was treated with acetonitrile and analyzed by gas chromatography for the amount of adiponitrile (ADN), 2-methylglutaronitrile (MGN) and 2-ethylsuccinonitrile (ESN) produced. Table II reports the percentage of cis-2PN that was converted to dinitriles (ADN+MGN+ESN). In every case, ADN comprised greater than 90% of the dinitriles produced.


For Examples 48-51, the molar ratio of Ni to cis-2PN was 1 to 200. The molar ratio of promoter to Ni was 3 to 1. The molar ratio of ligand to Ni was 3 to 1. The reaction was carried out at 25° C. for 95 hours.


For Examples 52-55, the molar ratio of Ni to cis-2PN was 1 to 67. The molar ratio of promoter to Ni was 1 to 1. The molar ratio of ligand to Ni was 3 to 1. The reaction was carried out at 50° C. for 6 hours.


For Example 56 the molar ratio of Ni to cis-2PN was 1 to 67. The molar ratio of promoter to Ni was 3 to 1. The molar ratio of ligand to Ni was 3 to 1. The reaction was carried out at 25° C. for 70 hours.


For Example 57, the molar ratio of Ni to cis-2PN was 1 to 200. The molar ratio of promoter to Ni was 1 to 1. The molar ratio of ligand to Ni was 3 to 1. The reaction was carried out at 50° C. for 70 hours.


For Examples 58-60, the molar ratio of Ni to cis-2PN was 1 to 67. The molar ratio of promoter to Ni was 3 to 1. The molar ratio of ligand to Ni was 3 to 1. The reaction was carried out at 25° C. for 72 hours.


For Examples 61-64, the molar ratio of Ni to cis-2PN was 1 to 67. The molar ratio of promoter to Ni was 3 to 1. The molar ratio of ligand to Ni was 3 to 1. The reaction was carried out at 25° C. for 72 hours.


For Example 65, the molar ratio of Ni to cis-2PN was 1 to 200. The molar ratio of promoter to Ni was 1 to 1. The molar ratio of ligand to Ni was 2 to 1. The reaction was carried out at 50° C. for 6 hours.


For Examples 66-69, the molar ratio of Ni to cis-2PN was 1 to 67. The molar ratio of promoter to Ni was 3 to 1. The molar ratio of ligand to Ni was 3 to 1. The reaction was carried out at 25° C. for 72 hours.




















