This invention relates to systems and methods for generating hydrogen gas from borohydride compounds and reformable fuels. More particularly, this invention relates to systems and methods for hydrogen generation utilizing two or more liquid fuel components.
Fuel cell power systems have an advantage over batteries in that they can be readily refuelable, and therefore a combination of a “replaceable” fuel cartridge and a “permanent” module can allow extended runtime operations without the need for grid electricity for recharging.
Although hydrogen is the fuel of choice for fuel cells, widespread use is complicated by the difficulties in storing the gaseous hydrogen. Many hydrogen carriers, including hydrocarbons, metal hydrides, and chemical hydrides are being considered as hydrogen storage and supply systems for generation of hydrogen on demand, e.g., by reformation from hydrocarbons, desorption from metal hydrides, or catalyzed hydrolysis from metal hydrides and water. Preferably the fuel mixture has a high gravimetric energy density, and controllable hydrogen generation rate, i.e., flow rate and pressure may be controlled to meet demands of a fuel cell.
Reformable fuels, which are typically defined as any substantially liquid or flowable fuel material that can be converted to hydrogen via a chemical reaction known as reformation, including for example hydrocarbons, and chemical hydrides, produce hydrogen and other gaseous and non-gaseous products. For hydrocarbons, the non-hydrogen by-products comprise carbon oxides, e.g., CO2 and CO, and potentially other gaseous products. The resulting hydrogen rich gaseous product stream is typically sent through a purification stream before being sent to, e.g., a fuel cell unit. Hydrocarbon fuels useful for fuel cartridge systems include, for example, methanol, ethanol, methane, propane, butane, gasoline, and diesel fuel. As an example, methanol is a preferred fuel which reacts with water to form hydrogen and carbon dioxide.
CH3OH+H20→3H2+CO2 Equation 1
One of the more promising systems for hydrogen storage and generation utilizes borohydride compounds as hydrogen storage media. Such compounds react with water to produce hydrogen gas and a borate in accordance with the following simplified:
MBH4+2H2O→MBO2+4H2+300 kJ Equation 2
where MBH4 and MBO2, respectively, represent a metal borohydride and a metal metaborate. In practice, the borate is actually in one or more hydrated states, e.g., tetrahydrate, dehydrate, or hemihydrate. The rate of decomposition of the metal borohydride into hydrogen gas and a metal metaborate is pH dependent, with higher pH values hindering the hydrolysis. Accordingly, a stabilizer, such as an alkali metal hydroxide is typically added to solutions of a complex metal hydride in water to be used as the fuel from which the hydrogen gas is generated. Heat or a catalyst, e.g. acids or a variety of transition metals, can be used to accelerate the hydrolysis reaction.
Sodium borohydride (NaBH4) is of particular interest because it can be dissolved in alkaline water solutions with virtually no reaction; in this case, the stabilized alkaline solution of sodium borohydride is referred to as fuel. Furthermore, the aqueous borohydride fuel solutions are non-volatile and will not burn. This imparts handling and transport ease both in the bulk sense and within the hydrogen generator itself.
Various hydrogen generation systems have been developed for the production of hydrogen gas from aqueous sodium borohydride fuel solutions. The advantage of such borohydride hydrogen generation systems is that they can be scaled to feed fuel cells of power ranges from less than 10 watts to greater than 50 kilowatts. In most cases, it is preferred that hydrogen generation systems be efficient and compact, have a high gravimetric hydrogen storage density, and are readily controllable to match hydrogen flow rate and pressure to the operating demands of the fuel cell. The challenge in designing such systems is to maximize energy density by minimizing the associated balance of plant components to reduce volume, weight, parasitic load and general system complexity.
A simple conventional system (
For example, a system for generating hydrogen from solid and liquid fuel components has been described in U.S. patent application Ser. No. 10/115,269, filed Apr. 2, 2002, now U.S. Pat. No. 7,282,073 entitled “Method and System for Generating Hydrogen by Dispensing Solid and Liquid Fuel Components,” which is commonly assigned. Such systems utilize separate dispensing and delivery mechanisms for each fuel component.
