This specification generally describes an electrolysis fuel cell system that is designed to produce hydrogen and oxygen (HHO) gas on-demand and to supply these gasses into the combustion chambers of internal combustion engines. More specifically, this specification describes a new configuration of a hydrogen on-demand (HOD) system that integrates with the engine control module (ECM) or other control system that regulates the operation of an internal combustion engine in order to supply HHO to the engine and improve the engine's overall fuel efficiency. This system is further designed to produce a continuous flow of HHO produced via electrolysis from an aqueous fluid, which is then mixed with the engine's air supply. This system facilitates these functions by providing an integrated system comprising an insulated electrolyte fluid reservoir outfitted with level, pressure and temperature sensors; a pump and heat exchanger; a uniquely-configured electrolyzer; and a filter. The combined engine and HOD system is controlled and regulated by an electronic control system (ECS) and a combustion control module (CCM). The CCM is installed on the engine such that it actively intercepts the electronic signals from the engine manufacturer's ECM to continuously coordinate the functions and operations of the HOD system and the engine.
Hydrogen is the most abundant element in the universe. Atomic and molecular hydrogen have significant potential as an energy source due to hydrogen's high combustibility, yet naturally-occurring atomic hydrogen gas is rare because hydrogen readily forms covalent compounds with non-metallic elements. Hydrogen is also present in most organic compounds and in water. Power production engineers have for many years sought mechanisms to harness the energy potential of hydrogen, but thus far those efforts have barely scraped the surface of that potential. One significant detriment that is prevalent in many or most prior art systems is that the energy and resources required to produce a sufficient quantity of hydrogen with those systems typically outstrips the energy that is then recoverable from the hydrogen that is so produced.
Most industrial production of hydrogen gas is the result of a by-product of hydrocarbon fuel refining. Hydrogen can also be produced by the more energy-intensive process of electrolyzing water, in which a cathode and an anode are submerged into an aqueous solution and an electrical current is passed across them. As noted, this process is energy-intensive and inefficient to the extent that more energy may be required to produce hydrogen gas than may ultimately be recovered from that gas. This process breaks the bonds in water molecules, resulting in the production of hydrogen and oxygen gases with a 2:1 molar ratio of diatomic H2 and O2 gases, which is the same proportion as water. Given the energy potential of hydrogen, it is well known in the art that adding HHO into the air stream of an internal combustion engine will substantially increase the efficiency of that engine. It is theoretically possible to produce HHO separately, to store gaseous hydrogen and/or oxygen under compression in a storage tank, and then to supply those gases to the air stream that is powering the internal combustion engine in order to gain this efficiency. However, it is altogether impractical to implement this manner of a storage system due to the weight and bulk of the gas storage system that would be required.
The hydrolysis process that forms diatomic H2 and O2 gases is well known and understood in the art. Specifically, when a cathode and anode are submerged in pure water, a reduction reaction occurs at the negatively-charged anode, causing electrons (e−) from the cathode to be given to hydrogen cations to form hydrogen gas. At the positively-charged anode, an oxidation reaction occurs, which generates oxygen gas and provides electrons to the cathode, thus completing the circuit. When the reduction and oxidation reactions are combined and balanced, the overall reaction is such that for every two molecules of aqueous water, 2 molecules of diatomic gaseous hydrogen (H2) and one molecule of diatomic gaseous oxygen (O2) are formed. The number of diatomic hydrogen molecules that are formed is thus twice the number of diatomic oxygen molecules. Under the proper conditions, the amount of energy that is required to produce diatomic H2 and O2 gases will at least be matched by the efficiency improvements achievable via adding those gases to the combustion processes in an internal combustion engine.
Accordingly, and as is demonstrated by the prior art, many attempts have been made to design and implement an electrolysis system that produces HHO gas in an on-demand manner from a stored aqueous solution and then to supply that gas to internal combustion engines. Most if not all of those attempts, however, have proved to be inadequate, inefficient, or unsafe. Some of the problems experienced with those systems include, for example, production of inadequate amounts of HHO gas; corrosion and rapid decay of the electrolyzers; and potential safety problems due to buildup of excess HHO without safety or shut-down controls, presenting an environment in which explosive combustion occurs away from the internal combustion engine. Further, it is well-recognized that the energy required to split water molecules into their gaseous components generally exceeds the energy that is recouped when the component gases are burned. Thus the challenge that has yet to be met is how to produce adequate amounts of HHO gas with an on-demand system that is safe, stable and corrosion resistant such that the HHO gas improves overall efficiency.