TABLE II






Ligand









% cis-2PN


Example
Formula
R1
R2
R3
R4
R5
R6
R7
R8
Promoter
Conversion


























48
I
i-C3H7
H
Me
Me
Me
H
H
H
ZnBr2
13.0


49
I
i-C3H7
H
Me
Me
Me
H
H
H
FeBr2
18.4


50
I
i-C3H7
H
Me
Me
Me
H
H
H
CoCl2
10.2


51
I
i-C3H7
H
Me
Me
Me
H
H
H
FeCl2
17.1


52
I
i-C3H7
H
Me
Me
Me
H
H
H
FeCl2
45.0


53
I
i-C3H7
H
Me
Me
Me
H
Me
H
FeCl2
51.4


54
I
i-C3H7
H
Me
Me
Me
Me
H
H
FeCl2
40.2


55
I
i-C3H7
H
Me
Me
Me
H
t-C4H9
H
FeCl2
59.6


56
I
i-C3H7
H
Me
Me
Me
H
t-C4H9
H
LaCl3
3.0


57
I
i-C3H7
H
Me
H
Me
H
H
H
FeCl2
9.0


58
I
Me
H
Me
Me
Me
H
H
H
FeCl2
6.5


59
I
i-C3H7
H
i-C3H7
Me
Me
H
H
H
FeCl2
8.1


60
I
i-C3H7
H
Me
H
Me
H
Me
H
FeCl2
4.8


61
II
Ethyl
H


i-C3H7
H
H
H
FeCl2
2.2


62
I
i-C3H7
H
Ethyl
Me
Me
H
H
H
FeCl2
20.6


63
I
i-C3H7
H
Ethyl
Me
i-C3H7
H
H
H
FeCl2
2.1


64
II
i-C3H7
H


Me
H
H
H
FeCl2
29.7


65
I
Me
Me
Me
Me
Me
H
H
H
FeCl2
37.8


66
I
Me
H
n-Butyl
Me
Me
H
H
H
FeCl2
20.1


67
II
Cyclopentyl
H


Me
H
H
H
FeCl2
29.2


68
II
Cyclopentyl
H


i-C3H7
H
H
H
FeCl2
4.2


69
I
i-C3H7
H
Me
Me
Et
H
H
H
FeCl2
13.2









Although particular embodiments of the present invention have been described in the foregoing description, it will be understood by those skilled in the art that the invention is capable of numerous modifications, substitutions and rearrangements without departing from the spirit or essential attributes of the invention. Reference should be made to the appended claims, rather than to the foregoing specification, as indicating the scope of the invention.

Claims
  • 1. A process for producing adiponitrile, comprising: contacting 2-pentenenitrile with hydrogen cyanide at a temperature in the range of about 0° C. to about 150° C. in the presence of at least one Lewis acid promoter and a catalyst precursor composition, wherein the catalyst precursor composition comprises a zero-valent nickel and at least one bidentate phosphite ligand selected from a member of the group represented by Formula I and Formula II, in which all like reference characters have the same meaning, except as further explicitly limited:
  • 2. The process of claim 1, wherein the bidentate phosphite ligand is selected from a member of the group represented by Formula I and Formula II, wherein R1 is methyl, ethyl, isopropyl or cyclopentyl;R2 is H or methyl;R3 is H or a C1 to C4 hydrocarbyl;R4 is H or methyl;R5 is methyl, ethyl or isopropyl; andR6, R7 and R8 are independently selected from the group consisting of H and C1 to C4 hydrocarbyl.
  • 3. The process of claim 1, wherein the bidentate phosphite ligand is selected from a member of the group represented by Formula I, wherein R1 is isopropyl; R2 is H; R3 is C1 to C4 hydrocarbyl; R4 is H or methyl; R5 is methyl or ethyl; R6 and R8 are H or methyl; and R7 is H, methyl or tertiary-butyl.
  • 4. The process of claim 1, wherein the bidentate phosphite ligand is selected from a member of the group represented by Formula II, wherein R1 is isopropyl or cyclopentyl; R5 is methyl or isopropyl; and R2, R6, R7, and R8 are H.
  • 5. The process of claim 1, wherein the Lewis acid promoter comprises at least one compound selected from the group consisting of ZnCl2 and FeCl2 or a combination of such members.
  • 6. The process of claim 1, wherein the reaction temperature is between about 25° C. and about 80° C.
  • 7. The process of claim 1, wherein the molar ratio of the Lewis acid promoter to Ni present in the reaction ranges from about 1:10 to about 10:1.
  • 8. The process of claim 1, wherein the catalyst precursor composition further comprises at least one monodentate phosphite ligand.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims benefit of priority from Provisional Application No. 60/830,864, filed Jul. 14, 2006. This application relates to commonly-assigned application Ser. Nos. 11/776,922, 11/776,932, 11/776,954, and 11/776,968 filed concurrently on Jul. 12, 2007.