Hydrogen generation systems may recycle or recover reaction products to control the reaction or to increase efficiency of conversion. For example, the reactant may be withdrawn from the reaction chamber to stop the reaction as described in described in U.S. Pat. No. 6,534,033 entitled “System for Hydrogen Generation,” which is commonly assigned, where, in a process for generating hydrogen from a stabilized metal hydride solution, a reversible fuel pump is in fluid communication with a fuel solution reservoir and a reaction chamber containing a hydrogen generation catalyst. The pump can run in a forward direction to deliver fuel to the reaction chamber and then in a reverse direction to drain the reaction chamber to stop hydrogen generation.
Clogging by precipitation of solid reactants from reactant solutions or precipitations of reactants or reaction products in pumps and valves may be a significant issue. Various approaches are known to allow for controlling the reaction chemistry, or flushing of the system with water or other diluent to reduce clogging. Some systems recycle fuel to increase the efficiency of hydrogen generation. It is preferable in other systems that solid by-products, and fluid reaction products which may precipitate out, are not recycled back to the reaction chamber or the fuel reservoir, to avoid clogging. However, since water is generated in significant quantities as a reaction product in hydrogen fuel cells, it may be recycled into the fuel mixture as a diluent, or used for flushing the system. Such a system which provides for water to be recovered from the exhaust of a fuel cell or condensed from a hydrogen gas stream is described for example in U.S. patent application Ser. No. 10/223,871, now U.S. Pat. No. 7,803,657, entitled “System for hydrogen generation,” which is commonly assigned.
Since gravimetric energy density is one of the key factors affecting the cost of hydrogen generation technology, it is desirable to provide a more concentrated fuel solution and a diluent, or multi-component fuel mixtures, which may be stored in concentrated form and mixed or diluted on demand (e.g., hydride and water or other aqueous reactant). Nevertheless, additional pumps required for additional components are a significant cost in dollars and energy density. Pumps are the active mechanical component that are most likely to break down, particularly if clogging is an issue, thus affecting reliability. Thus, current systems have limitations and alternative systems and methods with improved energy density, cost and reliability are required for systems for hydrogen generation on large and small scale when using multi-component fuel mixtures, or for mixing recycled or recovered fluid reaction products with fuel components.
The present invention overcomes or mitigates one or more of the afore-mentioned limitations of known systems and methods for generation of hydrogen.
Systems and methods are provided for hydrogen generation utilizing two or more liquid fuel components, using a fuel delivery system comprising a single pump. Advantageously, a single reversible cycle pump is used to deliver two or more fuel components of a fuel mixture in desired proportions to a mixing zone, reaction zone, or reaction chamber of a hydrogen generation system, while reducing the number of active elements required for fuel delivery and flow control of multiple fuel components. Alternatively, a unidirectional single or duel feed pump co-operable with flow control means comprising a valve, provides for delivering first and second fuel components in desired proportions. Control of the pump speed, and duty cycle of the pump in continuous or pulsed modes, provides for delivery of first and second fuel components in desired proportions, to control hydrogen generation, and to provide for dilution, mixing, and flush cycles using a single pump.
One aspect of the invention provides a hydrogen generation system utilizing a fuel mixture capable of generating hydrogen and comprising at least two fuel components supplied from first and second fuel supply reservoirs. The system comprises a single fuel delivery pump and flow control means for selectively delivering first and second fuel components to a reaction zone in desired proportions; the pump and flow control means being co-operable in a first operating mode to deliver to the reaction chamber one of the first and second fuel components, and in a second operating mode to deliver to the reaction chamber a mixture of the first and second fuel components in desired proportions.