A need therefore exists for a HOD production system that can be integrated into a new or existing internal combustion engine or other energy production means to provide the greatest improvement in the efficiency of that engine. This system will account for, address, and solve the many problems presented by prior art systems. It will further take advantage of and optimize HHO production via the electrochemical reaction that produces hydrogen and oxygen gas, and will do so in a continuous manner to maintain an adequate and consistent flow of HHO gas into the air stream that supplies the engine while integrating the control and operation of the electrolysis systems into the fundamental control and operation of the internal combustion engine itself Moreover, the system must integrate seamlessly with the engine manufacturers' computerized engine control modules (ECM's) that adjust air and fuel flow into engines.
There is also a need for a novel HOD electrolysis system for use with internal combustion engines that are powered by fossil fuels. This system may be incorporated directly into the operational designs for a new engine, or it may be retro-fitted into existing engines. It is desirable that such a system also work with diesel, gasoline, natural gas or other alternative-fuel combustion engines.
There is further need for a system that utilizes the existing electrical power supply that produces electrical power for an internal combustion engine to power the electrolysis cells. The system also includes a novel combustion control system that interfaces directly with the engine control module that controls and regulates the operation of the internal combustion engine.
Still further, there is a need for components that make up a novel HOD system for use with internal combustion engines, as well as a method for implementing and utilizing that system and its components. Other methods described in this specification include a method of utilizing a novel HOD system to improve a vehicle's fuel economy; a method for lowering a vehicle's emissions by providing a cleaner-burning air and fuel mixture into the combustion chamber, which mixture is generated with a novel HOD system; a method of increasing the power that is delivered to a vehicle's drive train through an improved combustion system, which improvement is provided by a novel HOD system; and a method of filtering the HHO production from an on-board vehicle electrolysis system that minimizes or eliminates the potential flow of fluid into an engine's air supply. These and other features of the present electrolysis fuel cell system will become apparent to persons skilled in the arts upon reviewing this specification.
A schematic flow chart showing the components of an embodiment of an HOD system is depicted in
In standard operation, the charge of battery 13 is sustained by an alternator 14 that is installed with the engine 9. In typical operation without an HOD system, a tractor-trailer truck will draw between 40 and 50 amps to power lights and other electrical equipment. Under ideal operating conditions, an embodiment of an HOD system described herein will draw 10 amps to generate one liter of HHO gas per minute. At a preferred generation rate of 6 liters of HHO gas per minute, under ideal conditions the system will draw 60 amps. Under actual (i.e. non-ideal) conditions, with a truck engine idling at between 800 and 1,000 RPM, the embodiment of an HOD system described herein will produce, on average, six liters of HHO gas per minute and will consume between 75 and 100 amps. A standard truck engine alternator will generate only approximately 50-60 amps at idle. Therefore, in a preferred embodiment of the system in real-time operation, the operator replaces the standard truck engine alternator with a greater capacity alternator. Commercially-available after-market alternators that produce approximately 150 amps at idle are suitable for this purpose. Although the higher-capacity alternator generates higher resistance and requires more engine power to generate a higher amperage, this increase is offset by the overall increase in efficiency resulting from the controlled infusion of HHO gas into the engine's combustion cycles.
Prior art hydrogen on demand (HOD) and hydrolysis systems generally include some combination of some or all of the components shown in
The hydrolysis process of an embodiment of an electrolysis fuel cell system starts with the electrolytic fluid that is used to supply HHO gas. In practice, pure water may be used as an electrolytic fluid in any electrolysis system. Electrolysis of pure water, however, requires an excess amount of energy in order to overcome the tendency of water to self-ionize, i.e. to break into ionic components H+ and OH−. This self-ionization defeats the desired breakdown of water into its component gases H2 and O2 in their diatomic states. To overcome this tendency and to increase the efficiency of the electrolysis process, electrolytes are added to water and an electrolytic solution is preferred for HOD systems like the one described herein.
This HOD system will work with any standard electrolytes in an aqueous solution, including one or more of Potassium, Cesium, Sodium and Magnesium, all of which will be in cation form i.e. K+, Cs+, Na+ or Mg+. One important parameter for selection of an electrolyte in electrolysis systems is for the electrolyte to have a lower electrode potential than that of hydrogen, H+. The problem created by addition of an electrolyte, however, is that the electrolytic solution then is more caustic, leading to potential decay and corrosion of major components of an HOD system. A preferred embodiment of the present HOD system utilizes potassium hydroxide (KOH) electrolytic fluid, which is a strong base (i.e. high pH) and is caustic. The caustic nature of this electrolyte requires that the manufacturer select the proper materials for construction of any and all components of the HOD system that are in contact with the electrolyte fluid. Those materials must also be compatible with each other to avoid, for example corrosion or degradation caused by reduction/oxidation reactions where two different types of metals are in contact. Persons skilled in the art of handling and transporting caustic base materials will be able to select appropriate materials that are compatible with high pH electrolyte fluid in order to meet these criteria.
