Hydrogen bronze catalyst for demetallizing petroleum resids

Information

  • Patent Grant
  • 4910181
  • Patent Number
    4,910,181
  • Date Filed
    Thursday, October 27, 1988
    35 years ago
  • Date Issued
    Tuesday, March 20, 1990
    34 years ago
Abstract
The catalyst composition comprises a layered metal oxide and/or sulfide of a metal selected from the group consisting of Group VB and VIB metals and containing inserted atomic hydrogen therein, with no chemical bond between said atomic hydrogen and anionic oxygen or anionic sulfur of the oxide or sulfide. It is useful for demetallizing resids.
Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention is directed to a hydrogen bronze catalyst and a process for using it in hydrotreating various petroleum resids.
2. Discussion of the Prior Art
It is well known that many if not most petroleum base stocks contain contaminants, as for example, sulfur, nitrogen and metals. It is desirable particularly if these feedstocks are to be further processed that the contaminants be removed. This is an operation usually requiring use of a catalyst.
It has been conventional in the art to effect sulfur removal from hydrocarbon stocks by subjecting them to treatment with hydrogen at elevated temperature and pressure while in contact with a catalyst containing hydrogenating components. Typically the hydrogenating components of such prior art catalysts are Group VIB or Group VIII metals, or other oxides or sulfides. These hydrogenating components may be supported on a variety of well known carriers, for example, alumina, kieselguhr, zeolitic molecular sieves and other materials having high surface areas: U.S. Pat. No. 4,080,296. U.S. Pat. No. 3,546,103 teaches hydrodesulfurization with a catalyst of cobalt and molybdenum on an alumina base. U.S. Pat. No. 3,755,146 describes a process for preparing lube oils characterized by low pour points which utilizes a catalyst mixture comprising hydrogenation components, a conventional cracking catalyst which can be either crystalline or amorphous and a crystalline aluminosilicate of the ZSM-5 type.
Hydrotreating of distillates may be defined simply as the removal of sulfur, nitrogen and metal compounds by selective hydrogenation. The hydrotreating catalysts used commercially are cobalt plus molybdenum or nickel plus molybdenum used in the sulfided forms and impregnated on an alumina base. The hydrotreating operating conditions are such that appreciable hydrogenation of aromatics does not occur; these are about 1,000 to 2,000 psi hydrogen and about 700.degree. F. The theoretical hydrogen consumption should be that required to hydrogenate the sulfur, nitrogen and metal containing molecules and produce hydrogen sulfide and ammonia. However, the desulfurization reactions are invariably accompanied by small amounts of hydrogenation and hydrocracking, the extent of which depends on the nature of the feedstock and the severity of desulfurization.
However, neither the prior art mentioned above nor any art known to applicants have combined in a single stage operation the hydrotreating of petroleum resids with a thermally stable catalytic support material containing at least about 10 wt % layered metal oxide hydrogen bronze. This hydrotreatment of petroleum resid results in an improved demetallized product compared to that obtained with CoMo/Al.sub.2 O.sub.3 catalyst.
Because of the high pressures required for the hydroprocessing of resids, it is extremely desirable from an economic standpoint to minimize reactor volume. Use of these layered metal oxide bronze materials with a suitable support for upgrading of resids will allow the refiner to attain the required degree of metals removal with less catalyst and therefore in a smaller reactor. Alternatively, using the hydrogen bronze based catalyst in existing reactors will allow refiners to run at lower reaction severities or to attain process resid with improved quality. The process of the present invention would apply to, for example, FCC feed pretreatment. With this in mind, applicants will proceed with a summary of the novel features of the present invention.
SUMMARY OF THE INVENTION
The present invention relates to an improved petroleum resid upgrading process comprising hydrotreatment of resid with a layered metal oxide hydrogen bronze.
The invention also relates to an improved petroleum resid upgrading process comprising hydrotreatment of resid with a physical mixture of about 10 wt % SiO.sub.2 and about 90 wt % H.sub.0.5 MoO.sub.3 layered bronze in a fixed bed downflow reactor at hydrogen partial pressure greater than about 400 psig, temperature ranging between about 675.degree. F. to about 850.degree. F. and liquid hourly space velocity between 0.1 and about 10 hr.sup.-1 and recovering an improved demetallized product compared to that obtained with CoMo/Al.sub.2 O.sub.3 catalyst.
The invention further relates to a hydrotreating catalyst comprising a thermally stable catalytic support material containing layered metal oxide hydrogen bronze.
The invention still further relates to a hydrotreating catalyst for petroleum resid upgrading process comprising a physical mixture of about 10 wt % SiO.sub.2 and about 90 wt % H.sub.0.5 MoO.sub.3 layered bronze having improved demetallization activity compared to CoMo/Al.sub.2 O.sub.3 catalyst.