The system may further comprise a control means for controlling the pump speed, pump direction, duty cycle and other parameters of the system, and where active valves are incorporated, for controlling modulation or action of the valves. Preferably a programmable pump controller provides for automatic control of the pump and/or valves in response to signals indicative of system conditions.
Advantageously, the control means may be responsive to changes in external or system conditions, such as temperature or pressure, or a control signal from a fuel cell, to control the pump or valve to alter the fuel mix, fuel flow rate, or other parameters.
A second aspect of the invention provides a system for hydrogen generation utilizing a fuel mixture comprising two or more liquid fuel components of a fuel mixture capable of generating hydrogen, comprising a first fuel supply reservoir for a first fuel component and a second fuel supply reservoirs for a second fuel component, a reaction zone, fuel supply conduits extending between the reservoirs and the reaction zone, a single pump and flow control means for delivering first and second fuel components from the first and second supply reservoir to the reaction zone in desired proportions; wherein the flow control means are operable to deliver selectively to the reaction zone at least one of the first fuel component and the second fuel component, and mixtures of the first and second fuel components in desired proportions.
Beneficially, the pump may comprise a dual head reversible drive pump, operable in a forward direction to pump the first fuel component and in a reverse direction to pump the second fuel component, and the flow control means is operable for selecting a pump speed, direction, and duty cycle to deliver selectively a first fuel component, a second fuel component, and mixtures thereof in desired proportions.
Alternatively, a single feed unidirectional pump or a dual feed unidirectional pump may be used with flow control means comprising one of a three way valve or other valve configurations to selectively deliver one of the first and second fuel components or a mixture thereof in desired proportions to a reaction zone or reaction chamber, or to a mixing zone upstream of the reaction zone.
For example, when the first fuel component comprises a concentrated fuel mixture and the second fuel component comprises a diluent, the pump and the flow control means are operable in a dilution cycle to provide a fuel mixture of a desired concentration for hydrogen generation and in a flush cycle to flush the system with diluent.
When the first fuel component comprises a first reactant and the second fuel component comprises one of a second reactant and a catalyst solution, the pump and flow control means are operable in a mixing cycle to provide a fuel mixture at a desired concentration for hydrogen generation.
Advantageously, the system may further comprise control means for selecting at least one of a pump speed, and a duty cycle of the reversible pump for controlling delivery of the first and second fuel components to the reaction zone in desired proportions.
When the reaction mixture requires a catalyst, the reaction zone may comprise a reaction chamber containing an appropriate supported or unsupported catalyst, and may comprise a mixing zone upstream of the reaction zone.
If a third fuel component is required, a configuration using one additional three-way valve provides for connection to a third reservoir to enable delivery of more than two components of a fuel mixture with a single pump.
Other aspects of the invention provide for a pump module comprising a single pump and flow control means which may comprise a single valve co-operable with the pump in a first operating mode to deliver to an outlet of the pump module one of the first and second fuel components, and in a second operating mode to deliver to an outlet of the pump module a mixture of the first and second fuel components in desired proportions. Preferably, the flow control means is operable for selecting the pump speed and duty cycle to deliver the first and second fuel components in desired proportions to an outlet of the pump module.
Yet another aspect of the invention provides a method of providing a fuel mixture capable of generating hydrogen to a hydrogen generation system utilizing a mixture of at least two liquid fuel components supplied from first and second fuel supply reservoirs using a single pump and flow control means, the pump being co-operable with the flow control means in a first mode to pump at least one of the first and second fuel components and operable in second mode to pump a mixture thereof in desired proportions, wherein the method comprises selecting the duty cycle of the pump to deliver first and second fuel components in desired proportions to a mixing zone of a hydrogen generation system.
