The present invention is concerned with a hydroelectric turbine testing method that permits the turbine to be tested before being finally deployed onto the seabed, by simulating the tidal flow of water through the turbine.
The increased interest in environmental awareness, and a reluctance to rely on non-renewable sources of energy, has led to greater usage of renewable energy systems, e.g. solar power, wind power, thermal power, and tidal power. The latter involves the installation of turbine generators in an area of tidal flow, and converts the energy of the tides into electrical energy.
Such hydroelectric turbine generators are positioned in an area of tidal flow, such that the motion of the seawater through the generator acts on blades, resulting in rotation of a rotor within a stator. The motion of the magnets relative to the coils of the stator causes the magnetic field generated by the magnets to induce an EMF in each of the coils. These induced EMFs provide the electrical power output from the turbine generator.
Harnessing tidal energy presents significant challenges with respect to maintenance of the turbine in order to ensure continuing and efficient operation in the harsh submarine environment. The installation and decommissioning of submarine turbine generators is relatively expensive, and it is not economic to carry out regular maintenance on the various components in the system.
In addition, in order to be economically viable these turbines must be built at a large scale. As a result the turbines and associated bases/supports are large and heavy components, and require significant lifting and transport equipment in order to achieve deployment. The use of such heavy lifting equipment is normally a hazardous undertaking, and is rendered even more dangerous when this equipment is operated at sea.
The installation process is further complicated by a shortage in the market of suitable vessels and equipment to perform such work and the extreme danger of engaging divers in high tidal flow sites.
Therefore, it is an object of the invention to provide a method of testing a hydroelectric turbine before the turbine is installed and secured on the seabed, in order to ensure that the turbine is operating as expected. This will then reduce the likelihood of having to unexpectedly retrieve the hydroelectric turbine from the seabed in the event of a fault occurring, which as stated above is a costly, time consuming, and technically challenging operation.
According to the present invention there is provided a method of testing a hydroelectric turbine comprising a stator and a rotor housed for rotation within the stator, the method comprising the steps of:
Preferably, the method comprises the step of securing the turbine beneath the transport vessel prior to transporting the turbine to open water.
Preferably, the method comprises the step of lowering the turbine away from the vessel prior to the step of displacing the vessel and turbine through the water.
Preferably, the method comprises the step of recording and/or analysing operational data from the turbine as the vessel and turbine are displaced through the water.
Preferably, the method comprises the step of wirelessly transmitting the operational data from the turbine to a data recorder/analyser.
Preferably, the method comprises the step of varying the velocity at which the turbine is towed through the water.
Preferably, the method comprises, in the step of varying the velocity, varying the velocity to simulate the variation in tidal velocity likely to be experienced by the turbine during use.
Preferably, the method comprises, in the step of displacing the turbine through the water, displacing the turbine through the water in a first direction and subsequently displacing the turbine through the water in a second direction opposite to the first direction.
Preferably, the method comprises, in the step of displacing the transport vessel and turbine through the water in order to effect rotation of the rotor, displacing the vessel and turbine without an electrical load connected to the turbine.
Preferably, the method comprises, in the step of displacing the transport vessel and turbine through the water in order to effect rotation of the rotor, displacing the vessel and turbine with an electrical load connected to the turbine.
Preferably, the method comprises the step of analysing the operational data to determine the relationship between the velocity of the water flow through the turbine and one or more operating parameters of the turbine.
Preferably, the method comprises the step of analysing the operational data to determine the relationship between the velocity of the water flow through the turbine and the angular velocity of the rotor.
Preferably, the method comprises the step of analysing the operational data to determine the relationship between the velocity of the water flow through the turbine and the power generated by the turbine.
Preferably, the method comprises the step of analysing the operational data to determine the relationship between the velocity of the water flow through the turbine and the electrical characteristics of the turbine.
Preferably, the method comprises the step of securing the turbine and base to the vessel with a plurality of main lines and corresponding secondary lines.
