Hydroelectric turbine with passive braking

Information

  • Patent Grant
  • 8690526
  • Patent Number
    8,690,526
  • Date Filed
    Monday, December 14, 2009
    15 years ago
  • Date Issued
    Tuesday, April 8, 2014
    10 years ago
Abstract
This present invention relates to a hydroelectric turbine having a stator and a rotor within the stator on at least one set of bearings, the turbine having a brake which becomes operational following a predetermined level of bearing wear in order to avoid damage to the turbine.
Description
FIELD OF THE INVENTION

This invention relates to a hydroelectric turbine, in particular when employed at tidal sites, the turbine including a brake, preferably a passive brake which becomes operational following a predetermined level of bearing wear, in order to avoid damage to the turbine.


BACKGROUND OF THE INVENTION

The environmental impact of the industrialisation of the planet, in particular the use of fossil fuels to supply our energy needs, is at the stage when it can no longer be ignored, and as a result significant resources are now being directed into alternative forms of energy generation. The most promising of these new forms of alternative energies are solar power, wind power, thermal power and tidal power. Tidal power appears to provide the most consistent and predictable form of power, although harnessing tidal power is arguably the most difficult of the above power sources, given the harsh submarine conditions in which hydroelectric turbines must be located in order to generate electricity.


Hydroelectric turbines are generally located on the seabed in areas of high tidal flow which give rise to extremely difficult working conditions. Access to the turbines once located on the seabed is difficult, time consuming and dangerous, and is preferably kept to a minimum. In addition, it is extremely difficult to monitor the condition of the various working parts of the turbines, for example monitoring for excessive bearing wear which may result in damage to the turbine, requiring costly repairs and down time in the electrical generating capacity of that turbine.


It is therefore an object of the present invention to provide a hydroelectric turbine and a method of operating same, which will avoid damage to the turbine in the event of excessive bearing wear.


SUMMARY OF THE INVENTION

According to a first aspect of the present invention there is provided a hydroelectric turbine comprising a stator and a rotor; at least one set of bearings supporting the rotor within the stator; and a brake which is operable to apply a braking force to the rotor upon a predetermined level of wear of the at least one set of bearings, wherein the brake comprises one or more sections of brake pad having a braking surface positioned radially inboard of a bearing surface of the at least one set of bearings with respect to the direction of wear of the bearing.


Preferably, the brake is a passive brake.


Preferably, the or each section of brake pad is formed integrally with the at least one set of bearings.


Preferably, the at least one set of bearings comprises journals and bearing blocks.


Preferably, the journals are mounted to the rotor and the bearing blocks are mounted to the stator.


Preferably, each section of brake pad is located within one of the bearing blocks.


Preferably, a braking surface of the one or more sections of brake pad is recessed from a bearing surface of the bearing block.


Preferably, each section of brake pad is flanked on both sides by a section of bearing block.


Preferably, the brake is operable to apply the braking force to the rotor regardless of the circumferential position on the turbine at which the predetermined level of wear of the at least one set of bearings occurs.


Preferably, sections of brake pad are disposed around substantially the entire circumference of the turbine.


Preferably, the at least one set of bearings comprising at least one radial bearing and at least one thrust bearing, the brake being operable to apply the braking force to the rotor upon a predetermined level of wear of either the radial bearing or the thrust bearing.


According to a second aspect of the present invention there is provided a method of preventing damage to a hydroelectric turbine, the turbine comprising a stator, a rotor, at least one set of bearings therebetween, and a brake comprising one or more sections of brake pad having a braking surface positioned radially inboard of a bearing surface of the at least one set of bearings with respect to the direction of wear of the bearing, the method comprising the step of: automatically applying a braking force to the rotor in response to a predetermined level of wear of the at least one set of bearings through contact of the braking surface with the stator or rotor following wearing of the bearing surface to the level of the braking surface.


Preferably, the method comprises applying sufficient braking force to the rotor to substantially arrest rotation of the rotor.