US Referenced Citations (170)
Number Name Date Kind
2768132 Halliwell Oct 1956 A
3370082 Eisfeld et al. Feb 1968 A
3496215 Drinkard et al. Feb 1970 A
3496217 Drinkard, Jr. et al. Feb 1970 A
3496218 Drinkard, Jr. Feb 1970 A
3522288 Drinkard, Jr. et al. Jul 1970 A
3536748 Drinkard, Jr. et al. Oct 1970 A
3551474 Drinkard et al. Dec 1970 A
3564040 Downing et al. Feb 1971 A
3579560 Drinkard et al. May 1971 A
3631191 Kane et al. Dec 1971 A
3655723 Drinkard, Jr. et al. Apr 1972 A
3676481 Chia Jul 1972 A
3694485 Drinkard, Jr. et al. Sep 1972 A
3752839 Drinkard, Jr. et al. Aug 1973 A
3766231 Gosser et al. Oct 1973 A
3766237 Chia et al. Oct 1973 A
3766241 Drinkard, Jr. et al. Oct 1973 A
3773809 Walter Nov 1973 A
3775461 Drinkard, Jr. et al. Nov 1973 A
3798256 King et al. Mar 1974 A
3818067 Downing et al. Jun 1974 A
3818068 Wells Jun 1974 A
3846474 Mok Nov 1974 A
3849472 Waddan Nov 1974 A
3850973 Seidel et al. Nov 1974 A
3852325 King Dec 1974 A
3852327 Druliner et al. Dec 1974 A
3853754 Gosser Dec 1974 A
3853948 Drinkard, Jr. et al. Dec 1974 A
3864380 King et al. Feb 1975 A
3865865 Musser et al. Feb 1975 A
3869501 Waddan Mar 1975 A
3920721 Gosser Nov 1975 A
3927056 Gosser Dec 1975 A
3947487 Crooks Mar 1976 A
4045495 Nazarenko et al. Aug 1977 A
4046815 Nazarenko Sep 1977 A
4076756 Nazarenko et al. Feb 1978 A
4087452 Kuntz May 1978 A
4146555 Kershaw Mar 1979 A
4147717 Kershaw Apr 1979 A
4177215 Seidel Dec 1979 A
4210558 Crooks Jul 1980 A
4230634 Benzie et al. Oct 1980 A
4240976 Benzie et al. Dec 1980 A
4251468 Nazarenko Feb 1981 A
4328172 Rapoport May 1982 A
4330483 Rapoport May 1982 A
4339395 Barnette et al. Jul 1982 A
4371474 Rapoport Feb 1983 A
4382038 McGill May 1983 A
4385007 Shook, Jr. May 1983 A
4416824 Reimer et al. Nov 1983 A
4416825 Ostermaier Nov 1983 A
4434316 Barnette Feb 1984 A
4539302 Leyendecker et al. Sep 1985 A
4705881 Rapoport Nov 1987 A
4749801 Beatty et al. Jun 1988 A
4774353 Hall et al. Sep 1988 A
4874884 McKinney et al. Oct 1989 A
4990645 Back et al. Feb 1991 A
5107012 Grunewald Apr 1992 A
5302756 McKinney Apr 1994 A
5312959 Sieja et al. May 1994 A
5449807 Druliner Sep 1995 A
5488129 Huser et al. Jan 1996 A
5512695 Kreutzer et al. Apr 1996 A
5512696 Kreutzer et al. Apr 1996 A
5523453 Breikss Jun 1996 A
5543536 Tam Aug 1996 A
5663369 Kreutzer et al. Sep 1997 A
5688986 Tam et al. Nov 1997 A
5696280 Shapiro Dec 1997 A
5709841 Reimer Jan 1998 A
5723641 Tam et al. Mar 1998 A
5773637 Cicha et al. Jun 1998 A
5821378 Foo et al. Oct 1998 A
5847191 Bunel et al. Dec 1998 A
5856555 Huser et al. Jan 1999 A
5908805 Huser et al. Jun 1999 A
5959135 Garner et al. Sep 1999 A
5981772 Foo et al. Nov 1999 A
6020516 Foo et al. Feb 2000 A
6069267 Tam May 2000 A