DESCRIPTION OF THE PREFERRED EMBODIMENTS
The present invention is predicated on the discovery that hydrotreatment of petroleum resid with thermally stable catalytic support material containing at least about 10 wt % layered metal oxide hydrogen bronze unexpectedly improves demetallization of the resid compared to similar treatment with a conventional CoMo/Al.sub.2 O.sub.3 catalyst.
Hydrogen bronze can be defined as an insertion compound of atomic hydrogen in an oxide or chalcogenide, in which there is no formal chemical bond between the anion of the host lattice--either O.sup..dbd. or S.sup..dbd. --and the inserted element. See D. Tinet, H. Estrade--Szwarckopf and J. J. Fripiat, Bull. Soc. Fr. Phys., 42, 28 (1981), which is hereby incorporated by reference, for more detail concerning hydrogen bronze. While the bronzes of interest here are of the oxides, under hydroprocessing conditions some sulfiding may occur. The term "hydrogen bronze" is based on the material's metallic lustre and associated electronic properties.
The synthesis and structure of H.sub.0.5 (MoO.sub.3) has been described by Schollhorn. See R. Schollhorn, H. D. Zagefka, T. Butz and A. Lerf, Mater. Res. Bull., 14, 369 (1979); R. Schollhorn, Angew. Chem. Int. Ed. Engl., 19, 983 (1980); and R. Schollhorn, Intercalation Chemistry, M. S. Whittingham and A. J. Jacobson, Eds., Academic Press, New York, 315 ff (1982) which are hereby incorporated by reference.
The synthesis and structure of H.sub.0.5 (MoO.sub.3) has been described in the literature. A review of layered materials by Catalyticia Associates states that although the catalytic chemistry of MoO.sub.3 is well documented, there is little reported catalysis resulting directly from the layered nature of MoO.sub.3. See Catalyticia Associates Inc., New Catalytic Materials: Volume VII, Layered Structures As Novel Catalysts, Multiclient Study No. 4183 LS, Mountain View, Calif., 188 ff (1983), which is hereby incorporated by reference.
As mentioned, this invention relates to the use of hydrogen bronze. Examples are molybdenum bronze (H.sub.x MoO.sub.3), tungsten bronze (H.sub.y WO.sub.3), and vanadium bronze (H.sub.z V.sub.2 O.sub.5). The concentration of hydrogen in the hydrogen bronze is designated by the subscripts x, y and z and is preferably about 0.5. Other bronzes included among the Group VB and Group VIB metals of the Periodic Table of Elements, for example, niobium. A specific molybdenum bronze H.sub.x MoO.sub.3, was utilized in the experimentation of this invention.
The catalyst mixture is a physical mixture of a conventional, thermally stable catalytic support material with the hydrogen bronze. The hydrogen bronze comprises at least about 10 wt % of the physical mixture. The preferred concentration is about 90 wt %. The mixture is then extruded or bound according to conventional catalyst preparation techniques.
The hydrogen bronze may be supported on a variety of well known carriers, for example, alumina, kiselguhr, zeolitic molecular sieves and other materials having high surface areas. The support material is preferably alumina.
The resid upgrading process can be carried out on a conventional fixed bed downflow (trickle bed) reactor at a hydrogen partial pressure greater than about 400 psig, temperatures ranging from about 675.degree. F. to about 850.degree. F. and a liquid hourly space velocity of between about 0.1 and about 10 hr.sup.-1. These conditions are conventional, and selection is well within the skill of a person having ordinary skill in the art.
EXPERIMENTAL
The present invention will now be illustrated by examples which are not intended to limit the scope of the present application.
