Hydrogel thin film for use as a biosensor

Information

  • Patent Grant
  • 8092993
  • Patent Number
    8,092,993
  • Date Filed
    Thursday, December 18, 2008
    15 years ago
  • Date Issued
    Tuesday, January 10, 2012
    12 years ago
Abstract
The present disclosure provides a biosensor capable of producing an indicator response upon detection of the presence of certain metabolites in a biological sample. The biosensor includes a hydrogel that is functionalized with affinity molecules specific to markers for one or more pathogens. The biosensor also includes a detection system adapted to detect the binding the pathogen-specific markers with their corresponding affinity molecules.
Description
BACKGROUND

The present disclosure relates generally to medical devices and, more particularly, to biosensors used to detect molecular markers of pathogen infection associated with various medical conditions.


This section is intended to introduce the reader to various aspects of art that may be related to various aspects of the present disclosure, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present disclosure. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.


In the field of medicine, doctors may suspect that certain patient conditions are associated with pathogen infection. Identification of a specific pathogen at the source of an infection is challenging for healthcare providers because of the diversity of possible pathogens as well as the nonspecific nature of the symptoms of many infections. However, identification of particular pathogens in infected patients may provide certain treatment advantages. For example, doctors and other healthcare personnel may more easily administer targeted treatments and pharmaceuticals if they know which pathogen is at the source of the infection. Additionally, identification of infecting pathogens in a hospital setting may allow healthcare personnel to track nosocomial infections. It may also be desirable to monitor acute or long-term care patients to prevent new infections in patients with compromised immune systems.


Because of the advantages associated with the specific identification of pathogens, many methods for pathogen detection are currently in use. However, these detection methods are associated with several disadvantages, including extended wait times for results. For example, healthcare providers may attempt to culture particular pathogens from patient samples. Culturing may involve streaking the patient sample across an appropriate solid growth medium, and isolating various organisms within the sample. The culturing process may take days or even weeks depending on the pathogen's growth process. Often, a doctor makes a diagnosis and begins treatment only to later modify this diagnosis and the resulting treatment upon return of the culturing laboratory results. Accordingly, the delay associated with this technique may result in loss of treatment time and waste of hospital resources. Further, not all pathogens may be successfully cultured.


Other methods for identifying specific pathogens include histopathology methods and antibody-based tests. Using histopathology, clinicians may microscopically examine biological samples in order to detect the presence of pathogens. However, this technique involves skilled workers to prepare the samples and to interpret the results. It is also possible to detect a pathogen with an antibody-based test. An antibody-mediated detection mechanism involves detecting a particular protein that is unique to an individual pathogen. Antibody-based tests often involve only a single antibody and are thus limited to detecting only a single type of pathogen. Further, antibody-based tests may also lack sufficient specificity if the targeted antigen has a high degree of homology across species. In such a case, an antibody-based test may provide a false positive result for a particular pathogen


Generally, pathogen identification testing is conducted ex vivo, meaning that a biological sample is taken from the body and tested outside of the patient. In vivo testing for pathogen infection provides certain advantages, including more rapid detection of infections as well as increased convenience for the healthcare provider. Although some pathogen identification methods may be used in vivo (i.e. the testing is done in or on the patient's body), such methods are complex and somewhat limited in scope. For example, certain B lymphocytes may be engineered to emit light upon exposure to specific bacteria and viruses. The B lymphocytes may be injected into the bloodstream, and the emitted light may be detected spectroscopically. However, the use of these engineered B lymphocytes is limited to identification of blood-borne pathogens. Further, such a technique is invasive, involving skilled healthcare personnel to prepare the engineered cells and to monitor the injection. A need exists in the art for an effective, specific, and rapid method of identifying pathogens that may be conducted both ex vivo and in vivo.


SUMMARY

Certain aspects commensurate in scope with the present disclosure are set forth below. It should be understood that these aspects are presented merely to provide the reader with a brief summary of certain forms one embodiment might take and that these aspects are not intended to limit the scope of the disclosure. Indeed, the disclosure may encompass a variety of aspects that may not be set forth below.


There is provided a biosensor that includes a hydrogel functionalized with a first affinity molecule with binding specificity for a first pathogen-specific marker; a second affinity molecule with binding specificity for a second pathogen-specific marker; and a third affinity molecule with binding specificity for a third pathogen-specific marker. The biosensor also includes a first indicator capable of producing a first output upon binding of the first affinity molecule with the first pathogen-specific marker; a second indicator capable of producing a second output upon binding of the second affinity molecule with the second pathogen-specific marker; and a third indicator capable of producing a third output upon binding of the third affinity molecule with the third pathogen-specific marker.


There is also provided a method of detecting a pathogen in a biological sample that includes contacting the biological sample with a hydrogel functionalized with a first affinity molecule with binding specificity for a first pathogen-specific marker; a second affinity molecule with binding specificity for a second pathogen-specific marker; and a third affinity molecule with binding specificity for a third pathogen-specific marker. The method also includes detecting an output upon binding of the first, second, and third pathogen-specific markers with respective first, second, and third affinity molecules; and performing an operation on the output to detect the pathogen based upon the presence of the first, second, and third pathogen-specific markers in the biological sample.


There is also provided a system for detecting a pathogen that includes a hydrogel functionalized with a first affinity molecule with binding specificity for a first pathogen-specific marker; a second affinity molecule with binding specificity for a second pathogen-specific marker; and a third affinity molecule with binding specificity for a third pathogen-specific marker. The system also includes a first indicator capable of producing a first output upon binding of the first affinity molecule with the first pathogen-specific marker; a second indicator capable of producing a second output upon binding of the second affinity molecule with the second pathogen-specific marker; a third indicator capable of producing a third output upon binding of the third affinity molecule with the third pathogen-specific marker; and a monitor operatively coupled to the first indicator, the second indicator, and the third indicator, wherein the monitor is configured to receive the first output, the second output, and the third output and perform an operation to determine if the pathogen is present in a biological sample.





BRIEF DESCRIPTION OF THE DRAWINGS

Advantages of the present disclosure may become apparent upon reading the following detailed description and upon reference to the drawings in which:



FIG. 1 is a schematic cross-section of a biosensor capable of producing an indicator response according to the present disclosure;



FIG. 2 illustrates a perspective view of a patient using a sensor for in vivo detection of a pathogen according to the present disclosures;



FIG. 3 illustrates a perspective view of a monitoring system according to the present disclosures; and



FIG. 4 is a flow chart illustrating the method of pathogen detection in accordance with one aspect of the present disclosures.





DETAILED DESCRIPTION

One or more embodiments of the present disclosure will be described below. In an effort to provide a concise description of these embodiments, not all features of an actual implementation are described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions may be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.


A biosensor is provided herein that may assess a biological sample and is capable of producing feedback such that detection of a specific pathogen is made possible. Such a biosensor provides significant time advantages, as pathogen or metabolome detection of pathogens may occur in a fraction of the time associated with other techniques. A biosensor according to the present disclosure may include a hydrogel, which may be composed of molecules with large molecular mass composed of repeating structural units, or monomers connected by covalent chemical bonds, i.e., a network of polymer chains. In one embodiment, the hydrogel may be functionalized with specific affinity molecules, i.e., molecules that have a specific affinity for a particular protein or metabolite. For example, an antibody or other affinity molecule may be disposed on the surface of the hydrogel. An antibody may have a specific affinity for a corresponding pathogenic antigen. In one embodiment, the antigen may be a protein made by a pathogen. In other embodiments, the antigen may be a human protein generated within the cell as a result of cell metabolism due to a viral or intracellular bacterial infection. The functionalized hydrogel may be then contacted with a biological sample and binding will occur if the antigen exists in the biological sample. In addition, the biosensor according may be capable of producing an indicator response upon binding of one or more metabolites or proteins with corresponding specific affinity molecules, allowing for the detection of a specific pathogen.


It is envisioned that the detection of multiple (i.e. three or more) markers that are specific for a given pathogen may increase the specificity of a sensor as provided herein. It should also be understood that a sensor may detect three or more, e.g., 10, 20, 50, or even more than 100, different markers of a particular pathogen. Further, a sensor may include affinity molecules specific for at least one or multiple different pathogens. In one embodiment, such as those specific for the detection of pathogens via their metabolic footprints, it may be advantageous to use 50 or more different affinity molecules in order to assess a wide range of metabolites that may be common to many different pathogens. However, the individual combination of many different individual metabolites may be generally specific to a particular pathogen.



FIG. 1 is a schematic cross-section of a biosensor 10 capable of providing an indicator response 24. A biological sample may be contacted with the biosensor 10 The biological sample may include a blood product, a tissue sample, semen, mucous, sputum, saliva, pus, urine, or the like. In the illustrated embodiment, the biosensor 10 includes a hydrogel 14 with three or more affinity molecules 18 specific for respective three or more pathogen markers. The hydrogel 14 may be functionalized with the specific affinity molecules 18 (e.g., 18A, 18B and 18C) that are either disposed on the surface of the hydrogel 14 or are embedded with the hydrogel 14 as part of the polymer. The biosensor 10 also includes indicators 19 (e.g., 19A, 19B and 19C) adapted to detect the binding of the respective pathogen markers with corresponding affinity molecules 18. The result of the detection may be an indicator response 20 (e.g. 20A, 20B and 20C). This indicator response 20 provides a downstream message to a healthcare provider that relates to the pathogen, ultimately allowing for pathogen detection in the biological sample.


In one embodiment, the hydrogel 14 may be disposed on a substrate (not shown). The substrate may be made from any material that may be capable of supporting the hydrogel 14. For example, the substrate material may include insulating materials, semiconductive materials, electrically conducting materials, organic polymers, biopolymers, paper, membrane, a composite of metal and polymers, or any combinations thereof. Exemplary insulating materials include glass, such as silicon oxide and ceramic. Exemplary semiconductive materials include doped or undoped silicon or GaAs. Exemplary electrically conducting materials are metals, such as nickel, brass, steel, aluminum and gold or electrically conductive polymers. In one embodiment, the substrate may be non-porous and substantially rigid to provide structural stability. In another embodiment, the substrate may be microporous or porous.


The hydrogel 14 may be connected to the substrate through any reagent and or reagents that may be coupled, e.g., covalently, to the substrate surface to anchor the hydrogel to the substrate. The anchor reagent enables attachment of the hydrogel 14 to the surface of the substrate and may be any molecule able to interact with a molecule attached to a hydrogel 14. For example, suitable anchor reagents may include silanes such as (3-acryloxypropyl)trimethoxysilane. In some embodiments the anchor reagent moiety may be a polymerizable moiety (hereafter “a first polymerizable moiety”) that is able to cross-link to a second polymerizable moiety attached to a hydrogel. In exemplary embodiments, the first and second polymerizable moieties may include methacryl, acryl, allyl or vinyl.