Preferably, the method comprises applying the braking force to the rotor regardless of the position on the turbine at which the predetermined level of bearing wear occurs.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates schematic sectioned view of hydroelectric turbine according to a preferred embodiment of the present invention; and



FIG. 2 illustrates a perspective view of a bearing block forming part of the hydroelectric turbine illustrated in FIG. 1.





DETAILED DESCRIPTION OF THE DRAWINGS

Referring now to the accompanying drawings there is illustrated a hydroelectric turbine, generally indicated as (10) which is intended to be located on the seabed or the like in order to generate electricity in response to the tidal or other flow of water through the turbine (10). The turbine (10) comprises a ring shaped stator which in use is fixed to a suitable base (not shown) or the like, and within which is mounted for rotation a rotor (14). The stator (12) is provided with an annular array of coils (not shown) while the rotor is provided with a corresponding annular array of magnets mounted around the exterior circumference thereof. Rotation of the rotor (14) within the stator (12) results in relative movement between the coils and magnets, generating an EMF in order to provide the electrical power output from the turbine (10). In the preferred embodiment illustrated the turbine (10) comprises an open centre turbine, although it will be appreciated from the following description that the invention could be applied to other forms of hydroelectric turbine.


The turbine (10) further comprises bearings in the form of a pair of radial bearings (16) and a pair of thrust bearings (18). The radial bearings (16) bear the weight of the rotor (14) and prevent unwanted radial movement of the rotor (14) within the stator (12). The thrust bearings (18) bear the axial load applied to the rotor (14) by the tidal flow of water against the rotor (14). Thus this load will reverse as the tide reverses. In the preferred embodiment illustrated both the radial and thrust bearings (16, 18) each comprise an annular journal (20) circumscribing the rotor (14) and secured thereto by any suitable means. The journal (20) may be formed from any suitable material, for example stainless steel. The bearings (16, 18) further comprise an annular array of bearing blocks (22) which run on the corresponding journals (20). The bearing blocks are mounted to the stator (12) by any suitable means. The bearing blocks (22) may be formed from any suitable material, for example a material having a sufficiently low co-efficient of friction but which is hard enough to provide an acceptable rate of wear. It will be appreciated that the position and number of the bearings (16, 18) may be altered as required.


Referring in particular to FIG. 2 there is illustrated one of the bearing blocks (22) in isolation from the turbine (10). The bearing block (22) is substantially U-shaped having a recessed central portion (24) flanked by a pair of shoulder sections (26) which stand proud of the central section (24). Mounted within the central section (24) is a brake pad (28). A braking surface (30) of the brake pad (28) is positioned radially inwardly of a bearing surface (32) of the bearing block (22), with respect to the direction in which the bearing block (22) will wear during use. As described in detail above, the radial and thrust bearings (16, 18) each comprise a circular array of the bearing blocks (22) in end to end alignment with one another. It should however be appreciated that not every bearing block (22) need be provided with the brake pad (28) therein. For example every second bearing block (22) in the radial and thrust bearing (16, 18) may be provided with the brake pad (28) therein. For bearing blocks (not shown) without the brake pad (28) it is preferred that the central section (24) is not provided and so those bearing blocks will have a continuous bearing surface. Further alternatively brake pads (28) may only be provided in a number of the bearing blocks (22) around the circumference of the turbine (10).


During use the rotor (14) spins within the stator (12), and the journals (20) of the radial and thrust bearing (16, 18) run on the corresponding bearing blocks (22), slowly causing wear to the bearing blocks (22) as they are formed from a softer material than the journals (20). As the bearing blocks (22) wear the bearing surface (32) will slowly recede towards the braking surface (30) of the brake pad (28). Thus it will be appreciated that eventually the bearing blocks (22) will wear so much that the brake pad (28) will be exposed from within the central section (24), thus contacting the respective journal (20). A wear line (L) indicates the level of wear of the bearing block (22) which will result in exposure of the respective brake pad (28). As the brake pad (28) comprises a material having a significantly higher co-efficient of friction then the bearing blocks (22), contact between the brake pad (28) and the respective journal (20) will result in slowing and eventually a full stop of the rotor (14). This will ensure that the radial and thrust bearing (16, 18) do not wear to a level which could result in damage to the turbine (10), for example if the rotor (14) were to foul the stator (12), which could result in damage to the coil/magnets of the turbine (10).