To specifically illustrate the inventive process, resid and catalyst were utilized in the exemplary material described below. The properties of this residuum are shown in Table 1:
TABLE 1______________________________________Properties of theArab Light Vacuum Resid______________________________________Elemental Analysis (wt %)Hydrogen 10.68Sulfur 3.93Nitrogen .31CCR and Asphaltenes Analysis (wt %)CCR 16.96Asphaltenes (n-C.sub.5 insolubles) 10.93Metals Analysis (ppm)Nickel 16Vanadium 65Iron 12Sodium 6Kinematic Viscosity (cs)212.degree. F. 496.2300.degree. F. 24.6______________________________________
Experiments were made with the Arab Light Vacuum Resid. One run utilized a CoMo/Al.sub.2 O.sub.3 catalyst described in U.S. Pat. No. 4,016,067, the entire content of which is hereby incorporated by reference. This catalyst is a conventional state-of-the-art demetallization catalyst used for catalyst comparison. Specific properties of this catalyst are set forth in the following table:
TABLE 2______________________________________CoMo/Al.sub.2 O.sub.3 Resid Demetalation Catalyst Properties______________________________________Metals Loading (wt %)CoO 3.5MoO.sub.3 10.0Physical PropertiesSurface Area, m.sup.2 /g 109Real Density, g/cc 3.629Particle Density, g/cc 1.221Pore Volume, cc/g 0.543Avg. Pore Dia, A 199Pore Size Distribution, %Pore Volume in Pores of diameter (A)0-30 1130-50 --50-80 --80-100 2100-150 24150-200 34200-300 17300+ 12______________________________________
The catalyst used in other experiments have the properties set forth in the following table:
TABLE 3______________________________________Properties of the H.sub.0.5 (MoO.sub.3) and MoO.sub.3 Catalysts Used 10% SiO.sub.2 90% Moly MoO.sub.3 H.sub.0.5 (MoO.sub.3) Bronze______________________________________Density, g/ccPacked 1.59 1.42 1.34Particle not not 2.21 available availableReal 4.90 4.68 3.98Pore Volume, cc/g 0.01 0.05 0.201Surface Area, m.sup.2 g <5.0 5.0 20Avg. Pore Diameter, A not not 402 determined determinedPore Size Distribution, %Pore Volume in Poresof diameter (A) 0-30 1 30-50 1 50-80 6 80-100 4100-150 7150-200 6200-300 10300+ 64Sorption Capacity, wt %H.sub.2 O 0.0 0.9Cyclohexane 0.1 0.7Hexane 0.1 0.9SiO.sub.2, wt % -- -- 14.8MoO.sub.3, wt % 100 -- --Mo, wt % 66.7* 67.4 54.8Zn, wt % 0.013Ash, wt % 95.7 83.1______________________________________ *Theoretical value.
EXAMPLES
Two H.sub.0.5 (MoO.sub.3) catalysts were compared against MoO.sub.3 for metals, sulfur, CCR and asphaltene removal in shaker bomb experiments with Arab Light vacuum resid. Shaker bomb testing very closely simulates the resid upgrading activities observed in continuous downflow units. See S. M. Oleck and H. S. Sherry, Fresh Water Manganese Nodules As a Catalyst For Demetallizing and Desulfurizing Petroleum Residua, Ind. Eng. Chem., Process Des. Dev. 16 (4) 525 (1977) which is hereby incorporated by reference. Properties of the H.sub.0.5 (MoO.sub.3) catalyst are given in Table 3 while the properties of the Arab Light vacuum resid are given in Table 1. In a series of three experiments, the H.sub.0.5 (MoO.sub.3) catalyst and the MoO.sub.3 were contacted with the resid in a shaker bomb apparatus at the following conditions:
______________________________________Oil, Catalyst (wt:wt) 20Temperature .degree.C. 400Hydrogen Pressure, psig 2000Reaction Time, min. 80______________________________________
The shaker bomb apparatus is described in J. W. Payne, C. W. Streed, and E. R. Kent, The Shaker Bomb--A New Laboratory Tool For Studying Thermal Processes, Ind. Eng. Chem., 50 (1), 47 (1958), which is hereby incorporated by reference. At the conclusion of each run, the catalyst and the oil were separated and both components were analyzed. The effectiveness of each catalyst for resid upgrading was determined by comparing the degree of demetallization, desulfurization, CCR removal, etc. to that observed in an identical run in which a conventional CoMo/Al.sub.2 O.sub.3 catalyst was used. Properties of the latter catalyst are given in Table 2. Thermal contributions were determined from a "blank" run at identical conditions but with no catalyst present.
Table 4 presents the results of catalyst activity comparison:
TABLE 4__________________________________________________________________________ 10% SiO.sub.2 Moly. Brz. 90% Moly. Thermal CoMo/Al MoO.sub.3 H.sub.0.5 (MoO.sub.3) Bronze__________________________________________________________________________ConditionsTemp., .degree.C. 400 .fwdarw. .fwdarw. .fwdarw. .fwdarw.Press, psig 2000 .fwdarw. .fwdarw. .fwdarw. .fwdarw.Oil/Cat. infinite 20 .fwdarw. .fwdarw. .fwdarw.Time, min. 80 .fwdarw. .fwdarw. .fwdarw. .fwdarw.Conversion 13 14.7 6.9 Noneto 1000.degree. F..sup.-, %TLP AnalysisHydrogen, wt % 10.58 10.69 10.30 10.26 10.11Sulfur, wt % 3.47 2.52 3.72 3.48 3.87Nitrogen, wt % 0.32 0.26 0.22 0.18 0.20Vanadium, ppm 70 40 56 17 34CCR, wt % 16.00 13.55 16.01 17.91 17.37Asphaltenes, wt % 8.52 5.40 6.40 5.50 6.98Vanadium Removal, % -- 38 14 77 48CCR Removal, % 6 20 6 -- --Sulfur Removal, % 12 36 5 11 2Asphaltenes Removal, % 22 51 41 50 3.6__________________________________________________________________________
The table shows that the H.sub.0.5 (MoO.sub.3) and SiO.sub.2 bound H.sub.0.5 (MoO.sub.3) materials both have resid upgrading activities greater than MoO.sub.3 alone. Moreover, it can be seen that these molybdenum bronze materials are also superior to the standard CoMo/Al.sub.2 O.sub.3 catalyst in demetallization activity beyond what is known in the prior art. Demetallization activity is one of the most important performance criteria in good resid upgrading catalyst, and consequently the present invention makes a substantial advance in the art.