6090987 Billig et al. Jul 2000 A
6121184 Druliner et al. Sep 2000 A
6127567 Garner et al. Oct 2000 A
6147247 Voit et al. Nov 2000 A
6169198 Fischer et al. Jan 2001 B1
6171996 Garner et al. Jan 2001 B1
6197992 Fischer et al. Mar 2001 B1
6242633 Fischer et al. Jun 2001 B1
6284865 Tam et al. Sep 2001 B1
6307109 Kanel et al. Oct 2001 B1
6355833 Fischer et al. Mar 2002 B2
6461481 Barnette et al. Oct 2002 B1
6469194 Burattin et al. Oct 2002 B2
6521778 Fischer et al. Feb 2003 B1
6646148 Kreutzer Nov 2003 B1
6660877 Lenges et al. Dec 2003 B2
6737539 Lenges et al. May 2004 B2
6753440 Druliner et al. Jun 2004 B2
6770770 Baumann et al. Aug 2004 B1
6846945 Lenges et al. Jan 2005 B2
6852199 Jungkamp et al. Feb 2005 B2
6855799 Tam et al. Feb 2005 B2
6893996 Chu et al. May 2005 B2
6897329 Jackson et al. May 2005 B2
6969267 Byquist Nov 2005 B2
6984604 Cobb et al. Jan 2006 B2
7022866 Bartsch et al. Apr 2006 B2
7067685 Bartsch et al. Jun 2006 B2
7084293 Rosier et al. Aug 2006 B2
7084294 Jungkamp et al. Aug 2006 B2
7098358 Burattin et al. Aug 2006 B2
7105696 Burattin et al. Sep 2006 B2
7253298 Galland et al. Aug 2007 B2
7345006 Bartsch et al. Mar 2008 B2
7381845 Weiskopf et al. Jun 2008 B2
7439381 Jungkamp et al. Oct 2008 B2
7442825 Galland et al. Oct 2008 B2
7470805 Rosier et al. Dec 2008 B2
7521575 Bartsch et al. Apr 2009 B2
7528275 Bartsch et al. May 2009 B2
7538240 Jungkamp et al. May 2009 B2
7541486 Scheidel et al. Jun 2009 B2
7700795 Haderlein et al. Apr 2010 B2
7919646 Garner et al. Apr 2011 B2
20030135014 Radu et al. Jul 2003 A1
20030212298 Brasse et al. Nov 2003 A1
20040063991 Burattin et al. Apr 2004 A1
20040106815 Ritter Jun 2004 A1
20040176622 Bartsch et al. Sep 2004 A1
20040235648 Bartsch et al. Nov 2004 A1
20040260112 Basset et al. Dec 2004 A1
20050090677 Bartsch et al. Apr 2005 A1
20050090678 Bartsch et al. Apr 2005 A1
20050247624 Jungkamp et al. Nov 2005 A1
20060142609 Bourgeois et al. Jun 2006 A1
20060175189 Gerber et al. Aug 2006 A1
20060252955 Rosier et al. Nov 2006 A1
20060258873 Rosier et al. Nov 2006 A1
20060258874 Bartsch et al. Nov 2006 A1
20060264651 Bartsch et al. Nov 2006 A1
20070060766 Bartsch et al. Mar 2007 A1
20070073071 Haderlein et al. Mar 2007 A1
20070083057 Haderlein et al. Apr 2007 A1
20070088173 Haderlein et al. Apr 2007 A1
20070112215 Jungkamp et al. May 2007 A1
20070155977 Jungkamp et al. Jul 2007 A1
20070155978 Jungkamp et al. Jul 2007 A1
20070155980 Scheidel et al. Jul 2007 A1
20080015378 Foo et al. Jan 2008 A1
20080015380 Foo et al. Jan 2008 A1
20080015381 Foo et al. Jan 2008 A1
20080015382 Foo et al. Jan 2008 A1
20080071105 Bartsch et al. Mar 2008 A1
20080076944 Bartsch et al. Mar 2008 A1
20080083607 Deckert et al. Apr 2008 A1
