The present invention relates to a hydrogen resistant optical fiber formation technique and, more particularly, to the initial use of an unsintered soot, subjected to a treatment with a metal halide vapor, to eliminate the formation of Si—OH when exposed to hydrogen at various pressures and temperatures.
In the art of fiber preform manufacture for transmission fibers, techniques have been developed for high speed manufacture using a chemical vapor deposition process, which has been found to be relatively inexpensive, while also providing a high quality fiber. In this process, the necessary cladding and core constituents are supplied in their vapor phase to a horizontally rotated refractory tube to form one or more inner glass layers on the inside surfaces of the tube. Exemplary of this technique is U.S. Pat. No. 4,909,816, issued to MacChesney et al., and its companion patents U.S. Pat. Nos. 4,217,027 and 4,334,903, disclosing what is referred to in the art as the “modified chemical vapor deposition” (MCVD) process.
Conventional MCVD processes of forming optical fiber preforms have been found to result in allowing OH− groups to form in the fiber material. In particular, hydrogen occurring in elemental or compound form is often found in the reactants used for making the preform. Subsequent to formation of the fiber, hydrogen may also become incorporated in the composition and thus compromise the transmission qualities of the fiber. A number of strategies have been developed to avoid this hydrogen incorporation, including the use of hermetically sealed fiber cables, or cables exhibiting various layers of outer cladding to prevent hydrogen intrusion.
As an alternative, a hydrogen gettering process may be used, as disclosed in U.S. Pat. No. 5,596,668 issued to DiGiovanni et al. on Jan. 21, 1997. In the DiGiovanni et al. arrangement a species for gettering or bonding with hydrogen (such as a metal) is included in the cladding layer of the fiber. Diffusion of hydrogen into the fiber is thus trapped in the cladding before it can encroach the core region.
U.S. Pat. No. 4,125,388 issued to Powers on Nov. 14, 1978 discloses a method for making a high purity optical waveguide that exhibits a very low water concentration, where the presence of water (like hydrogen) leads to attenuation in various transmission bands of interest. Powers discloses a method of reducing water attenuation by removing water from the soot preform during the step in which a soot preform is heated to fuse the soot particles into a glass. Powers discloses the use of Cl2 gas as a drying agent. The Cl2 may be fed directly to the preform, or a metal halide gas (such as GeCl4 or SiCl4) may be used together with an oxidizing agent to produce Cl2 in the vicinity of the preform. The drying is carried out within a temperature range in which the soot will fuse into a dense glass.
In an alternative process, a continuous admixture of deuterium with a flow of a carrier gas (such as oxygen) during the preform manufacturing process allows for the isotropic substitution of the deuterium for the hydrogen in the hydroxl group. This substitution results in shifting the absorption peaks out of the wavelength range of interest for optical communication purposes.
A disadvantage of these various techniques is the need for an oxidizing agent, since the presence of excess oxygen in the glass makes the fiber more susceptible to hydrogen-induced loss during subsequent cabling or use in the field. Moreover, the number of defects in the fiber is known to be directly proportional to the induced attenuation upon post-processing exposure to hydrogen.
The needs remaining in the prior art are addressed by the present invention, which relates to a hydrogen resistant optical fiber formation technique and, more particularly, to the initial use of an unsintered soot, subjected to a treatment with a metal halide vapor, to eliminate the formation of Si—OH when the drawn fiber is thereafter exposed to hydrogen at various pressures and temperatures.
In accordance with the present invention, an initial unsintered porous soot is first formed on the inner surface of a preform tube. The unsintered soot can be deposited by a method similar to that used for solution doping of a fiber preform, where an extremely porous, unsintered soot is subsequently used as a “sponge” for absorbing a liquid dopant. In the process of the present invention, the extremely porous unsintered soot is then subjected to a flow of a metal halide (e.g., SiCl4) in an environment of, for example, He and/or N2 for a predetermined period of time. Importantly, no oxygen is present during this flow process. The resulting structure is then sintered in a SiCl4/He/N2 environment to form the amorphous glass and collapsed to form the final preform structure.
Advantageously, the presence of SiCl4 (without oxygen) has been found to eliminate oxygen-rich defects (Si—O—O—Si) present in the structure as a result of the soot deposition process. The separation of the soot deposition and sintering processes by the SiCl4 “scrubbing” thus significantly reducing hydrogen-induced attenuation in the final structure.
Other and further advantages of the present invention will become apparent during the course of the following discussion and by reference to the accompanying drawings.