Thus, with a reversible drive pump, the pump can be operable in a first (e.g., forward) direction to pump a first fuel component and operable in a reverse direction to pump a second fuel component. The duty cycle of the pump can be selected in forward and reverse directions, to selectively deliver first and second fuel components sequentially in desired proportions to a mixing zone of a hydrogen generation system. For unidirectional pumps, the method may comprise for example, controlling the duty cycle of the pump and modulation of a three-way valve to deliver desired proportions of first and second fuel components to the reaction chamber to provide one of a mixing cycle, a dilution cycle, and a flush cycle.
Systems and methods of the present invention can be used for hydrogen generation from fuel mixtures requiring mixing of two or more components of a fuel mixture, for example, to dilute a concentrated fuel component with water or an aqueous reagent, or to mix two components of a fuel mixture (e.g., fuel solution and catalyst solution). Alternatively, where one fuel reservoir contains a fuel mixture, and the second reservoir contains water or another diluent, the pump may be operable to pump a fuel mixture at a desired dilution, or to flush the system with water or diluent, to control the reaction or to reduce clogging.
Two or more liquid fuel components may be mixed in variable proportions in a system where the fuel delivery system comprises a single reversible pump and valve means. Preferably, the pump provides for controllably selecting the pump speed, pumping direction and duty cycle of the reversible pump for controlling delivery of the first and second fuel components to the reaction chamber in the desired proportion. Beneficially, the operation of the pump is programmably controllable. Thus it is possible to deliver sequentially first and second fuel components in desired proportions to a mixing zone, a reaction zone, or reaction chamber to conveniently provide for dilution, mixing, or flush cycles.
Thus systems and methods of the present invention provide hydrogen generation utilizing a mixture of two or more fuel components using a single reversible pump, and a reduced number of other active elements such as valves.
Various features, objects and advantages of the invention will become apparent from the following description of preferred embodiments of the invention which are described, by way of example only, with reference to the accompanying drawings, in which:
In the drawings, identical or corresponding elements in the different Figures have the same reference numeral.
Systems and methods according to embodiments of the invention described herein are suitable for generation of hydrogen from reformable fuels, i.e., substantially liquid or flowable fuel materials that can be converted to produce hydrogen via a chemical reaction in a reactor. The fuel may also contain a catalyst, and includes hydrocarbons, e.g., methanol, and hydrides, particularly boron hydrides as described in U.S. Provisional Patent Application Ser. No. 60/905,035, incorporated herein by reference, and as described in examples set out below.
A hydrogen generation system according to one embodiment of the present invention is shown schematically in
Thus, during pump operation, a first fuel component 1 is withdrawn from the first supply chamber 100, through the valve 216, and is delivered to the reaction chamber 108, and the second fuel component or diluent 2 is withdrawn from the second fuel supply reservoir 200 and delivered to the reaction chamber 108. As shown in
In the configuration shown in
The system shown in
A system according to a second embodiment of the invention is shown in
As an example, when the valve 218 is partially closed, a fuel mixture with a desired mixture of concentrated fuel component and diluent is delivered to the mixing zone 106. As an example of fuel dilution according to this embodiment, when the first reservoir contains 30 wt-% sodium borohydride solution flowing at 1 ml/min, and valve 218 is throttled to deliver a diluent at 0.5 ml/min, the theoretical effective concentration delivered to the reactor 108 is 20 wt-% sodium borohydride at a flow rate of 1.5 ml/min.
The configuration shown in
In a system according to another embodiment, as shown in
The configuration shown in
A system according to another embodiment is shown in
For example, the first fuel reservoir 100 may hold fuel at a desired concentration and the second fuel reservoir 200 may hold diluent or water for flushing the system. During operation of the pump, the valve is opened in the first position to allow flow of fuel mixture towards the reaction chamber 108 for hydrogen generation, and opened in the second position for flushing of the reaction system. Since components may mix in the zone 106 comprising part of the conduit line between the three way valve and the pump, this arrangement is particularly suitable to deliver, for example, a fuel mixture which forms hydrogen in the presence of catalyst in the reaction chamber. The fuel mixture may be mixed in a desired concentration on demand to control hydrogen generation by controlling or by modulation of the opening of the three-way valve.