It will be appreciated that brake pads (28) need not be provided in both the radial and thrust bearings (16, 18), although it is preferred. Similarly it will be understood that brake pads (28) do not need to be provided in both radial bearings (16), or both thrust bearings (18), although again it is preferred. Similarly it is to be understood that the positions of the journals (20) and bearing blocks (22) could be reversed, such that the bearing blocks (22) are positioned on the rotor (14) and the journals (20) are positioned on the stator (12). Alternatively the journals (20), particularly if formed from a material with a higher wear rate than the bearing blocks (22), could be provided with the brake pads (28) recessed therein. It is also possible that both the journals (20) and the bearing blocks (22) would be provided with brake pads (28) therein.


As mentioned above it is not necessary that brake pads (28) are positioned around the entire circumference of the radial and thrust bearings (16, 18). However it is preferred that brake pads (28) are provided around substantially the entire circumference of said bearings (16, 18). As bearing wear occurs, in particular at one point around the circumference of the stator (12), it will then be possible for the rotor (14) to move closer to the stator (12) at that point of increased wear. This will mean that the magnets and coils of the turbine (10) will be brought into closer proximity with one another, and could eventually contact one another resulting in damage thereto. By providing the brake pads (28) around substantially the entire circumference of the rotor (14) and stator (12), the possibility is avoided of the rotor (14) and stator (12) getting too close to one another at any position around the circumference of the turbine (10). The positioning of the brake pads (28), in particular the position of the braking surface (30), is chosen such that rotation of the rotor (14) will be arrested prior to the point being reached at which the proximity of the rotor (14) to the stator (12) could result in damage to the turbine (10).


The provision of the brake pads (28) thus avoids the possibility of damage to the turbine (10) during operation, and will as a result reduce the maintenance requirements on the turbine (10).