The hydrogel 14 may be disposed on the substrate in any suitable thickness, depending on the desired binding capacity of the biosensor 10. For example, the hydrogel 14 may be less than one micrometer thick, about 1 micrometer thick, at least about 10 micrometers thick, at least about 20 micrometers thick, at least about 50 micrometers thick, or at least about 100 micrometers thick. It should be understood that the response time of the sensor 10 may be related to the thickness of the hydrogel 14. For example, a thinner hydrogel 14 may have a faster response time than a relatively thicker hydrogel 14.


In one embodiment, a detection mechanism provides the indicator response 20 upon binding of a pathogen-specific marker to an affinity molecule 18. Upon binding of the target molecule to the affinity molecule 18, a change takes place in the biosensor 10, resulting in either an optical, chemical, electrochemical, or electrical change in the hydrogel 14 or the affinity molecule 18 that may be transmitted downstream for further analysis. For example, as depicted, an affinity molecule may be linked to a downstream indicator 19, such as an enzyme capable of catalyzing a reaction that ultimately results in a local increase in fluorescence that may be spectroscopically detected. It is envisioned that certain detection mechanisms may be employed for in vivo or ex vivo detection of binding. For example, suitable detection mechanisms may include detection of fluorescence, luminescence, chemiluminescence, absorbance, and/or reflectance. Alternatively, the detection mechanism may involve detection of a change in the electrical state of the hydrogel 14, such as a change in charge or impedance. Alternatively, certain detection mechanisms may be suitable for use in ex vivo embodiments. In such an embodiment, the biological sample may be removed form the body for analysis. Such detection mechanisms may include, for example, gas phase ion spectrometry, atomic force microscopy, radio frequency mass spectrometry, multipolar coupled resonance spectroscopy, laser desorption/ionization (MALDI, SELDI), fast atom bombardment, plasma desorption and secondary ion mass spectrometers.


The indicator response 20 produced by the detection mechanism may be processed to produce a downstream indication of pathogen detection. In one embodiment, the output of the indicator response 20 may be a display listing the pathogen-specific markers identified by the detection mechanism upon binding. The display may be viewed on a computer screen, a hand-held device or the like. In this example, pathogen or metabolome detection may occur when a skilled technician views the display, and interprets the presence of such a collection of metabolites present in the biological sample to yield a certain result.


In one embodiment, it may be advantageous to provide a biosensor 10 for use on buccal or sublingual tissue 28 that may be easily reached by the patient or a healthcare worker. For example, FIG. 2 illustrates a perspective view of a patient using a biosensor 10 for in vivo detection of a pathogen. FIG. 2 illustrates the placement of a biosensor 10 on a buccal surface 28 in order to assess the presence of a pathogen in the tissue, blood, or interstitial fluid. For example, the biosensor 10 may be used to detect the presence of candidiasis, commonly called yeast infection or thrush, which is a fungal infection sometimes found in the mouth. Or, as another example, the biosensor 10 may be used to detect streptococcus mutans, a bacterium commonly found in the mouth and that is a significant contributor to tooth decay. Specifically, FIG. 2 shows an embodiment of a biosensor 10 including a lead 26 in communication with the biosensor 10. In this particular embodiment, the lead 26 may be capable of transmitting an electrical feedback from the biosensor 10 to the monitor (not shown) such that an indicator response 32 may be displayed. The biosensor 10 and lead 26 may be suitably sized and shaped such that a patient may easily close his or her mouth around the sensor with minimal discomfort. Additionally, the biosensor 10 may be suitably sized and shaped to allow the biosensor 10 to be positioned near or flush against the buccal tissue 28.


In the embodiment illustrated by FIG. 2, since biosensor 10 may be used for in vivo detection of pathogen infection, it is envisioned that the biosensor 10 may be useful for monitoring patients who are in the hospital long-term. The sensor 10 may be secured to the oral or nasal mucosal tissue with a mucoadhesive or other suitable mounting device, such as a clip. The mucoadhesive layer may be applied to the hydrogel 14. In one embodiment, the hydrogel 14 itself may include a mucoadhesive. In such an embodiment, direct application to the sensor 10 to mucosal tissue may securely affix the sensor 10 to the tissue. The term mucoadhesive refers to a substance that sticks to or adheres to the mucous membrane by any number of mechanisms, for example, but not limited to the following: hydrogen-bonding, ionic interaction, hydrophobic interaction, van der Waals interaction, or combinations thereof.


The mucoadhesive layer may include a variety of mucoadhesive compositions to secure electrodes to mucosal tissue. As one of ordinary skill in the art may recognize, the mucoadhesive substance may allow electrical signals to be conducted and received from the mucosal tissue to the electrodes. Suitable mucoadhesives include, but are not limited to, hydroxypropyl cellulose, hydroxypropyl methylcellulose, hydroxyethylcellulose, ethylcellulose, carboxymethylcellulose, dextran, guar gum, polyvinyl pyrrolidone, pectins, starches, gelatin, casein, acrylic acid polymers, polymers of acrylic acid esters, vinyl polymers, vinyl copolymers, polymers of vinyl alcohols, alkoxy polymers, polyethylene oxide polymers, polyethers, and any combination of the above.


In one embodiment, the mucoadhesive may be a biocompatible polymer, for example polyacrylic acid, that may be cross-linked with an acceptable agent to create a hydrogel 14. The use of an insoluble gel may be desirable, particularly for long term monitoring, since it remains adhered to the mucosal tissue for relatively long periods of time. Cross-linked polyacrylic acid polymers may be appropriate for use for three to five days or even longer. Certain polymers available from Noveon, Inc. (Wickliffe, Ohio) and CarboMer, Inc, (San Diego, Calif.) are weak acids and contain many negatively-charged carboxyl-groups. The multiple negative charges on these polymers promote hydrogen-bonding between the polymers and the negatively charged mucin, a glycoprotein that mediates attachment of mucus to the epithelial lining. A mucoadhesive polymer may also include acrylic acid polymers (e.g. Carbopol® 940, also known as Carbomer® 940, Carbopol 934P and Carbopol® 980, products of BF Goodrich), methyl vinyl/maleic acid copolymers (e.g. Gantrez® S-97, a product of International Specialty Products), polyvinyl pyrrolidone also known as povidone (e.g. Plasdone® K-90, a product of International Specialty Products). These polymers impart relatively high viscosity at relatively low concentrations. They may be incorporated onto a sensor in amounts ranging from about 0.01% to about 10% by weight relative to the total composition, for example. These viscosity modifying agents further act to improve the film adhesion of the composition to mucous membranes. Carbopol® 980, in one embodiment, may be 2-3% by weight of the total composition.


As noted, the output of the sensor 10 may be sent to a monitor. FIG. 3 depicts a system including a sensor 10 coupled to a patient monitor 50 that may display information related to the output of the sensor 10. It should be appreciated that the cable 52 of the sensor 10 may be coupled to the monitor 50 or it may be coupled to a transmission device (not shown) to facilitate wireless transmission between the sensor 10 and the monitor 50. Furthermore, to upgrade pathogen detection provided by the monitor 50 to provide additional functions, the monitor 50 may be coupled to a multi-parameter patient monitor 54 via a cable 56 connected to a sensor input port or via a cable 58 connected to a digital communication port. For example, it is envisioned that pathogen detection as provided herein may be part of a larger patient monitoring strategy that includes monitoring of heart rate, blood pressure and/or blood oxygen saturation, although other physiological parameters may be monitored as well.


The analysis of the output may include a threshold comparison to the raw binding data. For example, if the affinity molecule is an antibody and the pathogen-specific marker binding detection includes a fluorescence change, the change in fluorescence may be analyzed and correlated to previously determined thresholds. It is envisioned that each affinity molecule may provide a separate output to the monitor 50. Each output may be compared to a threshold to determine if the levels of pathogen-specific marker in the biological sample indicate that the pathogen is present. Further, because sensor 10 may produce multiple outputs, each specific to a different affinity molecule 18, these outputs may be combined to provide a statistical likelihood of pathogen presence in the biological sample. In the corresponding embodiment, a threshold may be established for an alarm if it is likely that a certain pathogen may be present in the biological sample.



FIG. 4 is a flow chart illustrating a process 60 of pathogen detection. In this illustration, the method of detection begins at step 62, where the biological sample 12 may be contacted with the biosensor 10. At step 64, pathogen-specific markers present in the biological sample 12 may bind to a corresponding affinity molecule 18 (e.g., 18A, 18B, and 18C). At step 66, detection of binding occurs. In this exemplary embodiment, detection may occur by way of enzyme linked immunosorbent assays (ELISA). After binding of the pathogen-specific markers to the affinity molecules 18, an enzymatic substrate produces a visible signal, which indicates the quantity of pathogen-specific marker in the sample. The visible signal may be sensed spectroscopically and converted to an electrical output at step 68. At step 70, an indicator response 20 may be sent downstream to a processor, such as a processor associated with a monitor 50.


1. Hydrogels


The hydrogel 14 may be a cross-linked polymeric material that swells in water but does not dissolve. It is envisioned that the hydrogel 14 may be capable of absorbing at least 1 to 10 times, and in one embodiment at least 100 times, its own weight of a liquid The hydrogel chosen for use in the biosensor 10 should depend directly on the method of functionalization. It is envisioned that the hydrogel 14 may be biocompatible.


In some embodiments, the hydrogel 14 may be polymerized from acrylic monomers. The acrylic monomer may be selected from the group consisting of acrylamido-glycolic acid, acrylamido-methyl-propa-ne-sulfonic acid, acrylamido-ethylphosphate, diethyl-aminoethyl-acrylamide-, trimethyl-amino-propyl-methacrylamide, N-octylacrylamide, N-phenyl-acrylamide and tert-butyl-acrylamide. In embodiments in which the device contains a cross-linking agent, exemplary cross-linking agents may be N,N′-methylene-bis-acrylamide, N,N′-methylene-bismethacrylamide, diallyltatardiamide and poly(ethylene glycol)dimethacrylate. Examples of suitable hydrogels may also include silicon wafers, borosilicate glass substrates, 2-hydroxyethyl methacrylate (HEMA), N-Isopropylacrylamide (NIPAAm), and polyethylene glycol (PEG).