Referring now to the accompanying drawings, there is described and shown a method for testing a hydroelectric turbine 10 which, in the embodiment illustrated, is mounted to a base 12 via which, in use, the turbine 10 is located and secured in position on the seabed in known fashion. The method of the invention, as will become apparent, allows the hydroelectric turbine 10 to undergo operational simulation and testing before the turbine 10 is finally deployed on the seabed, thus ensuring that the turbine 10 is operating as expected before undertaking the final seabed deployment process.
In the embodiment illustrated the base 12 comprises a triangular frame 14 having three legs 16, although it will be understood from the following description of the method of the invention that the base 12 is an exemplary embodiment and could be of any other shape and/or configuration.
In order to perform the testing of the turbine 10, the base 12 and turbine 10 are mounted beneath a vessel 18, which is preferably the same vessel that will be used in the final seabed deployment of the turbine 10 and base 12. Thus before the testing can commence it is first necessary to install the turbine 10 and base 12 is position on the vessel 18. This may be achieved in a number of ways, depending for example on the equipment available locally. It will also be appreciated that the turbine 10 need not be mounted directly beneath the vessel, and could be located in any other suitable location and/or orientation that will permit the turbine 10 to be positioned in the water for the purposes of testing as described hereinafter.
The vessel 18 is provided with load bearing means in the form of winches (not shown), each of which can be used to raise the base 12 into a position beneath the vessel 18 such that the turbine 10 projects through a portal 20 defined between a pair of pontoons 22 and cross members 24 of the vessel 18. During testing, the base 12 is preferably secured to the vessel 18, at each leg 16, by a pair of lines, a main line 26 and a tow test backup line 28. The main lines 26 are each wound onto the respective winch (not shown) and are thus used to lower the turbine 10 and base 12 away from the vessel 14 to the required depth for testing. The tow test backup lines 28 are preferably connected between a fixed point on the vessel 18 and a suitable location on the base 12, for example the respective leg 16, and are of a length such as to be at full extension when the turbine 10 and base 12 are at the correct testing depth. However, the primary load of the turbine 10 and base 12 is borne by the main lines 26, with a fraction of the load being transferred onto the tow test backup lines 28. In this way the tow test backup lines 28 will be under tension, and will be fully extended. Thus in the event of a failure of one or more of the main lines 26, the turbine 10 and base 12 will be supported by the fully extended tow test backup lines 28 and will therefore remain at the same depth. As the tow test backup lines 28 are already in tension there should be little to no “bounce back” on the tow test backup lines 28 in the event of failure of one or more of the main lines 26.
With the base 12 safely secured beneath the vessel 18, the vessel 18 and turbine 10 can be transported to open water to begin testing. To this end, the vessel 18 may contain its own source of propulsion, but in the embodiment illustrated is tethered to a tug T as illustrated in
Once the vessel 18 is in open water, the winches (not shown) are then used to lower the base 12 and turbine 10 away from the vessel 18, such that the turbine 10 is fully submerged, and preferably a suitable distance beneath the underside of the vessel 18 in order to reduce or eliminate interference from turbulence generated by the vessel 18 which might otherwise effect the results obtained. The turbine 10 is preferably lowered away from the vessel 18 while the vessel 18 is stationary, although it will of course be understood that the turbine 10 could be lowered while the vessel 18 is in motion. The tug T can then be used to tow the vessel 18, and therefore the submerged turbine 10, through the water at a desired speed in order to test the operation of the turbine 10. For example the vessel 18 may be towed through the water at 2 to 3 knots, while the operation of the turbine 10 is monitored. This speed can be varied to simulate the prevailing conditions at the site at which the turbine 10 and base 12 will ultimately be deployed.
In addition, during testing the turbine 10 may be displaced through the water in a first direction, while monitoring various operating parameters, and then displaced through the water in a second direction opposite to the first direction, in order to simulate the reversal of tidal flow that the turbine 10 will experience when finally deployed on the seabed. The change from the first direction to the second direction may be made in a manner which will closely approximate the change in the direction of tidal flow that the turbine 10 will experience.