20080221351 Bartsch et al. Sep 2008 A1
20080227214 Jungkamp et al. Sep 2008 A1
20080227998 Scheidel et al. Sep 2008 A1
20080242883 Jungkamp et al. Oct 2008 A1
20080242885 Jungkamp et al. Oct 2008 A1
20080242886 Bartsch et al. Oct 2008 A1
20080275266 Bartsch et al. Nov 2008 A1
20080281119 Scheidel et al. Nov 2008 A1
20080281120 Jungkamp et al. Nov 2008 A1
20090054671 Haderlein et al. Feb 2009 A1
Foreign Referenced Citations (477)
Number Date Country
6522096 Feb 1997 AU
199665220 Feb 1997 AU
1324613 Nov 1993 CA
2462720 Apr 2003 CA
2552862 Aug 2005 CA
1113854 Dec 1995 CN
1145531 Mar 1997 CN
1146166 Mar 1997 CN
1146762 Apr 1997 CN
1159106 Sep 1997 CN
1159799 Sep 1997 CN
1163606 Oct 1997 CN
1169143 Dec 1997 CN
1173935 Feb 1998 CN
1179147 Apr 1998 CN
1198151 Nov 1998 CN
1204111 Jan 1999 CN
1206357 Jan 1999 CN
1211931 Mar 1999 CN
1045591 Oct 1999 CN
1236355 Nov 1999 CN
1047163 Dec 1999 CN
1245489 Feb 2000 CN
1247102 Mar 2000 CN
1052718 May 2000 CN
1265094 Aug 2000 CN
1266424 Sep 2000 CN
1270543 Oct 2000 CN
1068307 Jul 2001 CN
1304334 Jul 2001 CN
1069310 Aug 2001 CN
1072980 Oct 2001 CN
1076342 Dec 2001 CN
1327881 Dec 2001 CN
1331843 Jan 2002 CN
1333745 Jan 2002 CN
1082946 Apr 2002 CN
1344180 Apr 2002 CN
1356335 Jul 2002 CN
1387534 Dec 2002 CN
1099912 Jan 2003 CN
1390241 Jan 2003 CN
1103613 Mar 2003 CN
1106218 Apr 2003 CN
1108643 May 2003 CN
1427807 Jul 2003 CN
1449400 Oct 2003 CN
1461295 Dec 2003 CN
1471510 Jan 2004 CN
1141285 Mar 2004 CN
1142224 Mar 2004 CN
1144781 Apr 2004 CN
1487917 Apr 2004 CN
1152855 Jun 2004 CN
1535179 Oct 2004 CN
1564807 Jan 2005 CN
1568225 Jan 2005 CN
1568226 Jan 2005 CN
1617892 May 2005 CN
1617900 May 2005 CN
1212293 Jul 2005 CN
1639176 Jul 2005 CN
1213051 Aug 2005 CN
1665776 Sep 2005 CN
1670139 Sep 2005 CN
1674989 Sep 2005 CN
1675172 Sep 2005 CN
1222358 Oct 2005 CN
1732148 Feb 2006 CN
1735460 Feb 2006 CN
1245489 Mar 2006 CN
1740183 Mar 2006 CN
1745062 Mar 2006 CN
1767895 May 2006 CN
1260009 Jun 2006 CN
1266424 Jul 2006 CN
1270543 Aug 2006 CN
1274671 Sep 2006 CN
1274699 Sep 2006 CN
1835915 Sep 2006 CN
1279088 Oct 2006 CN
1837288 Oct 2006 CN
1283620 Nov 2006 CN
1857775 Nov 2006 CN
1289539 Dec 2006 CN
1293942 Jan 2007 CN
1906150 Jan 2007 CN
1914154 Feb 2007 CN
1914155 Feb 2007 CN
1914156 Feb 2007 CN
1914157 Feb 2007 CN
1914158 Feb 2007 CN
1914159 Feb 2007 CN
1914160 Feb 2007 CN
1914161 Feb 2007 CN
1914162 Feb 2007 CN
1914165 Feb 2007 CN
1914166 Feb 2007 CN
1914167 Feb 2007 CN
1914216 Feb 2007 CN
1307237 Mar 2007 CN
1315790 May 2007 CN
1318432 May 2007 CN
1997624 Jul 2007 CN
1331843 Aug 2007 CN
101020641 Aug 2007 CN
101035799 Sep 2007 CN
101043946 Sep 2007 CN
100348322 Nov 2007 CN
100351227 Nov 2007 CN
100352824 Dec 2007 CN