The hydrogel may include any number of molecules. For example, the hydrogel may include a polymerized monomer or hydrogel a cross linking agent and optionally a chemical or UV-light activated inducer agent. Examples of such monomers or dimers include vinyl acetates, vinyl pyrrolidones, vinyl ethers, olefins, styrenes, vinyl chlorides, ethylenes, acrylates, methacrylates, nitriles, acrylamides, maleates, epoxies, epoxides, lactones, ethylene oxides, ethylene glycols, ethyloxazolines, amino acids, saccharides, proteins, anhydrides, amides, carbonates, phenylene oxides, acetals, sulfones, phenylene sulfides, esters, fluoropolymers, imides, amide-imides, etherimides, ionomers, aryletherketones, amines, phenols, acids, benzenes, cinnamates, azoles, silanes, chlorides, and epoxides, N,N′-methylenebisacrylamide, methylenebismethacrylamide ethyleneglycol-dimethacrylate, N,N′-methylenebisacrylamide, polyethyleneglycoldiacrylate (PEGDA), polyethyleneglycoldimethacrylate (PEGDMA), polyethyleneglycoldiacrylate (PEGDA), polyethyleneglycoldimethacrylate (PEGDMA), poly(vinyliden fluoride) (PVdF) based polymer, a polyacrylonitrile (PAN) based polymer, a polymethylmethacrylate (PMMA) based polymer, a polyvinyl chloride (PVC) based polymer, and a mixture of the poly(vinyliden fluoride) (PVdF) based polymer, polyacrylonitrile (PAN) based polymer, polymethylmethacrylate (PMMA) based polymer, and polyvinyl chloride (PVC) based polymer, and mixtures thereof.


Cross linking agents and optionally the chemical or UV-light activated inducer agent may include N,N′-methylenebisacrylamide, methylenebismethacrylamide ethyleneglycol-dimethacrylate and agent N,N′-methylenebisacrylamide. Irgacure 2959 (Ciba); 2,2-dimethoxy-2-phenylacetophenone, 2-methoxy-2-phenylacetone, benzyl-dimethyl-ketal, ammonium sulfate, benzophenone, ethyl benzoin ether, isopropyl benzoin ether, .alpha.-methyl benzoin ether, benzoin phenyl ether, 2,2-diethoxy acetophenone, 1,1-dichloro acetophenone, 2-hydroxy-2-methyl-1-phenylpropane 1-on, 1-hydroxy cyclohexyl phenyl ketone, antraquinone, 2-ethyl antraquinone, 2-chloroantraquinone, tioxantone, isopropyltioxantone, chloro tioxantone, 2,2-chlorobenzophenone, benzyl benzoate, and benzoyl benzoate, TEMED, and ammonium persulfate (APS).


In one embodiment, the hydrogel 14 may be polymerized in place over a substrate. The in situ polymerization process provides several advantages. First, the amount of hydrogel materials may be readily controlled by adjusting the amount of a monomer solution placed on the substrate surface, thereby controlling the amount of binding functionalities available. For example, the amount of a monomer solution deposited onto the substrate surface may be controlled by using methods such as pipetting, ink jet, silk screen, electro spray, spin coating, or chemical vapor deposition. Additionally, the hydrogel 14 may be polymerized to form a coating over the substrate or may be lifted off of the substrate after polymerization. For in situ polymerization, photoinitiation or thermal initiation of polymerization may be used. The monomer solution may be deposited onto a substrate and in situ polymerized on the substrate surface by irradiating, e.g., by UV exposure, for example. The monomer mixture solution may be subsequently dried by any of the known methods such as air drying, drying with steam, infrared drying, vacuum drying, etc. In a specific embodiment, monomer 2-hydroxyethyl methacrylate (HEMA) may be cross-linked with 2% ethylene glycol dimethacrylate and photoinitiator 2,2′-dimethoxy-2-phenylacetophenone is polymerized between two silicon wafers.


In one particular embodiment, functionalization of the hydrogel 14 may take place after polymerization. The hydrogel 14 may be functionalized with one or more specific affinity molecules 18 with affinity for one or more unique metabolites. Specifically, in one embodiment, functionalization takes place in particular regions of the hydrogel. The hydrogel 14 may be functionalized by a number of techniques including plasma polymerization, soft lithography, and photopolymerization. Soft lithography refers to a set of methods for fabricating or replicating structures using elastomeric stamps, molds, and conformable photomasks. This method may be generally used to construct features measured on the nanometer scale. In this process, a desired pattern may be etched onto a substrate (usually silicon), a stamp may be created, and then the single-molecule layer of ink from the stamp may be applied to the surface of the substrate. In one embodiment, the monomers of the hydrogel 14 may be functionalized with the affinity molecules 18 prior to polymerization.


2. Formation of a Phase-Change Hydrogel


Certain polymers reversibly change conformation in response to a specific external stimulus. For example, almost all polymers undergo some reversible conformational change with changes in solvents, and some, such as poly N-isopropylacrylamide, undergo conformational changes in response to temperature changes. Solutes that interact with the side groups on the polymer backbone may also induce conformational changes; introduction of ionized groups onto the backbone of the polymer thus sensitizes the polymer conformation to changes in ionic strength. Polymers that change conformation in response to increased concentrations of certain elements in a solute may be prepared by adding to that polymer a functional group that selectively interacts with that element. For example, a hydrogel 14 may be prepared with a negatively charged group that may form chemical associations with a positively charged group present in a solute. Such polymers may be further mixed with crosslinking agents to form gels that exhibit the same response to stimuli as the polymer from which they are formed. For example, these gels may undergo volume changes at conditions when the constituent polymer chains change conformation. Volume changes between 0.1 and 50%, or even greater, are contemplated by the present disclosure.


In one embodiment, the sensor 10 may include a hydrogel 14 with phase-transition properties. Such a hydrogel may have dispersed with it electrically conductive particles. When the pathogen-specific marker binds to the gel matrix, it causes a change in the hydrophilicity of the matrix, and therefore changes the swelling properties of the gel. As the hydrogel shrinks and swells, the electrically conductive particles embedded in the hydrogel move, respectively, closer to and farther from one another. Depending on the pore size of the hydrogel, the electrically conductive particles may move close enough together to conduct a current, which may be detected by electrodes that are disposed on or embedded in the hydrogel 14. The conductive bodies embedded in the polymer may be in the form of particles or fibers and may include carbon, such as carbon black, coated carbon, graphite, coated graphite, metal, alloy and ceramic materials. In some embodiments, the hydrogel 14 includes electrically conductive bodies in the concentration of at least 0.5% to 50% by weight.


In addition, a monomer component may be added to change the sensitivity of the device by making the hydrogel even more hydrophobic or hydrophilic, as desired by the needs of the user. The more hydrophobic the gel, the more it may tend to stay in a collapsed or shrunken state. For example, an acrylamide, which may be more hydrophilic than NIPA, may be added, or N-butylacrylamide, which may be more hydrophobic than NIPA, may be added to adjust the properties of the hydrogel. In one embodiment, the electrically conductive particles may form a crystalline colloidal array as set forth in U.S. Patent Publication No. 20060024813, the specification of which is hereby incorporated by reference in its entirety for all purposes. The electrically conductive particles may be added to a monomer solution to form a hydrogel 14 with the particles dispersed therein.


3. Fluorescence Resonant Energy Transfer (FRET) for the Detection of Antigen-Antibody Binding to a Hydrogel


In one embodiment, the sensor 10 may employ FRET to detect the binding of a pathogen-specific marker to an affinity molecule 18. In this embodiment, the affinity molecule 18 may be tagged with two fluorescent dyes, a donor and an acceptor. For example, one dye may be coupled to the affinity molecule 18 and the other may be coupled to the hydrogel 14. The dyes fluoresce in a narrow range of wavelengths (their emission spectra) when they receive energy in another range of wavelengths (their absorption spectra). The absorption spectrum of the acceptor fluorescent dye may overlap the emission spectrum of the donor fluorescent dye.


In operation, the sensor 10 may include a light source, such as an LED, for emitting energy toward the pathogen-specific marker detector at a wavelength that may be within the absorption spectrum of the donor fluorescent dye. In response, the donor fluorescent dye fluoresces energy at a wavelength within its emission spectrum. When the pathogen-specific marker is not bound to the affinity molecule, the donor and acceptor fluorescent dyes may not be in sufficient proximity such that emission of energy from the donor fluorescent dye may cause the acceptor fluorescent dye to fluoresce. When an affinity molecule binds to the pathogen-specific marker, however, the affinity molecule 18 undergoes a conformational change that brings the dyes into sufficient proximity to allow FRET to occur. When the dyes are sufficiently proximate and properly oriented, the emission of energy by the donor fluorescent dye causes the acceptor fluorescent dye to fluoresce. As a result, the energy emitted by a sensor depends upon whether the pathogen-specific marker may be bound to affinity molecule 18.


A light detector may receive the light fluoresced by the acceptor dye, and a downstream processor monitors the received light. In particular, the processor monitors the intensity of energy emitted in the emission spectrum of the donor fluorescent dye, in relation to the intensity of energy emitted in the emission spectrum of the acceptor fluorescent dye. The relative intensity of energy at these two wavelengths may be a function of the number of affinity molecules 18 having pathogen-specific marker bound to them, which in turn may be a function of the concentration of the pathogen-specific marker in the body of the patient.


In one embodiment, a donor fluorescent dye may be fluorescein 5-isothiocyanate (FITC). Receiving energy at a wavelength of 494 nm, FITC fluoresces energy at wavelength range of 516-525 nm (or about 520 nm). In this embodiment, the acceptor fluorescent dye includes tetramethylrhodamine 5 (and 6)-isothiocyanate (TRITC). Receiving energy at a wavelength range of 516-525 nm, TRITC fluoresces energy at a wavelength range of 570-580 nm (or about 574 mm). TRITC does not substantially fluoresce in response to energy received at a wavelength of 494 nm, because this wavelength may be outside the excitation spectrum of TRITC.


4. Affinity Molecules and Pathogen-Specific Markers


An affinity molecule 18 may be a biomolecule that selectively binds a specific chemical species as part of its biological function. This component may be bound to the gel directly or by one or more linking molecules. Examples of such affinity molecules 18 nucleic acids, nucleotide, nucleoside, nucleic acids analogues such as PNA and LNA molecules, proteins, peptides, antibodies including IgA, IgG, IgM, IgE, enzymes, enzymes cofactors, enzyme substrates, enzymes inhibitors, membrane receptors, kinases, Protein A, Poly U, Poly A, Poly lysine, triazine dye, boronic acid, thiol, heparin, membrane receptors, polysaccharides, coomassie blue, azure A, metal-binding peptides, sugar, carbohydrate, chelating agents, prokaryotic cells and eukaryotic cells, antigens, porphyrins, ferritin, or pheromone receptors. A sensor 10 a provided herein may therefore include one or more linking molecules that bind the affinity molecule 18 to the gel monomer. In addition, the affinity molecule 18 may be modified by being reacted with a molecule that may be bound to the linking agent, or to the gel itself. An example of a linking molecule may be 5-(biotinamido)pentylamine.