Claims
  • 1. A hydroelectric turbine comprising a stator and a rotor; at least one set of bearings supporting the rotor within the stator; and a brake which is operable to apply a braking force to the rotor upon a predetermined level of wear of the at least one set of bearings, wherein the brake comprises one or more sections of brake pad having a braking surface positioned radially inboard of a bearing surface of the at least one set of bearings with respect to the direction of wear of the bearing.
  • 2. A hydroelectric turbine according to claim 1 in which the brake is a passive brake.
  • 3. A hydroelectric turbine according to claim 1 in which the or each section of brake pad is formed integrally with the at least one set of bearings.
  • 4. A hydroelectric turbine according to claim 1 in which the at least one set of bearings comprises journals and bearing blocks.
  • 5. A hydroelectric turbine according to claim 4 in which the journals are mounted to the rotor and the bearing blocks are mounted to the stator.
  • 6. A hydroelectric turbine according to claim 3 in which each section of brake pad is located within one of the bearing blocks.
  • 7. A hydroelectric turbine according to claim 4 in which a braking surface of the one or more sections of brake pad is recessed from a bearing surface of the bearing block.
  • 8. A hydroelectric turbine according to claim 6 in which each section of brake pad is flanked on both sides by a section of bearing block.
  • 9. A hydroelectric turbine according to claim 1 in which the brake is operable to apply the braking force to the rotor regardless of the circumferential position on the turbine at which the predetermined level of wear of the at least one set of bearings occurs.
  • 10. A hydroelectric turbine according to claim 1 in which sections of brake pad are disposed around substantially the entire circumference of the turbine.
  • 11. A hydroelectric turbine according to claim 1 in which the at least one set of bearings comprising at least one radial bearing and at least one thrust bearing, the brake being operable to apply the braking force to the rotor upon a predetermined level of wear of either the radial bearing or the thrust bearing.
  • 12. A method of preventing damage to a hydroelectric turbine, the turbine comprising a stator and a rotor and at least one set of bearings therebetween, and a brake comprising one or more sections of brake pad having a braking surface positioned radially inboard of a bearing surface of the at least one set of bearings with respect to the direction of wear of the bearing, the method comprising the step of: automatically applying a braking force to the rotor in response to a predetermined level of wear of the at least one set of bearings through contact of the braking surface with the stator or rotor following wearing of the bearing surface to the level of the braking surface.
  • 13. A method according to claim 12 comprising applying sufficient braking force to the rotor to substantially arrest rotation of the rotor.
  • 14. A method according to claim 12 comprising applying the braking force to the rotor regardless of the position on the turbine at which the predetermined level of bearing wear occurs.
Priority Claims (1)
Number Date Country Kind
08022013 Dec 2008 EP regional
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP2009/008942 12/14/2009 WO 00 8/18/2011
Publishing Document Publishing Date Country Kind