100361966 Jan 2008 CN
1000364666 Jan 2008 CN
1807088 Mar 1960 DE
1807088 Jun 1969 DE
2055747 May 1971 DE
1593277 Aug 1973 DE
1593277 Mar 1974 DE
2700904 Oct 1983 DE
68909466 Mar 1994 DE
10136488 Feb 2003 DE
10150285 Apr 2003 DE
10350999 Jun 2005 DE
102004004696 Aug 2005 DE
0001899 Mar 1982 EP
123438 Jul 1987 EP
160296 Oct 1988 EP
268448 Sep 1991 EP
510689 Oct 1992 EP
248643 Mar 1993 EP
336314 Sep 1993 EP
464691 Dec 1993 EP
675871 Apr 1997 EP
634395 Sep 1997 EP
650959 Sep 1997 EP
784610 Feb 1999 EP
757672 Jun 1999 EP
792259 Aug 1999 EP
804412 Dec 1999 EP
1000019 May 2000 EP
1001928 May 2000 EP
1003716 May 2000 EP
1019190 Jul 2000 EP
755302 Oct 2000 EP
929513 Apr 2001 EP
881924 May 2001 EP
854858 Jun 2001 EP
815073 Jul 2001 EP
1144114 Sep 2001 EP
1091804 Feb 2002 EP
944585 Apr 2002 EP
1000019 Feb 2003 EP
911339 Apr 2003 EP
1216268 Nov 2003 EP
1350788 Nov 2003 EP
1003607 Dec 2003 EP
1003716 Feb 2004 EP
1313743 Mar 2004 EP
1414567 May 2004 EP
1427695 Jun 2004 EP
1438133 Jul 2004 EP
1019190 Dec 2004 EP
1140801 Feb 2005 EP
1395547 Mar 2005 EP
1001928 Apr 2005 EP
1521736 Apr 2005 EP
1521737 Apr 2005 EP
1521738 Apr 2005 EP
1603865 Dec 2005 EP
1324976 Feb 2006 EP
1214975 Mar 2006 EP
1324978 Mar 2006 EP
1648860 Apr 2006 EP
891323 Jun 2006 EP
1226147 Jun 2006 EP
1438317 Jun 2006 EP
1682561 Jul 2006 EP
1448668 Aug 2006 EP
1587621 Aug 2006 EP
1713759 Oct 2006 EP
1713761 Oct 2006 EP
1713762 Oct 2006 EP
1713766 Oct 2006 EP
1616109 Nov 2006 EP
1716102 Nov 2006 EP
1716103 Nov 2006 EP
1716104 Nov 2006 EP
1716105 Nov 2006 EP
1716106 Nov 2006 EP
1716107 Nov 2006 EP
1610893 Mar 2007 EP
1621531 Mar 2007 EP
1438132 Apr 2007 EP
1799697 Jun 2007 EP
1713764 Aug 2007 EP
1713816 Aug 2007 EP
1825914 Aug 2007 EP
1448620 Jun 2008 EP
1817108 Jun 2008 EP
1713760 Jul 2008 EP
1571172 Oct 2008 EP
1988998 Nov 2008 EP
1265832 May 2009 EP
1592659 Jul 2009 EP
1586598 Sep 2009 EP
2098106 Sep 2009 EP
1567478 Oct 2009 EP
1682559 Dec 2009 EP
1630166 Feb 2010 EP
1544656 Nov 1968 FR
2015115 Apr 1970 FR
1603513 May 1971 FR
2069411 Sep 1971 FR
2845379 Dec 2004 FR
2873696 Feb 2006 FR
2873696 Oct 2006 FR
0219474 Jul 1924 GB
1104140 Feb 1968 GB
1203702 Sep 1970 GB
1213175 Nov 1970 GB
1429169 Mar 1976 GB
1429621 Mar 1976 GB
1436932 May 1976 GB
1458322 Dec 1976 GB
1482909 Aug 1977 GB
2007521 May 1979 GB
1565443 Apr 1980 GB
1594694 Aug 1981 GB
2007521 Jun 1982 GB
1025950 Jul 2003 HK
1026383 Jul 2004 HK
1052364 May 2007 HK
48028423 Aug 1973 JP
48028423 Sep 1973 JP
49043924 Dec 1974 JP
50058324 Jun 1975 JP
50059326 Jun 1975 JP
51007649 Mar 1976 JP
52012698 Apr 1977 JP
1013127 Sep 1980 JP
55047031 Nov 1980 JP
57156454 Oct 1982 JP
57156455 Oct 1982 JP
57179144 Nov 1982 JP
1136333 Feb 1983 JP