In one embodiment, an antibody may be linked to a gel monomer to form a hydrogel that binds an antigen. As above, the sensitivity of the sensor may be adjusted to the desired concentration by modifying the ratio of gel monomer to recognition component, the degree of crosslinking and the hydrophobicity of the gel monomer. Hydrophobicity may be adjusted as discussed above with the addition of another monomer that may be either more or less hydrophobic than the gel monomer, depending on the needs of the user.


By “pathogen-specific marker,” it may be meant any molecule, compound or particle to be detected by the affinity molecule. Suitable pathogen-specific markers may include organic and inorganic molecules, as well as biomolecules. In one embodiment, the pathogen-specific marker may be a protein. As will be appreciated by those in the art, there are a large number of possible proteinaceous pathogen-specific markers that may be detected. By “proteins,” it may be meant proteins, oligopeptides and peptides, derivatives and analogs, including proteins containing non-naturally occurring amino acids and amino acid analogs, and peptidomimetic structures.


The biosensor 10 may be envisioned to have the ability to detect molecular markers of pathogen infection. Examples of pathogens may include bacteria, viruses, and fungi. In addition to detecting foreign proteins, the biosensor 10 may also be used to detect human proteins that are up-regulated as a result of pathogen infection. Appropriate pathogen-specific markers may include the secretome of a human or pathogenic cell. The secretome is a term describing part or all the proteins actively secreted by a cell. For example, neopterin is a protein produced by macrophages following stimulation by interferon gamma secreted by stimulated T-lymphocytes. Serum neopterin increases as the HIV disease progresses and may be a prognostic marker for progression to AIDS. Thus, the biosensor 10 may be used to detect the presence of neopterin, which serves as a surrogate marker for active alveolar macrophages. Additionally, the biosensor 10 may also detect a number of proteins that expressed differently in HIV-infected patients, such as cystatin B, cystatin C, L-plastin, LTA4H, α-enolase, and chitinase 3-like 1 protein (HC-gp39).


The sensor 10 may also detect the secretome of Plasmodium falciparum, the major malaria parasite. In this embodiment, the affinity molecules 18 may have specific affinity for an N-terminal sequence common to many known secreted proteins of malaria. The sequence, known as the plasmodium export element, or pexel sequence, includes a highly conserved 5 amino-acid sequence RXLXE/Q.


In other embodiments, the sensor 10 may include affinity molecules 18 with affinity to certain metabolic products. In such an embodiment, pathogens may be identified through their metabolic profiles. A metabolome refers to the complete set of small-molecule metabolites (such as metabolic intermediates, hormones and other signalling molecules, and secondary metabolites) to be found within a biological sample. Although many pathogens, such as bacteria, have certain metabolic products in common, these pathogens nonetheless may be differentiated by examining certain characteristic combinations of metabolic products. For example, the metabolic profile of Heliobacter pylori has been established. Accordingly, a sensor 10 may include affinity molecules 18 specific for a minimal number of unique metabolites of H. pylori.


While the disclosure may be susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and have been described in detail herein. However, it should be understood that the disclosure is not intended to be limited to the particular forms disclosed. Indeed, the present disclosure may not only be applied to sensors for pathogen identification, but may also be utilized for the measurement and/or analysis of other pathogen-specific markers found in patient tissue. Rather, the disclosure is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosure as defined by the following appended claims. It will be appreciated by those working in the art that the sensors fabricated using the present disclosure may be used in a wide variety of contexts, such as the detection of cancer or metabolic disorders.

Claims
  • 1. A biosensor for detecting a pathogen comprising: a hydrogel functionalized with: a first affinity molecule with binding specificity for a first pathogen specific marker;a second affinity molecule with binding specificity for a second pathogen-specific marker; anda third affinity molecule with binding specificity for a third pathogen-specific marker;a first indicator capable of producing a first output upon binding of the first affinity molecule with the first pathogen-specific marker;a second indicator capable of producing a second output upon binding of the second affinity molecule with the second pathogen-specific marker; anda third indicator capable of producing a third output upon binding of the third affinity molecule with the third pathogen-specific marker, wherein at least one of the first, second, or third outputs comprises an electrical output.
  • 2. The biosensor in claim 1, wherein the biosensor comprises an adhesive configured to affix the biosensor to a patient.
  • 3. The biosensor recited in claim 1, wherein the first, second, and third pathogen-specific markers are metabolic products of the pathogen.
  • 4. The biosensor recited in claim 1, wherein at least one of the first, second, or third outputs comprises a change in electrical impedance of the hydrogel triggered by binding of the respective first, second, or third pathogen-specific marker.
  • 5. The biosensor recited in claim 1, wherein at least one of the first, second, or third pathogen-specific markers is specific to helicobacter pylori.
  • 6. The biosensor recited in claim 1, wherein the first, second, and third pathogen-specific markers are part of a secretome of the pathogen.
  • 7. The biosensor recited in claim 6, wherein the first, second, and third pathogen-specific markers are part of the secretome of Plasmodium falciparum.
  • 8. The biosensor recited in claim 6, wherein the first, second, and third pathogen-specific markers comprise proteins having the pexel/vacuolar transport signal.
  • 9. The biosensor recited in claim 1, wherein at least one of the first, second, or third affinity molecules is an antibody.
  • 10. The biosensor recited in claim 1, wherein the first affinity molecule is disposed on a first region of the hydrogel, the second affinity molecule is disposed on a second region of the hydrogel, and a third affinity molecule is disposed on a third region of the hydrogel.
  • 11. The biosensor recited in claim 1, wherein the hydrogel comprises 2-hydroxyethyl methacrylate or N-Isopropylacrylamide.
  • 12. The biosensor recited in claim 1, wherein the hydrogel comprises a mucoadhesive.
  • 13. A system for detecting a pathogen comprising: a hydrogel functionalized with: a first affinity molecule with binding specificity for a first pathogen-specific marker;a second affinity molecule with binding specificity for a second pathogen-specific marker; anda third affinity molecule with binding specificity for a third pathogen-specific marker;a first indicator capable of producing a first output upon binding of the first affinity molecule with the first pathogen-specific marker;a second indicator capable of producing a second output upon binding of the second affinity molecule with the second pathogen-specific marker;a third indicator capable of producing a third output upon binding of the third affinity molecule with the third pathogen-specific marker, wherein at least one of the first, second, or third outputs comprises an electrical output; anda monitor operatively coupled to the first indicator, the second indicator, and the third indicator, wherein the monitor is configured to receive the first output, the second output, and the third output and perform an operation to determine if the pathogen is present in a biological sample.
  • 14. The system recited in claim 13, comprising an alarm that is adapted to be triggered upon detection of the pathogen.
  • 15. The system recited in claim 13, wherein the hydrogel is disposed on a surface of the biosensor adapted to directly contact a patient.
RELATED APPLICATION

This application claims priority from U.S. Patent Application No. 61/009,721 which was filed on Dec. 31, 2007, and is incorporated herein by reference in its entirety.