WO2010/069538 6/24/2010 WO A
US Referenced Citations (125)
Number Name Date Kind
228467 Maclay Jun 1880 A
928536 Pino Jul 1909 A
1710103 Nelson Apr 1929 A
2054142 Sharp Sep 1936 A
2470797 Thomas May 1949 A
2501696 Souczek Mar 1950 A
2563279 Rushing Aug 1951 A
2658453 Walters Nov 1953 A
2782321 Fischer Feb 1957 A
2792505 Baudry May 1957 A
2874547 Fiore Feb 1959 A
3078680 Wapsala Feb 1963 A
3209156 Struble, Jr. Sep 1965 A
3292023 Korber Dec 1966 A
3342444 Nelson Sep 1967 A
3355998 Roemisch Dec 1967 A
3384787 Schwartz May 1968 A
3422275 Braikevitch et al. Jan 1969 A
3477236 Burrus Nov 1969 A
3487805 Satterthwaite et al. Jan 1970 A
3708251 Pierro Jan 1973 A
3986787 Mouton, Jr. et al. Oct 1976 A
3987638 Burkhardt et al. Oct 1976 A
4095918 Mouton et al. Jun 1978 A
4163904 Skendrovic Aug 1979 A
4219303 Mouton, Jr. et al. Aug 1980 A
4274009 Parker, Sr. Jun 1981 A
4306157 Wracsaricht Dec 1981 A
4367413 Nair Jan 1983 A
4421990 Heuss et al. Dec 1983 A
4427897 Migliori Jan 1984 A
4523878 Richart et al. Jun 1985 A
4541367 Lindberg Sep 1985 A
4613762 Soderholm Sep 1986 A
4720640 Anderson et al. Jan 1988 A
4740711 Sato et al. Apr 1988 A
4744697 Coppens May 1988 A
4744698 Dallimer et al. May 1988 A
4810135 Davenport et al. Mar 1989 A
4867605 Myers et al. Sep 1989 A
4868408 Hesh Sep 1989 A
4868970 Schultz et al. Sep 1989 A
4990810 Newhouse Feb 1991 A
5495221 Post Feb 1996 A
5592816 Williams Jan 1997 A
5606791 Fougere et al. Mar 1997 A
5609441 Khachaturian Mar 1997 A
5656880 Clark Aug 1997 A
5662434 Khachaturian Sep 1997 A
5715590 Fougere et al. Feb 1998 A
5800093 Khachaturian Sep 1998 A
5998905 Fougere et al. Dec 1999 A
6039506 Khachaturian Mar 2000 A
6109863 Milliken Aug 2000 A
6135244 Le Bris Oct 2000 A
6166472 Pinkerton Dec 2000 A
6168373 Vauthier Jan 2001 B1
6232681 Johnston et al. May 2001 B1
6242840 Denk et al. Jun 2001 B1
6300689 Smalser Oct 2001 B1
6367399 Khachaturian Apr 2002 B1
6406251 Vauthier Jun 2002 B1
6409466 Lamont Jun 2002 B1
6445099 Roseman Sep 2002 B1
6476709 Wuidart et al. Nov 2002 B1
6612781 Jackson Sep 2003 B1
6648589 Williams Nov 2003 B2
RE38336 Williams Dec 2003 E
6729840 Williams May 2004 B2
6770987 Sogard et al. Aug 2004 B1
6777851 Maslov Aug 2004 B2
6806586 Wobben Oct 2004 B2
6840713 Schia et al. Jan 2005 B1
6843191 Makotinsky Jan 2005 B1
6857821 Steenhuis et al. Feb 2005 B2
6957947 Williams Oct 2005 B2
7190087 Williams Mar 2007 B2
D543495 Williams May 2007 S
7275891 Owen et al. Oct 2007 B2
7352078 Gehring Apr 2008 B2
7378750 Williams May 2008 B2
7425772 Novo Vidal Sep 2008 B2
7471009 Davis et al. Dec 2008 B2
7527006 Khachaturian May 2009 B2
7611307 Owen et al. Nov 2009 B2
7845296 Khachaturian Dec 2010 B1
7874788 Stothers et al. Jan 2011 B2
20020034437 Williams Mar 2002 A1
20030044272 Addie et al. Mar 2003 A1
20030137149 Northrup et al. Jul 2003 A1
20030155829 McMullen et al. Aug 2003 A1
20030168864 Heronemus et al. Sep 2003 A1
20030193198 Wobben Oct 2003 A1
20030218338 O'Sullivan et al. Nov 2003 A1
20040021386 Swett Feb 2004 A1
20040021437 Maslov et al. Feb 2004 A1
20040201299 Naritomi et al. Oct 2004 A1
20040227500 O'Meara Nov 2004 A1
20040232792 Enfourth Nov 2004 A1
20040262926 Hansen Dec 2004 A1
20050005592 Fielder Jan 2005 A1
20050031442 Williams Feb 2005 A1
20060261597 Gehring Nov 2006 A1
20070018459 Williams Jan 2007 A1
20070063448 Kowalczyk Mar 2007 A1
20070164626 Taniguchi et al. Jul 2007 A1
20070231072 Jennings et al. Oct 2007 A1
20070241566 Kuehnle Oct 2007 A1
20070262668 Brisson et al. Nov 2007 A1
