This application claims the benefit of priority to Japanese Patent Application Number 2019-225247 filed on Dec. 13, 2019. The entire contents of the above-identified application are hereby incorporated by reference.
The present disclosure relates to a hydrofoil craft.
A hydrofoil craft is widely known as a type of transport machine that sails on water. For example, the hydrofoil craft is mainly provided with a hull and a hydrofoil mechanism attached to a bottom thereof, as described in JP 116-1180 U. The hydrofoil mechanism includes a frame attached to the bottom, a yoke that is turnably supported by the frame, a strut extending downward from the yoke, a hydrofoil attached to a tip end of the strut, and a hydraulic cylinder that rocks the strut relative to the hull. At a low speed, the water surface is located near a water line of the hull (this state is referred to as hullborne state). At a high speed, on the other hand, the hydrofoil craft can sail in a state in which the hull is floated by a lift force generated by the hydrofoil (this state is referred to as foilborne state).
During the foilborne sailing described above, the hydrofoil may collide with an obstacle suspended on the water surface or in the water. In this case, a portion below the strut described above is pulled toward the stern side. This pulling force disconnects or detaches a rod of the hydraulic cylinder. As a result, the strut is brought into a state of being supported only by the frame.
In a state in which the strut is supported only by the frame as described above, the strut can turn about a support part and collide with the hull. As a result, there is a risk of interference with a stable operation of the hydrofoil craft.
The present disclosure has been made to solve the problem described above, and an object thereof is to provide a hydrofoil craft capable of reducing the influence on a hull thereof even when colliding with an obstacle.
In order to solve the above problem, a hydrofoil craft according to the present disclosure includes: a hull including a bottom that spreads from a bow to a stern; and a hydrofoil mechanism provided on the bow side of the hull. The hull includes an accommodating recess formed therein, the accommodating recess being recessed toward the stern side between the bow and the bottom to accommodate the hydrofoil mechanism. A retreat surface is formed between the bottom and a recess main surface facing the bow side in the accommodating recess, the retreat surface extending toward the stern side in a downward direction and being connected to the bottom.
The present disclosure can provide a hydrofoil craft capable of reducing the influence on a hull thereof even when colliding with an obstacle.
The disclosure will be described with reference to the accompanying drawings, wherein like numbers reference like elements.
Hereinafter, a hydrofoil craft 100 according to a first embodiment of the present disclosure will be described with reference to
The hull 1 is formed by a bow 11 which is a surface facing a front side in a sailing direction of the hydrofoil craft 100; a stern (not illustrated) which is a surface facing a rear side in the sailing direction of the hydrofoil craft 100; a bottom 13 spreading from the bow 11 toward the stern; and a pair of broadsides (not illustrated) extending upward from the bottom 13 and connecting the bow 11 and the stern. Note that, in the following description, the front side in the sailing direction is referred to simply as the “front side”, and the side opposite thereto is referred to simply as the “rear side,” in some cases.
The bow 11 spreads downward from the front side toward the rear side in a cross-sectional view including the vertical direction. The bottom 13 spreads from the front side toward the rear side in a cross-sectional view including the vertical direction. An accommodating recess 2 for accommodating the hydrofoil mechanism 3 which will be described below is formed in the bow 11. The accommodating recess 2 is defined by a recess top surface 21a spreading rearward from a lower end edge 11a of the bow 11, and a recess main surface 21b that intersects the recess top surface 21a and faces the front side. The example illustrated in
A retreat surface 12 is formed between the recess main surface 21b and the bottom 13. The retreat surface 12 extends toward the rear side in a downward direction, with a lower end edge (base end 12a) of the recess main surface 21b as a start point. A lower end edge (terminal end 12b) of the retreat surface 12 is connected to the bottom 13. In the present embodiment, the retreat surface 12 has a uniform planar shape over a range from the base end 12a to the terminal end 12b.
Next, the configuration of the hydrofoil mechanism 3 will be described. The hydrofoil mechanism 3 includes a frame 31, a yoke 32, a foil turning device 33, a strut 34, and a hydrofoil 35. The frame 31 is provided for supporting the yoke 32 within the accommodating recess 2. Specifically, the frame 31 includes a first frame 31A extending downward from the recess top surface 21a and a second frame 31B extending from the recess main surface 21b toward the front side.
Although not illustrated in detail, the first frame 31A and the second frame 31B each include a built-in hydraulic cylinder that expands and contracts with hydraulic pressure. A lower end of the first frame 31A and an end on the front side of the second frame 31B intersect each other. The yoke 32 is attached to the intersecting portion. The yoke 32 is brought in a state of being turnable about a first rotation axis A1 that extends in a direction orthogonal to the sailing direction.