The concentration of the electrolyte solution will be determined by parameters such as the desired efficiency of the HOD process, the one or more chosen electrolytes, and the ambient conditions in which the system will be utilized. Where KOH is the selected electrolyte solution, concentrations of as low as 2% may be adequate for efficient operation. Yet many engines are used in extreme high- or low-temperature conditions. In very low-temperature conditions, a 2% KOH solution would freeze. Increasing the KOH concentration into a range of 20% to 30% helps to prevent the electrolyte solution from freezing in extremely low temperatures. For example, at a concentration of approximately 30%, a KOH solution remains in a liquid state at temperatures as low as −65° F. (−54° C.). At concentrations above 30%, KOH solutions begin to lose this antifreeze characteristic. Accordingly, the manufacturer or operator of this system determines the optimum concentration of the electrolyte solution for the ambient temperatures in which the system will be utilized.
The first component in the embodiment of the present HOD system is a fluid reservoir 1 and filter 8. Electrolytic fluid is pumped into and stored in a fluid reservoir, shown as reservoir 1 in
The fill tube 100 is canted downward into the reservoir 1 from its receiving end 101 and terminates at end 103, which is permanently fixed near the lower portion of the internal body of reservoir 1. This configuration helps to eliminate the prospect of overfilling of reservoir 1, which, if overfilled, may lead to electrolyte fluid being infused into the internal combustion engine's air intake. In its preferred embodiment, this reservoir 1 includes an integrated flush and fill system to facilitate emptying and filling of the reservoir with fluids that may require special handling considerations. It is preferably configured to maintain a minimum air space between the electrolytic fluid and the inside top of reservoir 1. Further in its preferred embodiment, a fluid return tube that originates at the electrolyzer 7 terminates in the reservoir 1 in a manner that facilitates reintroduction of HHO gas, along with electrolyte fluid, back into the aqueous solution. Because the overall system includes the fluid return tube to return electrolytic fluid from the filter 8 back into the reservoir 1, the reservoir includes piping connecting the reservoir and the base of the filter. Lastly, the reservoir 1 may be configured to be rigidly and firmly attached to the cabinet of the system and then attached to a chassis or to some other support structure that allows an HHO hose to port HHO gas to the internal combustion engine.
In an embodiment of the HOD system, the reservoir 1 also includes an internal pressure sensor switch and a pressure safety relief valve, as well a temperature and fluid level sensors 2. The signals from this switch, valve, and these sensors 2 may be monitored by ECS 12 (see
As seen in
As shown in greater detail in
The filter cartridge 120 is assembled prior to insertion within the body of filter assembly 8. An operator can easily replace this filter cartridge after it has served its useful life.
The second component of an embodiment of the electrolysis fuel cell system described in this specification is the pump 5 that controls the fluid flow throughout the system. In a preferred embodiment, the pump includes a brushless motor and inflow and outflow fittings, and, like reservoir 1, is produced from materials that can withstand a caustic environment created by the electrolytic solution.
The third major component of one embodiment of an electrolysis fuel cell system described in this specification is the heat exchanger 3. The electrolysis process is most efficient when the electrolytic fluid is maintained within a desired temperature range. The desired temperature range is −40° F. to 200° F., more preferably 0° F. to 120° F., even more preferably at 40° F. to 100° F. For example, at extreme low-temperature conditions, relatively higher concentrations of KOH electrolytic fluid (e.g, 20-30%) will not freeze, but the fluid is at too low a temperature for efficient electrolysis. In an embodiment of the HOD system design for low-temperature use, the reservoir 1 is encased in a thermal heating blanket or jacket to raise and maintain the fluid temperature within the desired range. An automotive grade heat exchanger 3 is then used to maintain the electrolyte fluid in the desired temperature range. Where the ambient temperature may be too high for efficient electrolysis, an automotive-grade cooling fan 4 is utilized to maintain the desired fluid temperature range.
The fourth component of one embodiment of an electrolysis fuel cell system described in this specification is electrolyzer 7. Many traditional HOD systems focus on certain configurations of electrolyzers. The design of electrolyzer 7 within the present HOD system is different from all of these traditional systems.
In a preferred embodiment, electrolyzer 7 includes four electrolysis compartments, each of which comprises six vertically-oriented electrolysis chambers on each side of the center manifold. As shown in the expanded view in
A side view of a pair of fully-assembled electrolysis compartments is shown in
Corresponding ports at the top and bottom of the manifold are aligned to distribute electrolytic fluid and to collect HHO gases, vapor, fluid and byproducts of the electrolysis reaction. The two corresponding manifold ports also prevent HHO back-pressure from affecting the electrolysis operation, which may occur if the fluid level in the chambers is pushed back by that pressure. Further, the exit ports may be configured to include tubing with wider inner diameters to enable a higher volume of gas to exit the electrolyzer compartments. The HHO gas, residual fluid and byproducts then leave the electrolysis section through collection tube 170, which feeds back into the fluid reservoir 1.