58067658 May 1983 JP
58126892 Aug 1983 JP
1170710 Oct 1983 JP
58159452 Oct 1983 JP
60044295 Mar 1985 JP
60044295 Oct 1985 JP
62294691 Dec 1987 JP
63135363 Sep 1988 JP
1013127 Apr 1989 JP
1209830 Aug 1989 JP
1136333 Sep 1989 JP
1050220 Oct 1989 JP
1173751 Dec 1989 JP
1565159 Jun 1990 JP
3001298 Jan 1991 JP
1615749 Aug 1991 JP
3205587 Sep 1991 JP
1627124 Nov 1991 JP
1627146 Nov 1991 JP
3069915 Nov 1991 JP
3285878 Dec 1991 JP
1642102 Feb 1992 JP
4012248 Mar 1992 JP
4057050 May 1992 JP
4166155 Jun 1992 JP
4230254 Aug 1992 JP
4057050 Sep 1992 JP
4060532 Sep 1992 JP
4118676 Oct 1992 JP
4128141 Nov 1992 JP
1729140 Jan 1993 JP
1811422 Dec 1993 JP
7025841 Jun 1995 JP
7188144 Jul 1995 JP
2037346 Mar 1996 JP
8504814 May 1996 JP
8157795 Jun 1996 JP
2098106 Oct 1996 JP
02521777 Jan 1997 JP
02623448 Jun 1997 JP
9505586 Jun 1997 JP
9512013 Dec 1997 JP
10505101 May 1998 JP
10506911 Jul 1998 JP
10509954 Sep 1998 JP
02818503 Oct 1998 JP
10512879 Dec 1998 JP
11501660 Feb 1999 JP
11504262 Apr 1999 JP
02911608 Jun 1999 JP
11507297 Jun 1999 JP
03001298 Jan 2000 JP
03069915 Jul 2000 JP
2001500135 Jan 2001 JP
2001506250 May 2001 JP
2001512097 Aug 2001 JP
03205587 Sep 2001 JP
2001516640 Oct 2001 JP
03285878 May 2002 JP
2002517473 Jun 2002 JP
03320424 Sep 2002 JP
2002533321 Oct 2002 JP
03380543 Feb 2003 JP
2003510385 Mar 2003 JP
2003526688 Sep 2003 JP
03478399 Dec 2003 JP
2004501058 Jan 2004 JP
2004507550 Mar 2004 JP
03519410 Apr 2004 JP
03535182 Jun 2004 JP
03553952 Aug 2004 JP
2004534032 Nov 2004 JP
2004535929 Dec 2004 JP
03621133 Feb 2005 JP
2005503410 Feb 2005 JP
2005505610 Feb 2005 JP
2005505611 Feb 2005 JP
2005510588 Apr 2005 JP
2005510605 Apr 2005 JP
2004509942X Oct 2005 JP
2005533095 Nov 2005 JP
2005533096 Nov 2005 JP
2005538075 Dec 2005 JP
03739404 Jan 2006 JP
2004534032X Jan 2006 JP
2004535929X Jan 2006 JP
2005000451 Jan 2006 JP
2006511591 Apr 2006 JP
2006519797 Aug 2006 JP
2006528616 Dec 2006 JP
2007083057 Apr 2007 JP
2007509885 Apr 2007 JP
2007509886 Apr 2007 JP
2007509887 Apr 2007 JP
2007519516 Jul 2007 JP
2007519663 Jul 2007 JP
2007519664 Jul 2007 JP
2007519666 Jul 2007 JP
2007519667 Jul 2007 JP
2007519670 Jul 2007 JP
2007519671 Jul 2007 JP
2007519672 Jul 2007 JP
2007519673 Jul 2007 JP
2007519674 Jul 2007 JP
2007519675 Jul 2007 JP
2007519677 Jul 2007 JP
2007522122 Aug 2007 JP
04012248 Nov 2007 JP
2006515323X Feb 2008 JP
04057050 Mar 2008 JP
04060532 Mar 2008 JP
2006512918X Mar 2008 JP
2008515831 May 2008 JP
2008516907 May 2008 JP
04118676 Jul 2008 JP
04128141 Jul 2008 JP
04166155 Oct 2008 JP
04230254 Feb 2009 JP
198802621 Jul 1988 KR
198802296 Oct 1988 KR
198803396 Oct 1988 KR
199003458 May 1990 KR
199008166 Nov 1990 KR
199104132 Jun 1991 KR
199205087 Jul 1992 KR