The foil turning device 33 is attached to a lower side of the yoke 32. The foil turning device 33 is a device for changing the posture of the strut 34 and the hydrofoil 35 which will be described below. Specifically, the foil turning device 33 supports the strut 34 in a state in which the foil turning device 33 is turnable about a second rotation axis A2 that extends in the vertical direction.
The strut 34 is coupled to a lower surface (joint surface Pc) of the foil turning device 33 by a bolt B which will be described later. The joint surface Pc spreads in a horizontal plane. Note that the “horizontal plane” as used herein refers to a horizontal direction in a state in which the hydrofoil craft 100 is not tilted. Furthermore, as illustrated in
The strut 34 has a columnar shape extending downward from the foil turning device 33. In addition, as illustrated in
As illustrated in
At a low speed of the hydrofoil craft 100 configured in the above manner, the water surface is located near a water line of the hull 1 (this state is referred to as hullborne state). At a high speed, on the other hand, the hydrofoil craft can sail in a state where the hull is floated by a lift force generated by the hydrofoil 35 (this state is referred to as foilborne state).
During the foilborne sailing described above, the hydrofoil may collide with an obstacle suspended on the water surface or in the water. In this case, a portion below the strut 34 is pulled toward the stern side. This pulling force may cause the strut 34 to be tilted abruptly to the stern side or to be detached from the hull 1. As a result, there is a risk that the strut 34 may collide with the hull 1 and affect the performance of the hull 1. Thus, in the hydrofoil craft 100 according to the present embodiment, the retreat surface 12 is formed in the accommodating recess 2 of the hull 1.
According to the above configuration, when the strut 34 and the hydrofoil 35 are detached or tilted toward the stern side by an impact or the like, the strut 34 can be received by the surface as the retreat surface 12. As a result, the impact to be transmitted to the hull 1 can be reduced. On the other hand, in the case where the retreat surface 12 is not formed, i.e., in the case where a corner is formed in the hull 1, a large impact force may be transmitted to the hull around the corner. Such a possibility can be reduced according to the above configuration.
In addition, according to the above configuration, the retreat surface 12 has a planar shape, and thus can receive and disperse the impact force described above within a broad range.
Furthermore, according to the above configuration, even in the case where, for example, the strut 34 and the hydrofoil 35 are detached with the joint surface Pc as a boundary, these members can be received by the retreat surface 12 immediately after being detached from the hull 1 since the joint surface Pc is positioned between the base end 12a and the terminal end 12b of the retreat surface 12 in the vertical direction. As a result, the possibility of affecting the hull 1 can further be reduced.
In addition, according to the above configuration, the strut 34 is coupled to the foil turning device 33 by the bolts B. Furthermore, the small diameter part 43 is formed in each of the bolts B. Thus, in the case where, for example, a pulling force is applied to the bolt B, the bolt B can be broken earlier than a bolt in which the small diameter part 43 is not formed. Thus, the strut 34 and the hydrofoil 35 are detached from the hull 1 immediately after the generation of an impact force. Therefore, it is possible to reduce the possibility that the strut 34 and the hydrofoil 35 may repeatedly collide with the hull 1 while they are held in the hull 1 in an incomplete state.
Hence, according to the present embodiment, even when the hydrofoil craft 100 collides with an obstacle, the influence of the impact force on the hull 1 can be reduced.
An embodiment of the present disclosure has been described above in detail with reference to the drawings, but the specific configurations are not limited to this embodiment, and design changes and the like that do not depart from the scope of the present disclosure are also included.
For example, the above embodiment has described an example in which the retreat surface 12 is formed in a planar shape. However, the configuration of the retreat surface 12 is not limited to the above embodiment, and the configuration illustrated in
In an example illustrated in
According to the above configuration, even in the case where, for example, the strut 34 and the hydrofoil 35 collide with the retreat surface 12A, local stress concentration in the retreat surface 12A can be suppressed since the retreat surface 12A has a curved surface.
Furthermore, in an example illustrated in
Note that no corner or step is desirably formed in the retreat surface 12, 12A or 12B, whichever configuration of the above embodiment and the modified examples is adopted. In other words, the retreat surface 12, 12A or 12B is desirably formed by a uniformly continuous plane or a curved surface.
The hydrofoil craft according to each of the embodiments is construed as follows, for example.
(1) A hydrofoil craft 100 according to a first aspect includes: a hull 1 including a bottom 13 that spreads from a bow 11 to a stern; and a hydrofoil mechanism 3 provided on the bow 11 side of the hull 1. The hull 1 includes an accommodating recess 2 formed therein, the accommodating recess 2 being recessed toward the stern side between the bow 11 and the bottom 13 to accommodate the hydrofoil mechanism 3. A retreat surface 12 is formed between the bottom 13 and a recess main surface 21b facing the bow 11 side in the accommodating recess 2, the retreat surface 12 extending toward the stern side in a downward direction and being connected to the bottom 13.