During the testing, the turbine 10, and in particular power terminals (not shown) therefore may be left open circuit, or may be connected to an electrical load in order to allow the turbine 10 to generate electricity, thereby simulating the final seabed mounted operation of the turbine 10. The electrical load may be located on the turbine 10, the base 12, vessel 18, or at any other suitable location.
It is thus preferable that telemetry and other operational data, such as electrical characteristics/power output from the turbine 10, rotational or angular velocity of the rotor of the turbine 10, etc are analysed and/or recorded as the vessel 18 and turbine 10 are displaced through the water. The vessel 18 may therefore be provided with suitable equipment to permit this monitoring/recording of the operational data. A data connection is therefore provided between the turbine 10 and/or base 12 and said analysing/recording equipment. This data connection may be via a physical cable 30 or through a wireless connection such as subsea acoustic modem (not shown).
Thus by displacing the turbine 10 through the water it is possible to simulate the tidal flow of water through the turbine 10, and at various speeds such as to simulate the variation in tidal speeds that will be experienced by the turbine 10 under normal operating conditions. The testing can thus provide useful information such as the start up speed of the turbine 10, the power generation at various water velocities through the turbine 10, and the stopping speed/time of the turbine 10 when the vessel 18 is brought to a standstill. It is then possible to analyse this data in order to determine the relationship between the velocity of the water flow through the turbine 10 and one or more operating parameters of the turbine 10. The testing may also reveal other issue regarding the operation of the turbine 10, such as the hydrodynamic behaviour of the water flowing through and about the turbine 10, which information may be beneficial, whether during the final deployment and continuing operation of the turbine 10, or for other purposes.
It will thus be appreciated that the method of the present invention provides a means of testing large hydroelectric turbines 10 before committing to a full seabed installation.
Number | Date | Country | Kind |
---|---|---|---|
10196786 | Dec 2010 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2011/073788 | 12/22/2011 | WO | 00 | 10/3/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/085200 | 6/28/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
228467 | Maclay | Jun 1880 | A |
928536 | Pino | Jul 1909 | A |
1710103 | Nelson | Apr 1929 | A |
2054142 | Sharp | Sep 1936 | A |
2470797 | Thomas | May 1949 | A |
2501696 | Souczek | Mar 1950 | A |
2563279 | Rushing | Aug 1951 | A |
2658453 | Walters | Nov 1953 | A |
2782321 | Fischer | Feb 1957 | A |