Electrolysis of the electrolytic fluid and formation of HHO gases is accomplished at the cathode and anode plates. In one embodiment, a charge of between twelve and fourteen volts, with current in the range of seventy-five to one hundred amps, is applied across the spaces defined by the gasket construction between the cathodes and anodes. The battery 13 that supplies direct current power to other electrical systems is utilized as the source of the voltage and current that is applied across the cathodes and anodes. In a preferred embodiment, the electronics of this HOD system regularly reverse the polarity in electrolyzer 7, thus keeping the cathode and anode plates clean and free from unwanted buildup, reducing or eliminating buildup or corrosion on the plates and thus contamination in the electrolytic fluid. It is not the intention of the inventors to limit the system to an operating environment within the above-described voltages and amperages, and this system may be alternately configured to function in other ranges.
The Electronic Control System (ECS) 12 and the Combustion Control Module (CCM) 10 (which interfaces with the engine manufacturer's Electronic Control Module(ECM)) are the fifth component of one embodiment of an electrolysis fuel cell system described in this specification. When the internal combustion engine 9 is turned on, CCM 10 will be encoded to sense an increase in parameters such as engine oil pressure and to measure engine RPM's. CCM 10 then signals ECS 12 utilizing controller area network (CAN) based communication to verify that the engine is running and that combustion of the primary fuel is occurring. Traditional systems generally use sensing mechanisms to determine if an engine is running including, for example sensors that detect oil pressure in the engine once it is turned on. Those systems then commence production of HHO gases. This traditional methodology, however, is imperfect. Modern engines are controlled by the engine manufacturer's ECM, which regulates air and fuel injection into the engine as a function of various operating conditions. Traditional HOD systems that do not interact with a manufacturer's ECM will be less effective and efficient because the ECM will generally not recognize the alternative operating conditions that are caused when an HOD system comes on-line. The CCM 10 that is an integral part of the present HOD system receives appropriate signals from the manufacturer's ECM to confirm engine operation, then sends corrected signals back to the engine as the HOD system comes online. Further, the ECS 12, which regulates the operation of the HOD system itself, and CCM 10 both have built-in programming safeguards such that if the electrolyzer 7 ceases operations, regardless of the reason for such cessation, an alert will be generated and the CCM 10 will instruct the engine to return to non-HHO assisted performance. Also, if the engine 9 ceases operation for any reason, the electrolyzer 7 will stop HHO production. In these manners, this novel and significant CAN-based communication between the ECS 12, CCM 10, and helps to eliminate safety risks.
In operation, when ECS 12 receives the signal the engine 9 is running, the embodiment of an electrolysis fuel cell system described in this specification commences its startup protocol in which the fluid level in reservoir 1, the temperatures of the fluid in the reservoir and throughout the system, system air pressure, and the function of pump 5 and fan 4 are confirmed. The electrical signals and flow of information within the system are depicted in
The ECS 12 then confirms that power has been provided to electrolyzer 7 and that HHO gases are being produced. Once operation of these systems is verified, the CCM 10 commences interactions with any on-board computer that controls engine functions to ensure that HHO gases introduced by this system into the air intake are recognized as a combustible fuel and not as additional air. Internal combustion engines manufactured after 2003 generally include numerous oxygen and other types of sensors. The signals sent by these sensors in the presence of the extra HHO gas produced by the present system, without CCM interaction, could actually cause a decrease in overall engine efficiency. In a preferred embodiment, communication between the engine 9, ECS 12 and CCM 10 is optimized to improve overall performance of the engine and system combination.
The control protocols encoded into ECS 12 and CCM 10 further include a wattage regulation and control component that regulates wattage across the electrolyzer plates while channeling different voltages to other components within the system. The voltage across the overall system is provided by the vehicle's onboard battery, which generates a 12-volt potential. ECS 12 and CCM 10 regulate that voltage such that the higher voltage potential is generated across the cathode and anode plates and a lower voltage potential drives some the other components, which may not require a higher voltage potential.
In practice, the system and its multiple components are constructed to withstand and survive extreme ambient conditions, to absorb regular shock and vibrations which are translated into the system, and to provide continuous operations for hundreds of hours, or other commercially-reasonable stretches of time. An external wire harness is required to integrate CCM 10 and ECS 12. As is seen in
An embodiment of the assembled system is shown in
The foregoing specification thus describes only the preferred embodiments of the present HOD system and the method of producing HHO gas for use by an internal combustion engine. A power production engineer or other persons skilled in the art and familiar with the challenges and opportunities presented by this type of system will appreciate that the breadth and scope of the present invention is not limited to the preferred embodiment described herein, but extends also to both broader and more tailored embodiments. It is the intention of the inventors to include this more expansive scope within the ambit of their invention.
Number | Date | Country | |
---|---|---|---|
61787465 | Mar 2013 | US |