Although the invention has been described in conjunction with specific embodiments, it is evident that many alternatives and variations will be apparent to those skilled in the art in light of the foregoing description. Accordingly, the invention is intended to embrace all of the alternatives and variations that fall within the spirit and scope of the appended claims.
Claims
  • 1. A demetallization catalyst consisting of a thermally stable catalytic support material and a hydrogen bronze which is a layered metal oxide and/or metal sulfide wherein said metal is selected from the group consisting of tungsten, molybdenum, vanadium, and niobium; wherein the hydrogen bronze contains inserted atomic hydrogen and wherein there is no formal chemical bond between said inserted atomic hydrogen and the O.sup..dbd. and S.sup..dbd. anion of said layered metal oxide and/or metal sulfide; which catalyst is effective to demetallate metal laden resids.
  • 2. The catalyst according to claim 1, wherein the hydrogen bronze is a molybdenum bronze.
  • 3. The catalyst according to claim 2, wherein the molybdenum bronze has the formula H.sub.0.5 MoO.sub.3.
  • 4. The catalyst according to claim 3, wherein the concentration of the molybdenum bronze is about 90 wt %.
  • 5. The catalyst according to claim 1, wherein the hydrogen bronze is a tungsten bronze.
  • 6. The catalyst according to claim 1, wherein the hydrogen bronze is a vanadium bronze.
  • 7. The catalyst according to claim 1, wherein the metal is niobium.
  • 8. The catalyst according to claim 1, wherein the thermally stable catalytic support material is SiO.sub.2.
  • 9. The catalyst according to claim 1, wherein the thermally stable catalytic support material contains at least about 10 wt % layered metal oxide hydrogen bronze.
  • 10. A hydrotreating catalyst for petroleum resid upgrading process comprising a physical mixture of about 10 wt % SiO.sub.2 and about 90 wt % H.sub.0.5 MoO.sub.3 layered hydrogen bronze wherein the hydrogen bronze contains inserted atomic hydrogen and wherein there is no formal chemical bond between said inserted atomic hydrogen and the O.sup..dbd. or S.sup..dbd. anion of said layered metal oxide and/or sulfide wherein the hydrogen bronze has improved demetallization activity compared to CoMo/Al.sub.2 O.sub.3 catalyst.
Parent Case Info

This is a divisional of copending application Ser. No. 938,084, filed on Dec. 4, 1986, now U.S. Pat. No. 4,781,817.

US Referenced Citations (9)
Number Name Date Kind
3094480 Richardson Oct 1960
3112257 Douwes et al. Nov 1963
3546103 Hammer et al. Dec 1970
3755146 Harris et al. Aug 1973
3883607 Neikam May 1975
4016067 Fischer et al. Apr 1977
4052296 Montagna Oct 1977
4080296 Clark Mar 1978
4584093 Toulhoat et al. Apr 1986
Non-Patent Literature Citations (7)
Entry
Schollhorn, "Reversible Topotactic Redox Reactions of Solids by Electron/Ion Transfer", Angew. Chem. Int. Ed. Engl., 19, pp. 983-1003 (1980).
"Mat. Res. Bull.", vol. 14, pp. 369-376 Ionic Bonding Model of the Pyridine Intercalation Compounds of Layered Transition Metal Dichalcogenides.
"Angew, Chem. Int. Ed. Engl.", 19, 983-1003 (1980) Reversible Topotactic Redox Reactions of Solids by Electron/Ion Transfer.
"Intercalation Chemistry" pp. 315-360, pp. 315-360 Solvated Intercalation Compounds of Layered Chalcogenide and Oxide Bronzes.
New Catalytic Materials: vol. VII Layered Structured as Novel Catalysts "Ind. Eng. Chem. Process Des. Dev.", vol. 16, No. 4, 1977, pp. 525-528.
Fresh Water Manganese Nodules as a Catalyst for Demetalizing and Desulfurizing Petroleum Residua.
The Shaker Bomb, John W. Payne, Carl W. Streed and Eric R. Kent, R&D Lab., Socony Mobil Oil Co. Inc., Paulsboro, NJ.
Divisions (1)
Number Date Country
Parent 938084 Dec 1986