2792505 | Baudry | May 1957 | A |
2874547 | Fiore | Feb 1959 | A |
3078680 | Wapsala | Feb 1963 | A |
3209156 | Struble, Jr. | Sep 1965 | A |
3292023 | Korber | Dec 1966 | A |
3342444 | Nelson | Sep 1967 | A |
3355998 | Roemisch | Dec 1967 | A |
3384787 | Schwartz | May 1968 | A |
3422275 | Braikevitch et al. | Jan 1969 | A |
3477236 | Burrus | Nov 1969 | A |
3487805 | Satterthwaite et al. | Jan 1970 | A |
3708251 | Pierro | Jan 1973 | A |
3986787 | Mouton, Jr. et al. | Oct 1976 | A |
3987638 | Burkhardt et al. | Oct 1976 | A |
4095918 | Mouton et al. | Jun 1978 | A |
4163904 | Skendrovic | Aug 1979 | A |
4219303 | Mouton, Jr. et al. | Aug 1980 | A |
4274009 | Parker, Sr. | Jun 1981 | A |
4367413 | Nair | Jan 1983 | A |
4421990 | Heuss et al. | Dec 1983 | A |
4427897 | Migliori | Jan 1984 | A |
4496845 | Ensign et al. | Jan 1985 | A |
4523878 | Richart et al. | Jun 1985 | A |
4541367 | Lindberg | Sep 1985 | A |
4613762 | Soderholm | Sep 1986 | A |
4720640 | Anderson | Jan 1988 | A |
4740711 | Sato et al. | Apr 1988 | A |
4744697 | Coppens | May 1988 | A |
4744698 | Dallimer et al. | May 1988 | A |
4810135 | Davenport et al. | Mar 1989 | A |
4867605 | Myers et al. | Sep 1989 | A |
4868408 | Hesh | Sep 1989 | A |
4868970 | Schultz et al. | Sep 1989 | A |
4990810 | Newhouse | Feb 1991 | A |
5495221 | Post | Feb 1996 | A |
5592816 | Williams | Jan 1997 | A |
5606791 | Fougere et al. | Mar 1997 | A |
5609441 | Khachaturian | Mar 1997 | A |
5656880 | Clark | Aug 1997 | A |
5662434 | Khachaturian | Sep 1997 | A |
5715590 | Fougere et al. | Feb 1998 | A |
5800093 | Khachaturian | Sep 1998 | A |
5946909 | Szpur | Sep 1999 | A |
5998905 | Fougere et al. | Dec 1999 | A |
6039506 | Khachaturian | Mar 2000 | A |
6109863 | Milliken | Aug 2000 | A |
6166472 | Pinkerton | Dec 2000 | A |
6168373 | Vauthier | Jan 2001 | B1 |
6232681 | Johnston et al. | May 2001 | B1 |
6242840 | Denk et al. | Jun 2001 | B1 |
6300689 | Smalser | Oct 2001 | B1 |
6367399 | Khachaturian | Apr 2002 | B1 |
6406251 | Vauthier | Jun 2002 | B1 |
6409466 | Lamont | Jun 2002 | B1 |
6445099 | Roseman | Sep 2002 | B1 |
6476709 | Wuidart et al. | Nov 2002 | B1 |
6612781 | Jackson | Sep 2003 | B1 |
6648589 | Williams | Nov 2003 | B2 |
RE38336 | Williams | Dec 2003 | E |
6729840 | Williams | May 2004 | B2 |
6756695 | Hibbs et al. | Jun 2004 | B2 |
6770987 | Sogard et al. | Aug 2004 | B1 |
6777851 | Maslov | Aug 2004 | B2 |
6806586 | Wobben | Oct 2004 | B2 |
6840713 | Schia et al. | Jan 2005 | B1 |
6843191 | Makotinsky | Jan 2005 | B1 |
6857821 | Steenhuis et al. | Feb 2005 | B2 |
6956300 | Gizara | Oct 2005 | B2 |
6957947 | Williams | Oct 2005 | B2 |
7190087 | Williams | Mar 2007 | B2 |
D543495 | Williams | May 2007 | S |
7223137 | Sosnowski | May 2007 | B1 |
7275891 | Owen et al. | Oct 2007 | B2 |
7352078 | Gehring | Apr 2008 | B2 |
7378750 | Williams | May 2008 | B2 |
7425772 | Novo Vidal | Sep 2008 | B2 |