US Referenced Citations (948)
Number Name Date Kind
3638640 Shaw Feb 1972 A
3721813 Condon et al. Mar 1973 A
4586513 Hamaguri May 1986 A
4603700 Nichols et al. Aug 1986 A
4621643 New, Jr. et al. Nov 1986 A
4653498 New, Jr. et al. Mar 1987 A
4685464 Goldberger et al. Aug 1987 A
4694833 Hamaguri Sep 1987 A
4697593 Evans et al. Oct 1987 A
4700708 New, Jr. et al. Oct 1987 A
4714080 Edgar, Jr. et al. Dec 1987 A
4714341 Hamaguri et al. Dec 1987 A
4759369 Taylor Jul 1988 A
4770179 New, Jr. et al. Sep 1988 A
4773422 Isaacson et al. Sep 1988 A
4776339 Schreiber Oct 1988 A
4781195 Martin Nov 1988 A
4796636 Branstetter et al. Jan 1989 A
4800495 Smith Jan 1989 A
4800885 Johnson Jan 1989 A
4802486 Goodman et al. Feb 1989 A
4805623 Jöbsis Feb 1989 A
4807630 Malinouskas Feb 1989 A
4807631 Hersh et al. Feb 1989 A
4819646 Cheung et al. Apr 1989 A
4819752 Zelin Apr 1989 A
4824242 Frick et al. Apr 1989 A
4825872 Tan et al. May 1989 A
4825879 Tan et al. May 1989 A
4830014 Goodman et al. May 1989 A
4832484 Aoyagi et al. May 1989 A
4846183 Martin Jul 1989 A
4848901 Hood, Jr. Jul 1989 A
4854699 Edgar, Jr. Aug 1989 A
4859056 Prosser et al. Aug 1989 A
4859057 Taylor et al. Aug 1989 A
4863265 Flower et al. Sep 1989 A
4865038 Rich et al. Sep 1989 A
4867557 Takatani et al. Sep 1989 A
4869253 Craig, Jr. et al. Sep 1989 A
4869254 Stone et al. Sep 1989 A
4880304 Jaeb et al. Nov 1989 A
4883055 Merrick Nov 1989 A
4883353 Hansmann et al. Nov 1989 A
4890619 Hatschek Jan 1990 A
4892101 Cheung et al. Jan 1990 A
4901238 Suzuki et al. Feb 1990 A
4908762 Suzuki et al. Mar 1990 A
4911167 Corenman et al. Mar 1990 A
4913150 Cheung et al. Apr 1990 A
4926867 Kanda et al. May 1990 A
4927264 Shiga et al. May 1990 A
4928692 Goodman et al. May 1990 A
4934372 Corenman et al. Jun 1990 A
4936679 Mersch Jun 1990 A
4938218 Goodman et al. Jul 1990 A
4942877 Sakai et al. Jul 1990 A
4948248 Lehman Aug 1990 A
4955379 Hall Sep 1990 A
4960126 Conlon et al. Oct 1990 A
4964408 Hink et al. Oct 1990 A
4971062 Hasebe et al. Nov 1990 A
4972331 Chance Nov 1990 A
4974591 Awazu et al. Dec 1990 A
5007423 Branstetter et al. Apr 1991 A
5025791 Niwa Jun 1991 A
RE33643 Isaacson et al. Jul 1991 E
5028787 Rosenthal et al. Jul 1991 A
5035243 Muz Jul 1991 A
5040539 Schmitt et al. Aug 1991 A
5054488 Muz Oct 1991 A
5055671 Jones Oct 1991 A
5058588 Kaestle Oct 1991 A
5065749 Hasebe et al. Nov 1991 A
5066859 Karkar et al. Nov 1991 A
5069213 Polczynski Dec 1991 A
5078136 Stone et al. Jan 1992 A
5084327 Stengel Jan 1992 A
5088493 Giannini et al. Feb 1992 A
5090410 Saper et al. Feb 1992 A
5094239 Jaeb et al. Mar 1992 A
5094240 Muz Mar 1992 A
5099841 Heinonen et al. Mar 1992 A
5099842 Mannheimer et al. Mar 1992 A
H1039 Tripp et al. Apr 1992 H
5104623 Miller Apr 1992 A
5109849 Goodman et al. May 1992 A
5111817 Clark et al. May 1992 A
5113861 Rother May 1992 A
5119815 Chance Jun 1992 A
5122974 Chance Jun 1992 A
5125403 Culp Jun 1992 A
5127406 Yamaguchi Jul 1992 A
5131391 Sakai et al. Jul 1992 A
5140989 Lewis et al. Aug 1992 A
5152296 Simons Oct 1992 A
5154175 Gunther Oct 1992 A
5158082 Jones Oct 1992 A
5167230 Chance Dec 1992 A
5170786 Thomas et al. Dec 1992 A
5188108 Secker et al. Feb 1993 A
5190038 Polson et al. Mar 1993 A
5193542 Missanelli et al. Mar 1993 A
5193543 Yelderman Mar 1993 A
5203329 Takatani et al. Apr 1993 A
5209230 Swedlow et al. May 1993 A
5213099 Tripp et al. May 1993 A
5216598 Branstetter et al. Jun 1993 A
5217012 Young et al. Jun 1993 A
5217013 Lewis et al. Jun 1993 A
5218962 Mannheimer et al. Jun 1993 A
5224478 Sakai et al. Jul 1993 A
5226417 Swedlow et al. Jul 1993 A
5228440 Chung et al. Jul 1993 A
5237994 Goldberger Aug 1993 A
5239185 Ito et al. Aug 1993 A
5246002 Prosser Sep 1993 A
5246003 DeLonzor Sep 1993 A
5247931 Norwood Sep 1993 A
5247932 Chung et al. Sep 1993 A
5249576 Goldberger et al. Oct 1993 A
5253645 Friedman et al. Oct 1993 A
5253646 Delpy et al. Oct 1993 A
5259381 Cheung et al. Nov 1993 A
5259761 Schnettler et al. Nov 1993 A
5263244 Centa et al. Nov 1993 A
5267562 Ukawa et al. Dec 1993 A
5267563 Swedlow et al. Dec 1993 A
5273036 Kronberg et al. Dec 1993 A
5275159 Griebel Jan 1994 A
5279295 Martens et al. Jan 1994 A
5285783 Secker Feb 1994 A
5285784 Seeker Feb 1994 A
5287853 Vester et al. Feb 1994 A
5291884 Heinemann et al. Mar 1994 A
5297548 Pologe Mar 1994 A
5299120 Kaestle Mar 1994 A
5299570 Hatschek Apr 1994 A
5309908 Friedman et al. May 1994 A
5311865 Mayeux May 1994 A
5313940 Fuse et al. May 1994 A
5323776 Blakeley et al. Jun 1994 A
5329922 Atlee, III Jul 1994 A
5337744 Branigan Aug 1994 A
5339810 Ivers et al. Aug 1994 A
5343818 McCarthy et al. Sep 1994 A
5343869 Pross et al. Sep 1994 A
5348003 Caro Sep 1994 A
5348004 Hollub et al. Sep 1994 A
5349519 Kaestle Sep 1994 A
5349952 McCarthy et al. Sep 1994 A
5349953 McCarthy et al. Sep 1994 A
5351685 Potratz Oct 1994 A
5353799 Chance Oct 1994 A
5355880 Thomas et al. Oct 1994 A
5355882 Ukawa et al. Oct 1994 A
5361758 Hall et al. Nov 1994 A
5365066 Krueger, Jr. et al. Nov 1994 A
5368025 Young et al. Nov 1994 A
5368026 Swedlow et al. Nov 1994 A
5368224 Richardson et al. Nov 1994 A
5372136 Steuer et al. Dec 1994 A
5377675 Ruskewicz et al. Jan 1995 A
5385143 Aoyagi Jan 1995 A
5387122 Goldberger et al. Feb 1995 A
5390670 Centa et al. Feb 1995 A
5392777 Swedlow et al. Feb 1995 A
5398680 Polson et al. Mar 1995 A
5402777 Warring et al. Apr 1995 A
5411023 Morris, Sr. et al. May 1995 A
5411024 Thomas et al. May 1995 A
5413099 Schmidt et al. May 1995 A
5413100 Barthelemy et al. May 1995 A
5413101 Sugiura May 1995 A
5413102 Schmidt et al. May 1995 A
5417207 Young et al. May 1995 A
5421329 Casciani et al. Jun 1995 A
5425360 Nelson Jun 1995 A
5425362 Siker et al. Jun 1995 A
5427093 Ogawa et al. Jun 1995 A
5429128 Cadell et al. Jul 1995 A
5429129 Lovejoy et al. Jul 1995 A
5431159 Baker et al. Jul 1995 A
5431170 Mathews Jul 1995 A
5437275 Amundsen et al. Aug 1995 A
5438986 Disch et al. Aug 1995 A
5448991 Polson et al. Sep 1995 A
5452717 Branigan et al. Sep 1995 A
5465714 Scheuing Nov 1995 A
5469845 DeLonzor et al. Nov 1995 A
RE35122 Corenman et al. Dec 1995 E
5474065 Meathrel et al. Dec 1995 A
5482034 Lewis et al. Jan 1996 A
5482036 Diab et al. Jan 1996 A
5483646 Uchikoga Jan 1996 A
5485847 Baker, Jr. Jan 1996 A
5490505 Diab et al. Feb 1996 A
5490523 Isaacson et al. Feb 1996 A
5491299 Naylor et al. Feb 1996 A
5494032 Robinson et al. Feb 1996 A
5497771 Rosenheimer Mar 1996 A
5499627 Steuer et al. Mar 1996 A
5503148 Pologe et al. Apr 1996 A
5505199 Kim Apr 1996 A
5507286 Solenberger Apr 1996 A
5511546 Hon Apr 1996 A
5517988 Gerhard May 1996 A
5520177 Ogawa et al. May 1996 A
5521851 Wei et al. May 1996 A
5522388 Ishikawa et al. Jun 1996 A
5524617 Mannheimer Jun 1996 A
5529064 Rall et al. Jun 1996 A
5533507 Potratz et al. Jul 1996 A
5551423 Sugiura Sep 1996 A
5551424 Morrison et al. Sep 1996 A
5553614 Chance Sep 1996 A
5553615 Carim et al. Sep 1996 A
5555882 Richardson et al. Sep 1996 A
5558096 Palatnik Sep 1996 A
5560355 Merchant et al. Oct 1996 A
5564417 Chance Oct 1996 A
5575284 Athan et al. Nov 1996 A
5575285 Takanashi et al. Nov 1996 A
5577500 Potratz Nov 1996 A
5582169 Oda et al. Dec 1996 A
5584296 Cui et al. Dec 1996 A
5588425 Sackner et al. Dec 1996 A
5588427 Tien Dec 1996 A
5590652 Inai Jan 1997 A
5595176 Yamaura Jan 1997 A
5596986 Goldfarb Jan 1997 A
5611337 Bukta Mar 1997 A
5617852 MacGregor Apr 1997 A
5619992 Guthrie et al. Apr 1997 A
5626140 Feldman et al. May 1997 A
5630413 Thomas et al. May 1997 A
5632272 Diab et al. May 1997 A
5632273 Suzuki May 1997 A
5634459 Gardosi Jun 1997 A
5638593 Gerhardt et al. Jun 1997 A
5638818 Diab et al. Jun 1997 A
5645059 Fein et al. Jul 1997 A
5645060 Yorkey et al. Jul 1997 A
5645440 Tobler et al. Jul 1997 A
5660567 Nierlich et al. Aug 1997 A
5662105 Tien Sep 1997 A
5662106 Swedlow et al. Sep 1997 A
5666952 Fuse et al. Sep 1997 A