Alternatively when mixing downstream of the pump in a reaction zone or close to the reaction chamber is desirable, for example, mixing two fuel components which react in the absence of catalyst to provide hydrogen, the embodiment shown in
The embodiment shown in
A system according to a further embodiment is shown in
For example, in one mode, the system may operate to deliver one of the two fuel components continuously or in pulses; in another mode, the system may operate to sequentially deliver alternating flows or pulses of first and second fuel components in desired proportions to generate a required mixture.
Thus the system of this embodiment may be used conveniently for dilution of a concentrated fuel solution held in the first reservoir 100 when a diluent or water is held in the second fuel reservoir 200 and can provide a fuel mixture with a desired proportion of the two components by appropriate control of pump speed and duty cycle.
When components react to form hydrogen in the presence of a catalyst, mixing of components may take place in the mixing zone 106 (as shown in
Where fuel is supplied to the reaction chamber from the first supply reservoir at a desired concentration and dilution is unnecessary, the pump may be operated continuously in the forward direction during hydrogen generation; the second supply reservoir may contain diluent, catalyst solution, or water for flushing or controlling the reaction as needed by operation of the pump in the reverse direction.
The system is particularly advantageous for dilution of a concentrated fuel solution, when the fuel solution may be stored in a greater concentration than is typically fed to the catalyst in the reaction chamber, and even as a slurry or suspension, and mixed with water or other diluent on demand, thus improving efficiency in storage and gravimetric hydrogen storage density or energy density.
A system according to the embodiment shown in
It will also be appreciated that this single pump configuration may also be combined with a three way valve, similar to those described with respect to the embodiments above, if it is desired to mix more than two fuel components and/or diluents, as shown in
Also shown in
Such an arrangement is particularly suitable when using concentrated borohydride fuel mixtures to improve energy density, while reducing active components and reducing the likelihood of clogging.
It will also be appreciated that addition of another three-way valve would provide a convenient way of providing another fuel component to the other embodiments described above and various combinations of the pump configurations and valve configurations described above are contemplated as alternatives. Nevertheless, an objective of the preferred embodiments is to provide a system for hydrogen generation using reformable fuels, and in particular from boron hydrides, when utilizing two or more liquid fuel components. Systems and methods as described above conveniently provide for mixing of two or more fuel components in desired proportions, and for control of reactant flow, dilution, mixing and flushing cycles with a single pump and a reduced number of valves.
The embodiments described above with respect to sodium borohydride solution and a diluent for generating hydrogen are given by way of example only. It will be apparent that the preferred embodiments described above and other embodiments may be used for generation of hydrogen from many other fuel mixtures comprising two or more fuel components.
Other suitable fuel mixtures for generation of hydrogen are more fully described in detail in U.S. Provisional Application Ser. No. 60/905,034, which is incorporated herein by reference.
In operation of the system to provide a means of generating hydrogen according to one embodiment, the fuel comprises a metal hydride fuel component that is a complex metal hydride that is water soluble and stable in aqueous solution. Examples of suitable metal hydrides are those borohydrides having the general formula M (BH4)n, where M is an alkali or alkaline earth metal selected from Group 1 (n=1) or Group 2 (n=2) of the periodic table, such as sodium, lithium, potassium, magnesium and calcium. Examples of such compounds include without intended limitation are: NaBH4, LiBH4, KBH4, and Ca(BH4)2. These metal hydrides may be utilized in mixtures, but are preferably utilized individually. Sodium borohydride is preferred in the present invention due to its comparatively high solubility in water, about 35% by weight as compared to about 19% by weight for potassium borohydride. Typically, the fuel solution is comprised of from about 10% to 35% by wt. sodium borohydride and from about 0.01 to 5% by weight sodium hydroxide as a stabilizer.