20070291426 Kasunich et al. Dec 2007 A1
20080012538 Stewart et al. Jan 2008 A1
20090278357 Williams Nov 2009 A1
20100025998 Williams Feb 2010 A1
20100026002 Spooner Feb 2010 A1
20100068037 Ives Mar 2010 A1
20100133838 Borgen Jun 2010 A1
20100172698 Ives et al. Jul 2010 A1
20100201129 Holstein et al. Aug 2010 A1
20100232885 Ives et al. Sep 2010 A1
20100295388 Ives et al. Nov 2010 A1
20110018274 Ives et al. Jan 2011 A1
20110088253 Ives et al. Apr 2011 A1
20110110770 Spooner et al. May 2011 A1
20120187680 Spooner et al. Jul 2012 A1
20120235412 Dunne et al. Sep 2012 A1
Foreign Referenced Citations (95)
Number Date Country
2388513 Aug 2000 CA
2352673 Jan 2003 CA
260699 Apr 1947 CH
146935 Aug 1983 CH
3116740 Nov 1982 DE
3638129 May 1988 DE
3718954 Dec 1988 DE
19948198 Apr 2001 DE
10101405 Jul 2002 DE
20308901 Sep 2003 DE
10244038 Apr 2004 DE
102007016380 Oct 2008 DE
1318299 Dec 2003 EP
1564455 Jan 2005 EP
1691377 Feb 2006 EP
1876350 Jan 2008 EP
1878912 Jan 2008 EP
1878913 Jan 2008 EP
1879280 Jan 2008 EP
1878911 Sep 2008 EP
1992741 Nov 2008 EP
1885047 Dec 2008 EP
1980670 Jul 2009 EP
2088311 Aug 2009 EP
2110910 Oct 2009 EP
2112370 Oct 2009 EP
1980746 Jun 2010 EP
2199199 Jun 2010 EP
2199598 Jun 2010 EP
2199599 Jun 2010 EP
2199601 Jun 2010 EP
2199602 Jun 2010 EP
2199603 Jun 2010 EP
2200170 Jun 2010 EP
2071709 Sep 2010 EP
2209175 Sep 2010 EP
2241749 Oct 2010 EP
2302204 Mar 2011 EP
2302755 Mar 2011 EP
2302766 Mar 2011 EP
2823177 Oct 2002 FR
2859495 Mar 2005 FR
204505 Oct 1923 GB
924347 Apr 1963 GB
980575 Jan 1965 GB
1131352 Oct 1968 GB
1413835 Nov 1975 GB
2316461 Feb 1998 GB
2344843 Jun 2000 GB
2408294 May 2005 GB
2431628 May 2007 GB
2434413 Jul 2007 GB
2447514 Sep 2008 GB
59203881 Nov 1984 JP
63055370 Mar 1988 JP
01043908 Feb 1989 JP
2000341818 Dec 2000 JP
2005069025 Mar 2005 JP
2005248822 Sep 2005 JP
2006094645 Apr 2006 JP
2007255614 Oct 2007 JP
2007291882 Nov 2007 JP
9844372 Oct 1998 WO
9852819 Nov 1998 WO
9966623 Dec 1999 WO
0077393 Dec 2000 WO
0134973 May 2001 WO
0134977 May 2001 WO
02099950 Dec 2002 WO
03014561 Feb 2003 WO
03025385 Mar 2003 WO
03046375 Jun 2003 WO
2004015264 Feb 2004 WO
2004027257 Apr 2004 WO
2004107549 Dec 2004 WO
2004113717 Dec 2004 WO
2005045243 May 2005 WO
2005061887 Jul 2005 WO
2005078233 Aug 2005 WO
2005080789 Sep 2005 WO
2005116443 Dec 2005 WO
2006029496 Mar 2006 WO
2007043894 Apr 2007 WO
2007055585 May 2007 WO
2007083105 Jul 2007 WO
2007086814 Aug 2007 WO
2007125349 Nov 2007 WO
2008004877 Jan 2008 WO
2008006614 Jan 2008 WO
2008050149 May 2008 WO
2008081187 Jul 2008 WO
WO2010118766 Oct 2010 WO
WO2011039249 Apr 2011 WO
WO2011039255 Apr 2011 WO
WO2011039267 Apr 2011 WO
Non-Patent Literature Citations (7)
Entry
U.S. Appl. No. 13/133,235, filed Jun. 7, 2011, including the specification, claims and drawings.
U.S. Appl. No. 13/133,805, filed Jun. 9, 2011, including the specification, claims and drawings.
U.S. Appl. No. 13/133,504, filed Jun. 8, 2011, including the specification, claims and drawings.
U.S. Appl. No. 13/133,832, filed Jun. 9, 2011, including the specification, claims and drawings.
U.S. Appl. No. 13/264,667, filed Oct. 14, 2011, including specification, claims and drawings.
International Search Report completed Apr. 19, 2010, mailed Apr. 27, 2010, from corresponding Application No. PCT/EP2009/008942.
PCT Written Opinion of International Searching Authority, Apr. 19, 2010, from corresponding Application No. PCT/EP2009/008942.
Related Publications (1)
Number Date Country
20110293399 A1 Dec 2011 US