5671529 Nelson Sep 1997 A
5673692 Schulze et al. Oct 1997 A
5673693 Solenberger Oct 1997 A
5676139 Goldberger et al. Oct 1997 A
5676141 Hollub Oct 1997 A
5678544 DeLonzor et al. Oct 1997 A
5680857 Pelikan et al. Oct 1997 A
5685299 Diab et al. Nov 1997 A
5685301 Klomhaus Nov 1997 A
5687719 Sato et al. Nov 1997 A
5687722 Tien et al. Nov 1997 A
5692503 Kuenstner Dec 1997 A
5692505 Fouts Dec 1997 A
5709205 Bukta Jan 1998 A
5713355 Richardson et al. Feb 1998 A
5724967 Venkatachalam Mar 1998 A
5727547 Levinson et al. Mar 1998 A
5730124 Yamauchi Mar 1998 A
5731582 West Mar 1998 A
D393830 Tobler et al. Apr 1998 S
5743260 Chung et al. Apr 1998 A
5743263 Baker, Jr. Apr 1998 A
5746206 Mannheimer May 1998 A
5746697 Swedlow et al. May 1998 A
5752914 Delonzor et al. May 1998 A
5755226 Carim et al. May 1998 A
5758644 Diab et al. Jun 1998 A
5760910 Lepper, Jr. et al. Jun 1998 A
5766125 Aoyagi et al. Jun 1998 A
5766127 Pologe et al. Jun 1998 A
5769785 Diab et al. Jun 1998 A
5772587 Gratton et al. Jun 1998 A
5774213 Trebino et al. Jun 1998 A
5776058 Levinson et al. Jul 1998 A
5776059 Kaestle Jul 1998 A
5779630 Fein et al. Jul 1998 A
5779631 Chance Jul 1998 A
5782237 Casciani et al. Jul 1998 A
5782756 Mannheimer Jul 1998 A
5782757 Diab et al. Jul 1998 A
5782758 Ausec et al. Jul 1998 A
5786592 Hök Jul 1998 A
5790729 Pologe et al. Aug 1998 A
5792052 Isaacson et al. Aug 1998 A
5795292 Lewis et al. Aug 1998 A
5797841 Delonzor et al. Aug 1998 A
5800348 Kaestle Sep 1998 A
5800349 Isaacson et al. Sep 1998 A
5803910 Potratz Sep 1998 A
5807246 Sakaguchi et al. Sep 1998 A
5807247 Merchant et al. Sep 1998 A
5807248 Mills Sep 1998 A
5810723 Aldrich Sep 1998 A
5810724 Gronvall Sep 1998 A
5813980 Levinson et al. Sep 1998 A
5817008 Rafert et al. Oct 1998 A
5817009 Rosenheimer et al. Oct 1998 A
5817010 Hibl Oct 1998 A
5818985 Merchant et al. Oct 1998 A
5820550 Polson et al. Oct 1998 A
5823950 Diab et al. Oct 1998 A
5823952 Levinson et al. Oct 1998 A
5827182 Raley et al. Oct 1998 A
5830135 Bosque et al. Nov 1998 A
5830136 Delonzor et al. Nov 1998 A
5830137 Scharf Nov 1998 A
5830139 Abreu Nov 1998 A
5831598 Kauffert et al. Nov 1998 A
5839439 Nierlich et al. Nov 1998 A
RE36000 Swedlow et al. Dec 1998 E
5842979 Jarman et al. Dec 1998 A
5842981 Larsen et al. Dec 1998 A
5842982 Mannheimer Dec 1998 A
5846190 Woehrle Dec 1998 A
5851178 Aronow Dec 1998 A
5851179 Ritson et al. Dec 1998 A
5853364 Baker, Jr. et al. Dec 1998 A
5860919 Kiani-Azarbayjany et al. Jan 1999 A
5865736 Baker, Jr. et al. Feb 1999 A
5871442 Madarasz et al. Feb 1999 A
5873821 Chance et al. Feb 1999 A
5879294 Anderson et al. Mar 1999 A
5885213 Richardson et al. Mar 1999 A
5890929 Mills et al. Apr 1999 A
5891021 Dillon et al. Apr 1999 A
5891022 Pologe Apr 1999 A
5891024 Jarman et al. Apr 1999 A
5891025 Buschmann et al. Apr 1999 A
5891026 Wang et al. Apr 1999 A
5902235 Lewis et al. May 1999 A
5910108 Solenberger Jun 1999 A
5911690 Rall Jun 1999 A
5912656 Tham et al. Jun 1999 A
5913819 Taylor et al. Jun 1999 A
5916154 Hobbs et al. Jun 1999 A
5916155 Levinson et al. Jun 1999 A
5919133 Taylor et al. Jul 1999 A
5919134 Diab Jul 1999 A
5920263 Huttenhoff et al. Jul 1999 A
5921921 Potratz et al. Jul 1999 A
5922607 Bernreuter Jul 1999 A
5924979 Swedlow et al. Jul 1999 A
5924980 Coetzee Jul 1999 A
5924982 Chin Jul 1999 A
5924985 Jones Jul 1999 A
5934277 Mortz Aug 1999 A
5934925 Tobler et al. Aug 1999 A
5940182 Lepper, Jr. et al. Aug 1999 A
5954644 Dettling et al. Sep 1999 A
5960610 Levinson et al. Oct 1999 A
5961450 Merchant et al. Oct 1999 A
5961452 Chung et al. Oct 1999 A
5964701 Asada et al. Oct 1999 A
5971930 Elghazzawi Oct 1999 A
5978691 Mills Nov 1999 A
5978693 Hamilton et al. Nov 1999 A
5983122 Jarman et al. Nov 1999 A
5987343 Kinast Nov 1999 A
5991648 Levin Nov 1999 A
5995855 Kiani et al. Nov 1999 A
5995856 Mannheimer et al. Nov 1999 A
5995858 Kinast Nov 1999 A
5995859 Takahashi Nov 1999 A
5997343 Mills et al. Dec 1999 A
5999834 Wang et al. Dec 1999 A
6002952 Diab et al. Dec 1999 A
6005658 Kaluza et al. Dec 1999 A
6006120 Levin Dec 1999 A
6011985 Athan et al. Jan 2000 A
6011986 Diab et al. Jan 2000 A
6014576 Raley et al. Jan 2000 A
6018673 Chin et al. Jan 2000 A
6018674 Aronow Jan 2000 A
6022321 Amano et al. Feb 2000 A
6023541 Merchant et al. Feb 2000 A
6026312 Shemwell et al. Feb 2000 A
6026314 Amerov et al. Feb 2000 A
6031603 Fine et al. Feb 2000 A
6035223 Baker, Jr. Mar 2000 A
6036642 Diab et al. Mar 2000 A
6041247 Weckstrom et al. Mar 2000 A
6044283 Fein et al. Mar 2000 A
6047201 Jackson, III Apr 2000 A
6061584 Lovejoy et al. May 2000 A
6064898 Aldrich May 2000 A
6064899 Fein et al. May 2000 A
6067462 Diab et al. May 2000 A
6073038 Wang et al. Jun 2000 A
6078833 Hueber Jun 2000 A
6081735 Diab et al. Jun 2000 A
6081742 Amano et al. Jun 2000 A
6083157 Noller Jul 2000 A
6083172 Baker, Jr. et al. Jul 2000 A
6088607 Diab et al. Jul 2000 A
6094592 Yorkey et al. Jul 2000 A
6095974 Shemwell et al. Aug 2000 A
6104938 Huiku et al. Aug 2000 A
6112107 Hannula Aug 2000 A
6113541 Dias et al. Sep 2000 A
6115621 Chin Sep 2000 A
6120460 Abreu Sep 2000 A
6122535 Kaestle et al. Sep 2000 A
6133994 Mathews et al. Oct 2000 A
6134460 Chance Oct 2000 A
6135952 Coetzee Oct 2000 A
6144444 Haworth et al. Nov 2000 A
6144867 Walker et al. Nov 2000 A
6144868 Parker Nov 2000 A
6149481 Wang et al. Nov 2000 A
6150951 Olejniczak Nov 2000 A
6151107 Schöllerman et al. Nov 2000 A
6151518 Hayashi Nov 2000 A
6152754 Gerhardt et al. Nov 2000 A
6154667 Miura et al. Nov 2000 A
6157850 Diab et al. Dec 2000 A
6163715 Larsen et al. Dec 2000 A
6165005 Mills et al. Dec 2000 A
6173196 Delonzor et al. Jan 2001 B1
6178343 Bindszus et al. Jan 2001 B1
6181958 Steuer et al. Jan 2001 B1
6181959 Schöllerman et al. Jan 2001 B1
6184521 Coffin, IV et al. Feb 2001 B1
6188470 Grace Feb 2001 B1
6192260 Chance Feb 2001 B1
6195575 Levinson Feb 2001 B1
6198951 Kosuda et al. Mar 2001 B1
6206830 Diab et al. Mar 2001 B1
6213952 Finarov et al. Apr 2001 B1
6217523 Amano et al. Apr 2001 B1
6222189 Misner et al. Apr 2001 B1
6226539 Potratz May 2001 B1
6226540 Bernreuter et al. May 2001 B1
6229856 Diab et al. May 2001 B1
6230035 Aoyagi et al. May 2001 B1
6233470 Tsuchiya May 2001 B1
6236871 Tsuchiya May 2001 B1
6236872 Diab et al. May 2001 B1
6240305 Tsuchiya May 2001 B1
6253097 Aronow et al. Jun 2001 B1
6253098 Walker et al. Jun 2001 B1
6256523 Diab et al. Jul 2001 B1
6256524 Walker et al. Jul 2001 B1
6261236 Grimblatov Jul 2001 B1
6263221 Chance et al. Jul 2001 B1
6263222 Diab et al. Jul 2001 B1
6263223 Shepherd et al. Jul 2001 B1
6266546 Steuer et al. Jul 2001 B1
6266547 Walker et al. Jul 2001 B1
6272363 Casciani et al. Aug 2001 B1
6278522 Lepper, Jr. et al. Aug 2001 B1
6280213 Tobler et al. Aug 2001 B1
6280381 Malin et al. Aug 2001 B1
6285894 Oppelt et al. Sep 2001 B1
6285895 Ristolainen et al. Sep 2001 B1
6285896 Tobler et al. Sep 2001 B1
6298252 Kovach et al. Oct 2001 B1
6308089 Von der Ruhr et al. Oct 2001 B1
6312393 Abreu Nov 2001 B1
6321100 Parker Nov 2001 B1
6330468 Scharf Dec 2001 B1
6334065 Al-Ali et al. Dec 2001 B1
6339715 Bahr et al. Jan 2002 B1
6343223 Chin et al. Jan 2002 B1
6343224 Parker Jan 2002 B1
6349228 Kiani et al. Feb 2002 B1
6351658 Middleman et al. Feb 2002 B1
6353750 Kimura et al. Mar 2002 B1
6356774 Bernstein et al. Mar 2002 B1
6360113 Dettling Mar 2002 B1
6360114 Diab et al. Mar 2002 B1
6361501 Amano et al. Mar 2002 B1
6363269 Hanna et al. Mar 2002 B1
6370408 Merchant et al. Apr 2002 B1
6370409 Chung et al. Apr 2002 B1
6374129 Chin et al. Apr 2002 B1
6377829 Al-Ali et al. Apr 2002 B1
6381479 Norris Apr 2002 B1
6381480 Stoddart et al. Apr 2002 B1
6385471 Mortz May 2002 B1
6385821 Modgil et al. May 2002 B1
6388240 Schulz et al. May 2002 B2
6393310 Kuenstner May 2002 B1
6397091 Diab et al. May 2002 B2
6397092 Norris et al. May 2002 B1
6397093 Aldrich May 2002 B1