According to the above configuration, the retreat surface 12 is formed in the accommodating recess 2. Thus, the hydrofoil mechanism 3, when entirely or partially detached or tilted toward the stern side by an impact or the like, can be received by the surface as the retreat surface 12. As a result, the impact to be transmitted to the hull 1 can be reduced. On the other hand, in the case where the retreat surface 12 is not formed, i.e., in the case where a corner is formed in the hull 1, a large impact force may be transmitted to the hull around the corner. Such a possibility can be reduced according to the above configuration.
(2) In the hydrofoil craft 100 according to a second aspect, the retreat surface 12 has a planar shape.
According to the above configuration, even in the case where, for example, the hydrofoil mechanism 3 entirely or partially collides with the retreat surface 12, the retreat surface 12 has a planar shape, and thus can receive and disperse the impact force within a broad range.
(3) In the hydrofoil craft 100 according to a third aspect, the retreat surface 12A has a curved shape that protrudes toward the bow 11 side.
According to the above configuration, even in the case where, for example, the hydrofoil mechanism 3 entirely or partially collides with the retreat surface 12A, local stress concentration in the retreat surface 12A can be suppressed since the retreat surface 12A has a curved surface.
(4) In the hydrofoil craft 100 according to a fourth aspect, the retreat surface 12A has a curved shape having a uniform curvature over a range from the bow 11 side to the bottom 13 side.
According to the above configuration, stress concentration when an impact force is applied to the retreat surface 12A can further be suppressed.
(5) In a hydrofoil craft 100 according to a fifth aspect, the hydrofoil mechanism 3 includes: a frame 31 attached to the recess main surface 21b and a recess top surface 21a spreading in a plane intersecting the recess main surface 21b; a yoke 32 supported by the frame 31 and turnable about a first rotation axis A1 that is orthogonal to a direction from the bow 11 side toward the stern side; a foil turning device 33 provided below the yoke 32 and turnable about a second rotation axis A2 extending in a vertical direction; a strut 34 extending downward from the foil turning device 33 and jointed to the foil turning device 33 via a joint surface; and a hydrofoil 35 provided at a lower end of the strut 34. The joint surface Pc is positioned in the vertical direction between a base end 12a that is an upper end edge of the retreat surface 12 and a terminal end 12b that is a lower end edge thereof.
According to the above configuration, even in the case where, for example, the strut 34 and the hydrofoil 35 are detached with the joint surface Pc as a boundary, these members can be received by the retreat surface 12 immediately after being detached since the joint surface Pc is positioned between the base end 12a and the terminal end 12b of the retreat surface 12 in the vertical direction. As a result, the possibility of affecting the hull 1 can further be reduced.
(6) In a hydrofoil craft 100 according to a sixth aspect, the hydrofoil mechanism 3 further includes a bolt B that couples the foil turning device 33 and the strut 34, and the bolt B includes: a pair of heads 41 arranged on both sides in an extending direction; and a small diameter part 43 that connects the heads 41 together and has a diameter dimension smaller than that of the heads 41.
According to the above configuration, the strut 34 is coupled to the foil turning device 33 by the bolts B. Furthermore, the small diameter part 43 is formed in each of the bolts B. Thus, for example, in the case where a pulling force is applied to the bolt B, the bolt B can be broken early as compared with a bolt in which the small diameter part 43 is not formed. Thus, the strut 34 and the hydrofoil 35 are detached from the hull 1 immediately after the generation of impact. Therefore, it is possible to reduce the possibility that the strut 34 and the hydrofoil 35 may repeatedly collide with the hull 1 while they are held in the hull 1 in an incomplete state.
While preferred embodiments of the invention have been described as above, it is to be understood that variations and modifications will be apparent to those skilled in the art without departing from the scope and spirits of the invention. The scope of the invention, therefore, is to be determined solely by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
JP2019-225247 | Dec 2019 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
3760756 | Boden | Sep 1973 | A |
3871317 | Szpytman | Mar 1975 | A |
5339761 | Huang | Aug 1994 | A |
5611294 | Burg | Mar 1997 | A |
Number | Date | Country |
---|---|---|
6-1180 | Jan 1994 | JP |
2547300 | Sep 1997 | JP |
2598966 | Aug 1999 | JP |
2989411 | Dec 1999 | JP |
3040617 | May 2000 | JP |
Number | Date | Country | |
---|---|---|---|
20210179230 A1 | Jun 2021 | US |