Referring now to the drawings,
The motivation for the concepts developed in accordance with the present invention is to improve the resistance of optical fiber to hydrogen-induced loss typically seen in harsh environments, such as the use of fiber optic sensors within an oil well. Such an environment cannot be well-controlled to guarantee that water or other contaminants will not be present. The silicon defects introduced into the optical fiber during a conventional prior art manufacturing process typically result in SiOH and SiH losses in the fiber, due to the reaction over time between the Si defects and hydrogen. It is thought that the oxygen-rich defects are responsible for the formation of Si—OH and the increased loss at 1385 nm. The oxygen-rich defects arise due to excess oxygen atoms present in the silica glass, resulting from preform fabrication in an environment with too much oxygen. Furthermore, the introduction of impurity dopants (for example, germanium) can generate defects that result in creased attenuation in the telecommunications window. As a result, the fiber formed in accordance with the present invention reduces the effects of hydrogen-induced losses by elimination of the Si defects caused by excess oxygen in a pure silica core fiber.
Referring now to the drawings,
Subsequent to the formation of cladding layer 12 (which may, as mentioned above, comprise one or more separate layers), and in accordance with the present invention, a porous, unsintered soot layer 16 is formed so as to completely cover cladding layer 12. The term “soot” is used to define a deposited layer exhibiting a large degree of porosity, where the layer is not sintered to as to form a glass (or amorphous) layer. The soot layer may comprise SiO2 (pure), or SiO2 doped with a material such as Al, Si, P, Cl, Ge, Ga, Ta, Pb, Li. A relatively low temperature process is used to form soot layer 16, where as shown in
Referring to
Once the presence of hydrogen has been reduced, the arrangement is subjected to a conventional sintering step, as shown in
It has been found that the hydrogen-induced attenuation occurs as a result of two different phenomena: (1) the absorption of molecular hydrogen in the wavelength region of 1000-1300 nm, and (2) the chemical reactions between the silica glass network and hydrogen, particularly evident at the wavelength of 1385 nm. The absorption of the H2 molecule is reversible and cannot be avoided in glass materials. The chemical reaction phenomenon results in permanent attenuation, where the extent of loss is dependent on the chemistry of the glass itself.
Further advantages of the metal halide treated soot also include the reduction of the initial attenuation at 1385 nm, as well as further reduced background loss in the wavelength range extending from 300-1700 nm. As seen in
As one variation of the method of the present invention, it is envisioned that the SiCl4 treatment step and the sintering step may be combined under conditions where SiCl4 is included in the non-oxygen environment used to perform the sintering.
It is to be understood that while the essence of the present invention has been described in terms of a preferred embodiment, employing a set of preferred temperatures and ambient conditions for each step in the process, various modifications can be made for each step while remaining within the spirit and scope of the present invention in terms of utilizing a porous, unsintered soot layer and non-oxygen based sintering and collapsing process. Indeed, the scope of the present invention is intended to be defined by the claims appended hereto.
Number | Name | Date | Kind |
---|---|---|---|
4310340 | Sarkar | Jan 1982 | A |
4389230 | Modone et al. | Jun 1983 | A |
4445918 | Modone et al. | May 1984 | A |
4468413 | Bachmann | Aug 1984 | A |
4515612 | Burrus, Jr. et al. | May 1985 | A |
4583997 | Staudigl | Apr 1986 | A |
4627160 | Herron et al. | Dec 1986 | A |
4691940 | Stenzel et al. | Sep 1987 | A |
5735921 | Araujo et al. | Apr 1998 | A |
5838866 | Antos et al. | Nov 1998 | A |
6053013 | Oh et al. | Apr 2000 | A |
6116055 | Ishikawa et al. | Sep 2000 | A |
6128928 | Antos et al. | Oct 2000 | A |
6131415 | Chang et al. | Oct 2000 | A |
6438999 | Antos et al. | Aug 2002 | B1 |
6532774 | Zhang et al. | Mar 2003 | B2 |
20020150365 | Antos et al. | Oct 2002 | A1 |
20020168159 | Takahashi et al. | Nov 2002 | A1 |
20020194877 | Chang et al. | Dec 2002 | A1 |
20020197005 | Chang et al. | Dec 2002 | A1 |
20020197035 | Early et al. | Dec 2002 | A1 |
20030010064 | Kuwahara et al. | Jan 2003 | A1 |
20030213268 | Homa | Nov 2003 | A1 |
Number | Date | Country |
---|---|---|
02180729 | Jul 1990 | JP |