6400971 Finarov et al. Jun 2002 B1
6400972 Fine Jun 2002 B1
6402690 Rhee et al. Jun 2002 B1
6408198 Hanna et al. Jun 2002 B1
6411832 Guthermann Jun 2002 B1
6411833 Baker, Jr. et al. Jun 2002 B1
6415236 Kobayashi et al. Jul 2002 B2
6419671 Lemberg Jul 2002 B1
6421549 Jacques Jul 2002 B1
6430423 DeLonzor et al. Aug 2002 B2
6430513 Wang et al. Aug 2002 B1
6430525 Weber et al. Aug 2002 B1
6434408 Heckel et al. Aug 2002 B1
6438399 Kurth Aug 2002 B1
6449501 Reuss Sep 2002 B1
6453183 Walker Sep 2002 B1
6453184 Hyogo et al. Sep 2002 B1
6456862 Benni Sep 2002 B2
6461305 Schnall Oct 2002 B1
6463310 Swedlow et al. Oct 2002 B1
6463311 Diab Oct 2002 B1
6466808 Chin et al. Oct 2002 B1
6466809 Riley Oct 2002 B1
6470199 Kopotic et al. Oct 2002 B1
6470200 Walker et al. Oct 2002 B2
6480729 Stone Nov 2002 B2
6487439 Skladnev et al. Nov 2002 B1
6490466 Fein et al. Dec 2002 B1
6496711 Athan et al. Dec 2002 B1
6498942 Esenaliev et al. Dec 2002 B1
6501974 Huiku Dec 2002 B2
6501975 Diab et al. Dec 2002 B2
6505060 Norris Jan 2003 B1
6505061 Larson Jan 2003 B2
6505133 Hanna et al. Jan 2003 B1
6510329 Heckel Jan 2003 B2
6510331 Williams et al. Jan 2003 B1
6512937 Blank et al. Jan 2003 B2
6515273 Al-Ali Feb 2003 B2
6519484 Lovejoy et al. Feb 2003 B1
6519486 Edgar, Jr. et al. Feb 2003 B1
6519487 Parker Feb 2003 B1
6525386 Mills et al. Feb 2003 B1
6526300 Kiani et al. Feb 2003 B1
6526301 Larsen et al. Feb 2003 B2
6541756 Schulz et al. Apr 2003 B2
6542764 Al-Ali et al. Apr 2003 B1
6544193 Abreu Apr 2003 B2
6546267 Sugiura et al. Apr 2003 B1
6549795 Chance Apr 2003 B1
6553241 Mannheimer et al. Apr 2003 B2
6553242 Sarussi Apr 2003 B1
6553243 Gurley Apr 2003 B2
6556852 Schulze et al. Apr 2003 B1
6560470 Pologe May 2003 B1
6564077 Mortara May 2003 B2
6564088 Soller et al. May 2003 B1
6571113 Fein et al. May 2003 B1
6571114 Koike et al. May 2003 B1
6574491 Elghazzawi Jun 2003 B2
6580086 Schulz et al. Jun 2003 B1
6584336 Ali et al. Jun 2003 B1
6587703 Cheng et al. Jul 2003 B2
6587704 Fine et al. Jul 2003 B1
6589172 Williams et al. Jul 2003 B2
6591122 Schmitt Jul 2003 B2
6591123 Fein et al. Jul 2003 B2
6594511 Stone et al. Jul 2003 B2
6594512 Huang Jul 2003 B2
6594513 Jobsis et al. Jul 2003 B1
6597931 Cheng et al. Jul 2003 B1
6597933 Kiani et al. Jul 2003 B2
6600940 Fein et al. Jul 2003 B1
6606509 Schmitt Aug 2003 B2
6606510 Swedlow et al. Aug 2003 B2
6606511 Ali et al. Aug 2003 B1
6606512 Muz et al. Aug 2003 B2
6615064 Aldrich Sep 2003 B1
6615065 Barrett et al. Sep 2003 B1
6618042 Powell Sep 2003 B1
6618602 Levin et al. Sep 2003 B2
6622034 Gorski et al. Sep 2003 B1
6622095 Kobayashi et al. Sep 2003 B2
6628975 Fein et al. Sep 2003 B1
6631281 Kästle Oct 2003 B1
6643530 Diab et al. Nov 2003 B2
6643531 Katarow Nov 2003 B1
6647279 Pologe Nov 2003 B2
6647280 Bahr et al. Nov 2003 B2
6650917 Diab et al. Nov 2003 B2
6650918 Terry Nov 2003 B2
6654621 Palatnik et al. Nov 2003 B2
6654622 Eberhard et al. Nov 2003 B1
6654623 Kästle Nov 2003 B1
6654624 Diab et al. Nov 2003 B2
6658276 Kianl et al. Dec 2003 B2
6658277 Wasserman Dec 2003 B2
6662030 Khalil et al. Dec 2003 B2
6662033 Casciani et al. Dec 2003 B2
6665551 Suzuki Dec 2003 B1
6668182 Hubelbank Dec 2003 B2
6668183 Hicks et al. Dec 2003 B2
6671526 Aoyagi et al. Dec 2003 B1
6671528 Steuer et al. Dec 2003 B2
6671530 Chung et al. Dec 2003 B2
6671531 Al-Ali et al. Dec 2003 B2
6671532 Fudge et al. Dec 2003 B1
6675031 Porges et al. Jan 2004 B1
6678543 Diab et al. Jan 2004 B2
6681126 Solenberger Jan 2004 B2
6681128 Steuer et al. Jan 2004 B2
6681454 Modgil et al. Jan 2004 B2
6684090 Ali et al. Jan 2004 B2
6684091 Parker Jan 2004 B2
6690958 Walker et al. Feb 2004 B1
6694160 Chin Feb 2004 B2
6697653 Hanna Feb 2004 B2
6697655 Sueppel et al. Feb 2004 B2
6697656 Al-Ali Feb 2004 B1
6697658 Al-Ali Feb 2004 B2
RE38476 Diab et al. Mar 2004 E
6699194 Diab et al. Mar 2004 B1
6699199 Asada et al. Mar 2004 B2
6701170 Stetson Mar 2004 B2
6702752 Dekker Mar 2004 B2
6707257 Norris Mar 2004 B2
6708048 Chance Mar 2004 B1
6708049 Berson et al. Mar 2004 B1
6709402 Dekker Mar 2004 B2
6711424 Fine et al. Mar 2004 B1
6711425 Reuss Mar 2004 B1
6714245 Ono Mar 2004 B1
6714803 Mortz Mar 2004 B1
6714804 Al-Ali et al. Mar 2004 B2
6714805 Jeon et al. Mar 2004 B2
RE38492 Diab et al. Apr 2004 E
6719686 Coakley et al. Apr 2004 B2
6719705 Mills Apr 2004 B2
6720734 Norris Apr 2004 B2
6721584 Baker, Jr. et al. Apr 2004 B2
6721585 Parker Apr 2004 B1
6725074 Kästle Apr 2004 B1
6725075 Al-Ali Apr 2004 B2
6731274 Powell May 2004 B2
6731963 Finarov et al. May 2004 B2
6731967 Turcott May 2004 B1
6735459 Parker May 2004 B2
6738141 Thirstrup May 2004 B1
6745060 Diab et al. Jun 2004 B2
6745061 Hicks et al. Jun 2004 B1
6748253 Norris et al. Jun 2004 B2
6748254 O'Neil et al. Jun 2004 B2
6754515 Pologe Jun 2004 B1
6754516 Mannheimer Jun 2004 B2
6760607 Al-All Jul 2004 B2
6760609 Jacques Jul 2004 B2
6760610 Tschupp et al. Jul 2004 B2
6763255 DeLonzor et al. Jul 2004 B2
6763256 Kimball et al. Jul 2004 B2
6770028 Ali et al. Aug 2004 B1
6771994 Kiani et al. Aug 2004 B2
6773397 Kelly Aug 2004 B2
6778923 Norris et al. Aug 2004 B2
6780158 Yarita Aug 2004 B2
6785568 Chance Aug 2004 B2
6791689 Weckström Sep 2004 B1
6792300 Diab et al. Sep 2004 B1
6793654 Lemberg Sep 2004 B2
6801797 Mannheimer et al. Oct 2004 B2
6801798 Geddes et al. Oct 2004 B2
6801799 Mendelson Oct 2004 B2
6801802 Sitzman et al. Oct 2004 B2
6802812 Walker et al. Oct 2004 B1
6805673 Dekker Oct 2004 B2
6810277 Edgar, Jr. et al. Oct 2004 B2
6813511 Diab et al. Nov 2004 B2
6816741 Diab Nov 2004 B2
6819950 Mills Nov 2004 B2
6822564 Al-Ali Nov 2004 B2
6825619 Norris Nov 2004 B2
6826419 Diab et al. Nov 2004 B2
6829496 Nagai et al. Dec 2004 B2
6830711 Mills et al. Dec 2004 B2
6836679 Baker, Jr. et al. Dec 2004 B2
6839579 Chin Jan 2005 B1
6839580 Zonios et al. Jan 2005 B2
6839582 Heckel Jan 2005 B2
6839659 Tarassenko et al. Jan 2005 B2
6842635 Parker Jan 2005 B1
6845256 Chin et al. Jan 2005 B2
6850053 Daalmans et al. Feb 2005 B2
6850787 Weber et al. Feb 2005 B2
6850788 Al-Ali Feb 2005 B2
6850789 Schweitzer, Jr. et al. Feb 2005 B2
6861639 Al-Ali Mar 2005 B2
6863652 Huang et al. Mar 2005 B2
6865407 Kimball et al. Mar 2005 B2
6873865 Steuer et al. Mar 2005 B2
6879850 Kimball Apr 2005 B2
6882874 Huiku Apr 2005 B2
6889153 Dietiker May 2005 B2
6898451 Wuori May 2005 B2
6898452 Al-Ali et al. May 2005 B2
6909912 Melker et al. Jun 2005 B2
6912413 Rantala et al. Jun 2005 B2
6916289 Schnall Jul 2005 B2
6920345 Al-Ali et al. Jul 2005 B2
6931269 Terry Aug 2005 B2
6934570 Kiani et al. Aug 2005 B2
6939307 Dunlop Sep 2005 B1
6941162 Fudge et al. Sep 2005 B2
6947780 Scharf Sep 2005 B2
6947781 Asada et al. Sep 2005 B2
6949081 Chance Sep 2005 B1
6950687 Al-Ali Sep 2005 B2
6961598 Diab Nov 2005 B2
6963767 Rantala et al. Nov 2005 B2
6971580 DeLonzor et al. Dec 2005 B2
6983178 Fine et al. Jan 2006 B2
6985763 Boas et al. Jan 2006 B2
6985764 Mason et al. Jan 2006 B2
6990426 Yoon et al. Jan 2006 B2
6992751 Okita et al. Jan 2006 B2
6992772 Block et al. Jan 2006 B2
6993371 Kiani et al. Jan 2006 B2
6993372 Fine et al. Jan 2006 B2
6996427 Ali et al. Feb 2006 B2
7003338 Weber et al. Feb 2006 B2
7003339 Diab et al. Feb 2006 B2
7006855 Sarussi Feb 2006 B1
7006856 Baker, Jr. et al. Feb 2006 B2
7016715 Stetson Mar 2006 B2
7020507 Scharf et al. Mar 2006 B2
7024233 Ali et al. Apr 2006 B2
7024235 Melker et al. Apr 2006 B2
7025728 Ito et al. Apr 2006 B2
7027849 Al-Ali Apr 2006 B2
7027850 Wasserman Apr 2006 B2
7030749 Al-Ali Apr 2006 B2
7035697 Brown Apr 2006 B1
7039449 Al-Ali May 2006 B2
7043289 Fine et al. May 2006 B2
7047054 Benni May 2006 B2
7047055 Boaz et al. May 2006 B2
7060035 Wasserman et al. Jun 2006 B2
7062307 Norris et al. Jun 2006 B2
7067893 Mills et al. Jun 2006 B2
7072701 Chen et al. Jul 2006 B2
7072702 Edgar, Jr. et al. Jul 2006 B2
7079880 Stetson Jul 2006 B2