7471009 | Davis et al. | Dec 2008 | B2 |
7527006 | Khachaturian | May 2009 | B2 |
7611307 | Owen et al. | Nov 2009 | B2 |
7736127 | Carr | Jun 2010 | B1 |
7845296 | Khachaturian | Dec 2010 | B1 |
7859128 | Gibberd | Dec 2010 | B2 |
7874788 | Stothers et al. | Jan 2011 | B2 |
7972108 | Fonkenell | Jul 2011 | B2 |
7976245 | Finnigan | Jul 2011 | B2 |
8022581 | Stiesdal | Sep 2011 | B2 |
8106527 | Carr | Jan 2012 | B1 |
8308422 | Williams | Nov 2012 | B2 |
8310077 | Pearce | Nov 2012 | B2 |
8350400 | Rosefsky | Jan 2013 | B2 |
8466595 | Spooner | Jun 2013 | B2 |
8784005 | Ives | Jul 2014 | B2 |
9054512 | Ives | Jun 2015 | B2 |
20020034437 | Williams | Mar 2002 | A1 |
20020062644 | Rosefsky | May 2002 | A1 |
20020088222 | Vauthier | Jul 2002 | A1 |
20030044272 | Addie et al. | Mar 2003 | A1 |
20030137149 | Northrup et al. | Jul 2003 | A1 |
20030155829 | McMullen et al. | Aug 2003 | A1 |
20030168864 | Heronemus et al. | Sep 2003 | A1 |
20030193198 | Wobben | Oct 2003 | A1 |
20030218338 | O'Sullivan et al. | Nov 2003 | A1 |
20040021386 | Swett | Feb 2004 | A1 |
20040021437 | Maslov et al. | Feb 2004 | A1 |
20040201299 | Naritomi et al. | Oct 2004 | A1 |
20040227500 | O'Meara | Nov 2004 | A1 |
20040232792 | Enfourth | Nov 2004 | A1 |
20040262926 | Hansen | Dec 2004 | A1 |
20050005592 | Fielder | Jan 2005 | A1 |
20050031442 | Williams | Feb 2005 | A1 |
20060261597 | Gehring | Nov 2006 | A1 |
20070018459 | Williams | Jan 2007 | A1 |
20070063448 | Kowalczyk | Mar 2007 | A1 |
20070164626 | Taniguchi et al. | Jul 2007 | A1 |
20070231072 | Jennings et al. | Oct 2007 | A1 |
20070241566 | Kuehnle | Oct 2007 | A1 |
20070262668 | Brisson et al. | Nov 2007 | A1 |
20070291426 | Kasunich et al. | Dec 2007 | A1 |
20080012345 | Parker | Jan 2008 | A1 |
20080012538 | Stewart et al. | Jan 2008 | A1 |
20090278357 | Williams | Nov 2009 | A1 |
20100025998 | Williams | Feb 2010 | A1 |
20100026002 | Spooner et al. | Feb 2010 | A1 |
20100068037 | Ives et al. | Mar 2010 | A1 |
20100133838 | Borgen | Jun 2010 | A1 |
20100172698 | Ives et al. | Jul 2010 | A1 |
20100201129 | Holstein et al. | Aug 2010 | A1 |
20100232885 | Ives | Sep 2010 | A1 |
20100295388 | Ives et al. | Nov 2010 | A1 |
20110018274 | Ives et al. | Jan 2011 | A1 |
20110088253 | Ives et al. | Apr 2011 | A1 |
20110110770 | Spooner et al. | May 2011 | A1 |
20110291419 | Dunne et al. | Dec 2011 | A1 |
20110293399 | Dunne et al. | Dec 2011 | A1 |
20110298216 | Ives et al. | Dec 2011 | A1 |
20110304148 | Dunne et al. | Dec 2011 | A1 |
20120027522 | Ives et al. | Feb 2012 | A1 |
20120175877 | Ives et al. | Jul 2012 | A1 |
20120187680 | Spooner et al. | Jul 2012 | A1 |
20120211988 | Harding | Aug 2012 | A1 |
20120235412 | Dunne et al. | Sep 2012 | A1 |
20120280506 | Dunne et al. | Nov 2012 | A1 |
20130343869 | Ives et al. | Dec 2013 | A1 |
Number | Date | Country |
---|---|---|
2388513 | Aug 2000 | CA |
2352673 | Jan 2003 | CA |