Since some water is consumed in the hydrogen generation process shown in Equation 2 and additional water is lost as steam, the product stream containing the borate salt is more concentrated than the initial borohydride fuel mixture. Precipitation of the product salt from a concentrated solution in the reaction chamber itself or in any of the associated downstream apparatus will render the system ineffective until disassembled and cleaned. To prevent such precipitation, a water flush cycle is typically used to ensure that any precipitates or saturated borate solution are washed out of the system. In typical known hydrogen generation systems such as that illustrated in
In preferred embodiments of the present invention, one fuel pump is used to deliver both the active fuel component and water, and facilitates mixing and dilution cycles as well as flushing cycles, with a single pump. The following examples of methods of generating hydrogen will be described with reference to the system shown in
In operation of the system to provide a method of generating hydrogen according to one embodiment, the first fuel component 1 comprises an aqueous metal borohydride solution and the second fuel component 2 comprises water. The water component may contain other additives in solution, for example, common anti-freeze agents such as ethylene glycol.
A first fuel component, e.g. an aqueous metal hydride solution, is held in reservoir 100, and water is held in reservoir 200. When pump 410 is operated in the forward direction (i.e., clockwise as shown in
The reaction chamber 108 preferably includes a catalyst bed comprising a catalyst metal supported on a substrate. The preparation of such supported catalysts is taught, for example, in U.S. Pat. No. 6,534,033 entitled “System for Hydrogen Generation,” the disclosure of which is incorporated herein by reference. Suitable transition metal catalysts for the generation of hydrogen from a metal hydride solution are known in the art and include metals from Group IB to Group VIIIB of the Periodic Table, either utilized individually or in mixtures, or as compounds of these metals. Representative examples of these metals include, without intended limitation, transition metals represented by the copper group, zinc group, scandium group, titanium group, vanadium group, chromium group, manganese group, iron group, cobalt group and nickel group. Specific examples of useful catalyst metals include, without intended limitation, ruthenium, iron, cobalt, nickel, copper, manganese, rhodium, rhenium, platinum, palladium, and chromium. As is known, the catalyst may also be in forms of beads, rings, pellets or chips. It is preferred that structured catalyst supports such as honeycomb monoliths or metal foams be used in order to obtain the ideal plug flow pattern and mass transfer of the fuel to the catalyst surface.
As an alternative approach to a water flush cycle, precipitation problems and clogging can be reduced or avoided by utilizing a dilute fuel feed to reduce the possibility of the system becoming clogged as a result of insufficient water in the product stream to maintain the borate product salt in solution. The advantages of such dilution are set forth in U.S. patent application Ser. No. 10/223,871, filed Oct. 20, 2002, entitled “System for Hydrogen Generation,” which is commonly assigned, the disclosure of which is incorporated herein by reference. The system described herein may advantageously be used to dilute a fuel solution held in the first reservoir with water held in the second reservoir.
Thus, in operation of the system to provide a method according to one embodiment, a concentrated borohydride solution is held in the first reservoir 100, and water is held in the second reservoir 200. The pump is operated in cycles as illustrated
As mentioned above, when the first fuel component comprises, e.g., a 20 wt-% sodium borohydride solution, when pump 210 is cyclically driven “forward” at a constant rate for 2 seconds to deliver the borohydride fuel component, and then in reverse at the same rate for 0.5 seconds to deliver water, the theoretical effective concentration delivered to reactor 108 is a 16 wt-% sodium borohydride solution. Advantageously, as shown in
This arrangement allows for fuel components to be stored at a greater concentration than is typically fed through the catalyst bed, improving gravimetric hydrogen storage density. In addition, such a dilution scheme would allow the storage of a slurry or a suspension of an aqueous borohydride mixture where the concentration of the metal hydride in the fuel system exceeds the maximum solubility of the particular salt utilized. Hot water recovered from the product stream from hydrogen generation or from the fuel cell may usefully be used for dilution of the concentrated mixture.