7085597 Fein et al. Aug 2006 B2
7096052 Mason et al. Aug 2006 B2
7096054 Abdul-Hafiz et al. Aug 2006 B2
7107088 Aceti Sep 2006 B2
7113815 O'Neil et al. Sep 2006 B2
7123950 Mannheimer Oct 2006 B2
7127278 Melker et al. Oct 2006 B2
7130671 Baker, Jr. et al. Oct 2006 B2
7132641 Schulz et al. Nov 2006 B2
7133711 Chernoguz et al. Nov 2006 B2
7139599 Terry Nov 2006 B2
7142901 Kiani et al. Nov 2006 B2
7162288 Nordstrom Jan 2007 B2
7162306 Caby et al. Jan 2007 B2
7190987 Lindekugel et al. Mar 2007 B2
7198778 Achilefu et al. Apr 2007 B2
7209775 Bae et al. Apr 2007 B2
7215984 Diab et al. May 2007 B2
7225006 Al-Ali et al. May 2007 B2
7236811 Schmitt Jun 2007 B2
7236881 Liu et al. Jun 2007 B2
7248910 Li et al. Jul 2007 B2
7254433 Diab et al. Aug 2007 B2
7254434 Schulz et al. Aug 2007 B2
7263395 Chan et al. Aug 2007 B2
7272426 Schmid Sep 2007 B2
7280858 Al-Ali et al. Oct 2007 B2
7295866 Al-Ali et al. Nov 2007 B2
7305262 Brodnick et al. Dec 2007 B2
7313427 Benni Dec 2007 B2
7315753 Baker, Jr. et al. Jan 2008 B2
7373193 Al-Ali et al. May 2008 B2
20010005773 Larsen et al. Jun 2001 A1
20010020122 Steuer et al. Sep 2001 A1
20010021803 Blank et al. Sep 2001 A1
20010039376 Steuer et al. Nov 2001 A1
20010044700 Kobayashi et al. Nov 2001 A1
20010051767 Williams et al. Dec 2001 A1
20020026106 Khalil et al. Feb 2002 A1
20020026109 Diab et al. Feb 2002 A1
20020028990 Shepherd et al. Mar 2002 A1
20020035318 Mannheimer et al. Mar 2002 A1
20020038078 Ito Mar 2002 A1
20020038079 Steuer et al. Mar 2002 A1
20020042558 Mendelson Apr 2002 A1
20020049389 Abreu Apr 2002 A1
20020062071 Diab et al. May 2002 A1
20020068859 Knopp Jun 2002 A1
20020111748 Kobayashi et al. Aug 2002 A1
20020128544 Diab et al. Sep 2002 A1
20020133067 Jackson, III Sep 2002 A1
20020133068 Huiku Sep 2002 A1
20020156354 Larson Oct 2002 A1
20020161287 Schmitt Oct 2002 A1
20020161290 Chance Oct 2002 A1
20020165439 Schmitt Nov 2002 A1
20020173706 Takatani Nov 2002 A1
20020173709 Fine et al. Nov 2002 A1
20020190863 Lynn Dec 2002 A1
20020198442 Rantala et al. Dec 2002 A1
20020198443 Ting Dec 2002 A1
20030018243 Gerhardt et al. Jan 2003 A1
20030023140 Chance Jan 2003 A1
20030036690 Geddes et al. Feb 2003 A1
20030045785 Diab et al. Mar 2003 A1
20030055324 Wasserman Mar 2003 A1
20030060693 Monfre et al. Mar 2003 A1
20030073889 Keilbach et al. Apr 2003 A1
20030073890 Hanna Apr 2003 A1
20030100840 Sugiura et al. May 2003 A1
20030132495 Mills et al. Jul 2003 A1
20030135099 Al-Ali Jul 2003 A1
20030139687 Abreu Jul 2003 A1
20030144584 Mendelson Jul 2003 A1
20030162414 Schulz et al. Aug 2003 A1
20030171662 O'Connor et al. Sep 2003 A1
20030176776 Huiku Sep 2003 A1
20030181799 Lindekugel et al. Sep 2003 A1
20030187337 Tarassenko et al. Oct 2003 A1
20030195402 Fein et al. Oct 2003 A1
20030197679 Ali et al. Oct 2003 A1
20030212316 Leiden et al. Nov 2003 A1
20030220548 Schmitt Nov 2003 A1
20030220576 Diab Nov 2003 A1
20030225323 Kiani et al. Dec 2003 A1
20030225337 Scharf et al. Dec 2003 A1
20030236452 Melker et al. Dec 2003 A1
20030236647 Yoon et al. Dec 2003 A1
20040006261 Swedlow et al. Jan 2004 A1
20040010188 Wasserman et al. Jan 2004 A1
20040024297 Chen et al. Feb 2004 A1
20040024326 Yeo et al. Feb 2004 A1
20040034293 Kimball Feb 2004 A1
20040039272 Abdul-Hafiz et al. Feb 2004 A1
20040039273 Terry Feb 2004 A1
20040054269 Rantala et al. Mar 2004 A1
20040054270 Pewzner et al. Mar 2004 A1
20040054291 Schulz et al. Mar 2004 A1
20040059209 Al-Ali et al. Mar 2004 A1
20040059210 Stetson Mar 2004 A1
20040064020 Diab et al. Apr 2004 A1
20040068164 Diab et al. Apr 2004 A1
20040087846 Wasserman May 2004 A1
20040092805 Yarita May 2004 A1
20040097797 Porges et al. May 2004 A1
20040098009 Boecker et al. May 2004 A1
20040107065 Al-Ali et al. Jun 2004 A1
20040116788 Chernoguz et al. Jun 2004 A1
20040116789 Boaz et al. Jun 2004 A1
20040117891 Hannula et al. Jun 2004 A1
20040122300 Boas et al. Jun 2004 A1
20040122302 Mason et al. Jun 2004 A1
20040127779 Steuer et al. Jul 2004 A1
20040133087 Ali et al. Jul 2004 A1
20040133088 Al-Ali et al. Jul 2004 A1
20040138538 Stetson Jul 2004 A1
20040138540 Baker, Jr. et al. Jul 2004 A1
20040143172 Fudge et al. Jul 2004 A1
20040147821 Al-Ali et al. Jul 2004 A1
20040147822 Al-Ali et al. Jul 2004 A1
20040147823 Kiani et al. Jul 2004 A1
20040147824 Diab et al. Jul 2004 A1
20040152965 Diab et al. Aug 2004 A1
20040158134 Diab et al. Aug 2004 A1
20040158135 Baker, Jr. et al. Aug 2004 A1
20040162472 Berson et al. Aug 2004 A1
20040171920 Mannheimer et al. Sep 2004 A1
20040171948 Terry Sep 2004 A1
20040176670 Takamura et al. Sep 2004 A1
20040176671 Fine et al. Sep 2004 A1
20040181133 Al-Ali et al. Sep 2004 A1
20040181134 Baker, Jr. et al. Sep 2004 A1
20040186358 Chernow et al. Sep 2004 A1
20040199063 O'Neil et al. Oct 2004 A1
20040204636 Diab et al. Oct 2004 A1
20040204637 Diab et al. Oct 2004 A1
20040204638 Diab et al. Oct 2004 A1
20040204639 Casciani et al. Oct 2004 A1
20040204865 Lee et al. Oct 2004 A1
20040210146 Diab et al. Oct 2004 A1
20040215069 Mannheimer Oct 2004 A1
20040230106 Schmitt et al. Nov 2004 A1
20040230107 Asada et al. Nov 2004 A1
20040230108 Melker et al. Nov 2004 A1
20040236196 Diab et al. Nov 2004 A1
20040242980 Kiani et al. Dec 2004 A1
20040249252 Fine et al. Dec 2004 A1
20040257557 Block et al. Dec 2004 A1
20040260161 Melker et al. Dec 2004 A1
20040267103 Li et al. Dec 2004 A1
20040267104 Hannula et al. Dec 2004 A1
20040267140 Ito et al. Dec 2004 A1
20050004479 Townsend et al. Jan 2005 A1
20050010092 Weber et al. Jan 2005 A1
20050020887 Goldberg Jan 2005 A1
20050020894 Norris et al. Jan 2005 A1
20050033128 Ali et al. Feb 2005 A1
20050033129 Edgar, Jr. et al. Feb 2005 A1
20050043599 O'Mara Feb 2005 A1
20050043600 Diab et al. Feb 2005 A1
20050049470 Terry Mar 2005 A1
20050049471 Aceti Mar 2005 A1
20050075550 Lindekugel Apr 2005 A1
20050080323 Kato Apr 2005 A1
20050096516 Soykan et al. May 2005 A1
20050101850 Parker May 2005 A1
20050113543 Koberstein et al. May 2005 A1
20050113651 Wood et al. May 2005 A1
20050113656 Chance May 2005 A1
20050168722 Forstner et al. Aug 2005 A1
20050177034 Beaumont Aug 2005 A1
20050192488 Bryenton et al. Sep 2005 A1
20050197548 Dietiker Sep 2005 A1
20050203357 Debreczeny et al. Sep 2005 A1
20050228248 Dietiker Oct 2005 A1
20050267346 Faber et al. Dec 2005 A1
20050277819 Kiani et al. Dec 2005 A1
20050283059 Iyer et al. Dec 2005 A1
20060009688 Lamego et al. Jan 2006 A1
20060015021 Cheng Jan 2006 A1
20060020181 Schmitt Jan 2006 A1
20060030763 Mannheimer et al. Feb 2006 A1
20060052680 Diab Mar 2006 A1
20060058594 Ishizuka et al. Mar 2006 A1
20060058683 Chance Mar 2006 A1
20060064024 Schnall Mar 2006 A1
20060084852 Mason et al. Apr 2006 A1
20060089547 Sarussi Apr 2006 A1
20060106294 Maser et al. May 2006 A1
20060155180 Brister et al. Jul 2006 A1
20060195028 Hannula et al. Aug 2006 A1
20060224058 Mannheimer Oct 2006 A1
20060239986 Perez-Luna et al. Oct 2006 A1
20060247501 Ali Nov 2006 A1
20060258921 Addison et al. Nov 2006 A1
20060276700 O'Neil Dec 2006 A1
20070032710 Raridan et al. Feb 2007 A1
20070032712 Raridan et al. Feb 2007 A1
20070032715 Eghbal et al. Feb 2007 A1
20070073121 Hoarau et al. Mar 2007 A1
20070073125 Hoarau et al. Mar 2007 A1
20070073126 Raridan, Jr. Mar 2007 A1
20070073128 Hoarau et al. Mar 2007 A1
20070129622 Bourget et al. Jun 2007 A1
20070172904 Dementieva et al. Jul 2007 A1
Foreign Referenced Citations (13)
Number Date Country
0615723 Sep 1994 EP
0630203 Dec 1994 EP
1986543 Nov 2008 EP
63275325 Nov 1988 JP
2005034472 Feb 2005 JP
WO9639927 Dec 1996 WO
WO0021438 Apr 2000 WO
WO0140776 Jun 2001 WO
WO0176461 Oct 2001 WO
WO0176471 Oct 2001 WO
WO03039326 May 2003 WO
WO2005025399 Mar 2005 WO
WO2006097910 Sep 2006 WO
Related Publications (1)
Number Date Country
20090170124 A1 Jul 2009 US
Provisional Applications (1)
Number Date Country
61009721 Dec 2007 US