260699 | Apr 1947 | CH |
146935 | Aug 1983 | CH |
3116740 | Nov 1982 | DE |
3638129 | May 1988 | DE |
3718954 | Dec 1988 | DE |
19948198 | Apr 2001 | DE |
10101405 | Jul 2002 | DE |
20308901 | Sep 2003 | DE |
10244038 | Apr 2004 | DE |
102007016380 | Oct 2008 | DE |
1318299 | Dec 2003 | EP |
1564455 | Jan 2005 | EP |
1691377 | Feb 2006 | EP |
1876350 | Jan 2008 | EP |
1878912 | Jan 2008 | EP |
1878913 | Jan 2008 | EP |
1879280 | Jan 2008 | EP |
1878911 | Sep 2008 | EP |
1992741 | Nov 2008 | EP |
1885047 | Dec 2008 | EP |
2088311 | Aug 2009 | EP |
2110910 | Oct 2009 | EP |
2112370 | Oct 2009 | EP |
1980745 | Jun 2010 | EP |
2199199 | Jun 2010 | EP |
2199598 | Jun 2010 | EP |
2199599 | Jun 2010 | EP |
2199601 | Jun 2010 | EP |
2199602 | Jun 2010 | EP |
2199603 | Jun 2010 | EP |
2200170 | Jun 2010 | EP |
2071709 | Sep 2010 | EP |
2209175 | Sep 2010 | EP |
2209175 | Sep 2010 | EP |
2241749 | Oct 2010 | EP |
2302204 | Mar 2011 | EP |
2302755 | Mar 2011 | EP |
2302766 | Mar 2011 | EP |
2823177 | Oct 2002 | FR |
2859495 | Mar 2005 | FR |
204505 | Oct 1923 | GB |
924347 | Apr 1963 | GB |
980575 | Jan 1965 | GB |
1131352 | Oct 1968 | GB |
1413835 | Nov 1975 | GB |
2316461 | Feb 1998 | GB |
2344843 | Jun 2000 | GB |
2408294 | May 2005 | GB |
2431628 | May 2007 | GB |
2434413 | Jul 2007 | GB |
2447514 | Sep 2008 | GB |
59203881 | Nov 1984 | JP |
63055370 | Mar 1988 | JP |
01043908 | Feb 1989 | JP |
2000341818 | Dec 2000 | JP |
2005069025 | Mar 2005 | JP |
2005248822 | Sep 2005 | JP |
2006094645 | Apr 2006 | JP |
2007255614 | Oct 2007 | JP |
2007291882 | Nov 2007 | JP |
WO9844372 | Oct 1998 | WO |
WO9852819 | Nov 1998 | WO |
WO9966623 | Dec 1999 | WO |
WO0077393 | Dec 2000 | WO |
WO 0134973 | May 2001 | WO |
WO0134977 | May 2001 | WO |
WO02099950 | Dec 2002 | WO |
WO03014561 | Feb 2003 | WO |
WO03025385 | Mar 2003 | WO |
WO03046375 | Jun 2003 | WO |
WO2004015264 | Feb 2004 | WO |
WO2004027257 | Apr 2004 | WO |
WO2004107549 | Dec 2004 | WO |
WO2004113717 | Dec 2004 | WO |
WO2005045243 | May 2005 | WO |
WO2005061887 | Jul 2005 | WO |
WO2005078233 | Aug 2005 | WO |
WO2005080789 | Sep 2005 | WO |
WO2005116443 | Dec 2005 | WO |
WO2006029496 | Mar 2006 | WO |
WO2007043894 | Apr 2007 | WO |
WO2007055585 | May 2007 | WO |
WO2007083105 | Jul 2007 | WO |
WO2007086814 | Aug 2007 | WO |
WO2007125349 | Nov 2007 | WO |
WO2008004877 | Jan 2008 | WO |
WO2008006614 | Jan 2008 | WO |
WO2008050149 | May 2008 | WO |
WO2008081187 | Jul 2008 | WO |
WO2008127114 | Oct 2008 | WO |
WO2009016409 | Feb 2009 | WO |
WO2010118766 | Oct 2010 | WO |
WO2011039249 | Apr 2011 | WO |
WO2011039255 | Apr 2011 | WO |
WO2011039267 | Jul 2011 | WO |
2012062739 | May 2012 | WO |
Entry |
---|
International Search Report completed Mar. 15, 2012, from corresponding International Application No. PCT/EP2011/073788. |
Number | Date | Country | |
---|---|---|---|
20140102189 A1 | Apr 2014 | US |