2006132885 Dec 2006 KR
2004PA002764 Jun 2004 MX
197700262 Jul 1977 NL
188158 Apr 1992 NL
677650 Jul 1979 SU
387874 Apr 2000 TW
400249 Aug 2000 TW
453983 Sep 2001 TW
453985 Sep 2001 TW
455576 Sep 2001 TW
457244 Oct 2001 TW
458959 Oct 2001 TW
519496 Feb 2003 TW
527340 Apr 2003 TW
576837 Feb 2004 TW
580489 Mar 2004 TW
580490 Mar 2004 TW
584623 Apr 2004 TW
592821 Jun 2004 TW
226345 Jan 2005 TW
233438 Jun 2005 TW
245780 Dec 2005 TW
266650 Nov 2006 TW
WO7900193 Apr 1979 WO
WO9414752 Jul 1994 WO
WO9514659 Jun 1995 WO
WO9528228 Oct 1995 WO
WO9529153 Nov 1995 WO
WO9611182 Apr 1996 WO
WO9616022 May 1996 WO
WO9622968 Aug 1996 WO
WO9629303 Sep 1996 WO
WO9703040 Jan 1997 WO
WO9712857 Apr 1997 WO
WO9724183 Jul 1997 WO
WO9736855 Oct 1997 WO
WO9811051 Mar 1998 WO
WO9827054 Jun 1998 WO
WO9906146 Feb 1999 WO
WO9906356 Feb 1999 WO
WO9906359 Feb 1999 WO
WO9913983 Mar 1999 WO
WO9964155 Dec 1999 WO
WO0001485 Jan 2000 WO
WO0037431 Jun 2000 WO
WO0121684 Mar 2001 WO
WO0136429 May 2001 WO
WO0168247 Sep 2001 WO
WO0213964 Feb 2002 WO
WO0222208 Feb 2002 WO
WO0218392 Mar 2002 WO
WO0226698 Apr 2002 WO
WO0230854 Apr 2002 WO
WO02053527 Jul 2002 WO
WO02092551 Nov 2002 WO
WO03011457 Feb 2003 WO
WO03018540 Mar 2003 WO
WO03024919 Mar 2003 WO
WO03031392 Apr 2003 WO
WO03033141 Apr 2003 WO
WO03033509 Apr 2003 WO
WO03046019 Jun 2003 WO
WO03046049 Jun 2003 WO
WO03068729 Aug 2003 WO
WO03076394 Sep 2003 WO
WO2004007431 Jan 2004 WO
WO2004007432 Jan 2004 WO
WO2004007435 Jan 2004 WO
WO2004007508 Jan 2004 WO
WO0168247 Jun 2004 WO
WO2004060855 Jul 2004 WO
WO2004064994 Aug 2004 WO
WO2004065352 Aug 2004 WO
WO2004080924 Sep 2004 WO
WO2004080948 Sep 2004 WO
WO2004087314 Oct 2004 WO
WO2005019160 Feb 2005 WO
WO2004042547 May 2005 WO
WO2005042156 May 2005 WO
WO2005042157 May 2005 WO
WO2005042549 May 2005 WO
WO2005073167 Aug 2005 WO
WO2005073168 Aug 2005 WO
WO2005073169 Aug 2005 WO
WO2005073170 Aug 2005 WO
WO2005073171 Aug 2005 WO
WO2005073172 Aug 2005 WO
WO2005073173 Aug 2005 WO
WO2005073174 Aug 2005 WO
WO2005073175 Aug 2005 WO
WO2005073176 Aug 2005 WO
WO2005073178 Aug 2005 WO
WO2005073179 Aug 2005 WO
WO2005073241 Aug 2005 WO
WO2006040023 Apr 2006 WO
WO2006042675 Apr 2006 WO
WO2005073166 Mar 2007 WO
WO2007051374 May 2007 WO
WO2007096274 Aug 2007 WO
WO 2007115936 Oct 2007 WO
WO2007115936 Oct 2007 WO
WO2006008928 Jan 2008 WO
WO2008008926 Jan 2008 WO
WO2008008929 Jan 2008 WO
WO 2008008930 Jan 2008 WO
WO2008028843 Mar 2008 WO
WO2008062058 May 2008 WO
Non-Patent Literature Citations (1)
Entry
Tolman et al., Advances in Catalysis, 1985, 33, pp. 1-46.
Related Publications (1)
Number Date Country
20120035387 A1 Feb 2012 US
Divisions (1)
Number Date Country
Parent 11776904 Jul 2007 US
Child 13022208 US