In operation of the system to provide a method of generating hydrogen according to another embodiment, the first fuel component comprises an aqueous metal borohydride solution and the second fuel component comprises a catalyst solution. Suitable catalyst solutions include acidic catalysts, i.e., catalysts having a pH less than 7, and include inorganic acids, including the so-called “mineral acids,” such as hydrochloric acid (HCl), sulfuric acid (H2SO4), and phosphoric acid (H3PO4), and organic acids, such as acetic acid (CH3COOH), and water soluble transition metal salts such as cobalt chloride (CoCl2).
When pump 410 is operated in the forward direction, an aqueous metal borohydride solution is pumped from reservoir 100 via conduit line 102 and delivered to reaction chamber 108. The catalyst solution is delivered to the reaction chamber by operation of pump 410 in the reverse direction. The combination of the two fuel components in the reaction chamber produces hydrogen and a salt of the metal in accordance with Equation 2. Beneficially, the system comprises control means 214 for controlling the pump cycle to deliver the appropriate mixing cycle. For example, the pump cycle may be programmably controlled to deliver a continuous flow of a large flow of fuel components in desired proportions so that a steady stream of hydrogen is generated continuously over a period of time or alternatively small sequential portions or pulses of each component so that hydrogen is produced in short bursts, to generate hydrogen at an appropriate rate to meet demand, e.g. for a fuel cell.
Advantageously, the control means 214 is responsive to a change in external or system conditions, such as temperature or pressure, or, e.g., a control signal from a fuel cell, to control the pump and/or valve means to alter the fuel mix, fuel flow rate or other parameters as required.
For example, the control means 214 may also be responsive to one or more external or system conditions, e.g. a change in temperature, pressure or other parameter. As one example, the solubility of NaBH4 and its borate hydrolysis reaction products increases with temperature. Thus, the control means may be utilized to change the pump speed or duty cycle to change the fuel mix dependent on temperature, i.e., increase the relative concentration of the fuel in diluent/fuel mixture as a system temperature is increased. As the temperature increases, the reaction by-products would tend to remain in liquid form even at higher concentrations. Similarly, to prevent precipitation of products as temperature decreases, the fuel to diluent ratio may be decreased.
The embodiments described in this Example above use a reversible cycle pump and additional valves are not required. In use of systems comprising dual feed or single feed unidirectional pumps and one or more valves, arrangements with three-way valves (see
Modulation of a three-way valve while controlling the pump speed and duty cycle also provides conveniently for control of fuel delivery of two or more fuel components. While the controller 214 is not shown in
The embodiments of the system described above provide for hydrogen generation in systems utilizing two or more fuel components where delivery and regulation of fuel components is accomplished with a single pump unit for fuel regulation, i.e., one pump co-operable with flow control means comprising a configuration of valves and conduits, instead of requiring an additional pump for regulation and delivery of more than two fuel components. Therefore, although the use of single feed or dual feed pumps, and double headed single drive pumps is contemplated as described above, for preferred systems described herein, a single pump system having flow control means co-operable with the single pump do not encompass a second or additional pump unit for regulation of flow and delivery of two or more fuel components from fuel reservoirs to a reaction zone.
Although preferred embodiments of the invention have been described and illustrated in detail, it is to be clearly understood that these are by way of illustration and example only and not to be taken by way of the limitation, the scope of the present invention being limited only by the appended claims.
This application claims priority to U.S. Provisional Patent Application No. 60/905,035 filed Mar. 6, 2007, which is incorporated herein by reference; and is related to the United States patent application filed concurrently herewith, which claims priority to U.S. Provisional Patent Application No. 60/905,034 filed Mar. 6, 2007; all of these applications are commonly assigned.
Number | Date | Country | |
---|---|---|---|
60905035 | Mar 2007 | US | |
60905034 | Mar 2007 | US |