N/A
Field of the Invention
The present invention relates to a water wheel turbine for hydropower generation utilizing the head of a watercourse, generally a submersible waterwheel turbine with horizontal wheel shaft and a multiplicity of multifaceted cells uniformly spaced within the periphery and the interior of said waterwheel. The wheel is primarily intended for used in multiple environments with a multiplicity of water currents able to generate electricity from the kinetic energy contained therein.
Description of the Prior Art
The ancient Greeks invented the waterwheel and were, along with the Romans, the first to use it for both irrigation and as a power source. Significant improvements have been made to the waterwheel designed for energy production through the years; however, while these waterwheels may be appropriate for the designed purpose, they would not be as appropriate for green energy production as the present invention, described herein.
The present invention relates generally to a water wheel apparatus and, more specifically, to a water wheel turbine that can operates while deployed partially or totally submerge by means of a wheel mounting enclosure body member having a cavity equal to 50% of the height of the runner or bottom half of the runner. Further the upper half of the runner is exposed gaining kinetic energy and momentum through water current acting upon a plurality of multifaceted cells attached to spokes radiating from a central hub to the outer perimeter of a wheel. The exposed facet rotates around it axis as they are pushed by the water incident flow on top of the wheel mounting enclosure. As the runner rotates a facet comes out of the cavity becoming a exposed facet wherein said exposed facet interact with the water incident flow on top of the mounting enclosure. The design allows the cells to transfer the kinetic energy from the water to the wheel shaft. The rotation positions the facet or kinetic driver inside the cavity until the kinetic drivers move into position of angle of attack to start again the cycle due to the exposed facet. The wheel consists of a hub and a shaft upon which said wheel rotates, multiple concentric radial rings body members with a plurality of spokes radiating from the outside perimeter of the central hub, traversing through the radial rings to the periphery of the runner, with spokes populated by a plurality of multifaceted cells like buckets that attached to the inside perimeter of said spokes extending from the central hub to the periphery of the runner. The outside surface of the runner attaches to a plurality of similar runners by means of mechanical devices and to the central hub. With means to anchor the apparatus by a wheel mounting body member having a cavity equal to 50% of the height of the runner where the runner exposes the upper half. The plurality of multifaceted cells ensures the wheel remains constantly engaged throughout the 180 degrees paralleled to the water incident flow by presenting a new facet as the water turbine progresses in its orbital travel as they are impacted simultaneously while occupying wall-to-wall the peripheral annulus of the water stream, as the wheel rotates in the axel. The kinetic energy stored in the wheel while rotating is harnessed through a drive shaft connected to the central hub that connects to a step-up gear and a generator placed perpendicular to the central hub. When the apparatus is deployed in land water flowing bodies or in the ocean, said frame member will be deployed in a land water flowing bodies or in the ocean, said frame member will be deployed in a platform containing all body members; restraining the platform from movement while deployed submerged, by a series of inverted pyramids shape protrusions at the bottom of the platform designed to settle imbedded or by forced penetration in the bed of the river or ocean where the apparatus may be used.
A primary object of the present invention is to provide a water wheel that may be used fully submerged in multiple environments with a multiplicity of water currents able to generate electricity from the kinetic energy contained therein;
Another object of the present invention is to provide a water wheel with a plurality of multifaceted cells or kinetic drivers substantially increasing the harvesting of the kinetic energy by using the full periphery of the wheel and interior.
Yet another object of the present invention is to provide a water wheel that is submersible and the complete operation of harvesting kinetic energy can be made totally to disappear from view, does not harm the wildlife and can respect the natural beauty of the landscape where it is used.
Another object of the present invention is to overcome the drawbacks which has prevented the utilization of the waterwheel turbine at the maximum radial capacity while immersed in the watercourse by allowing the wheel to rotate unimpeded while retreating inside the wheel mount and outside the water flow until progresses in its orbital travel and the cell/bucket begin a new cycle in the position of attack achieving acceleration thus able to generate electricity from the kinetic energy contained therein;
Yet another object of the present invention is to provide a water wheel with a drive shaft and generator that produces power.
Additional objects of the present invention will appear as the description proceeds
The following discussion describes in detail the embodiments of the invention and several variations of that apparatus. As a way of explanation it was chosen the mechanical process created by the Controlled Momentum Hydroelectric System (COMHES) 1 as the example model. A related sub-combination for the process using the HKT-Wheel 20 turbine is covered under different U.S. patent application Ser. No. 12/587,231 wherein the HKT-Wheel turbine 20 is a principal component in the COMHES 1, therefore it advantageous to explain the operation of the wheel turbine 20 using COMHES 1 as an example because the water velocities are created by a design providing the best environment to demonstrate the operation of the HKT-Wheel Turbine 20. However, similar behavior should be expected when the HKT-Wheel Turbine 20 is deployed on natural watercourses. All references to the COMHES 1 are solely related to the water velocities developed by the COMHES 1 process and at no time the components of the COMHES 1 are a part of the components of the HKT-Wheel Turbine 20, except as indicated in the drawings numerals. See the numerals for all the exclusion.
Components identification as they appear in the drawings are as follow:
The independent HKT-Wheel 36 units shown therein have one outer circular body member, to be referred hereinafter as the periphery radial ring body member 34, having a central circular body member which forms a hub-like central member, hereinafter the central/main hub 39, having means for rotatable connection centrally disposed therein, a main shaft 42 upon which these multiple independent wheels rotates with means to be connected to said hub 39, having generally twenty four spokes 38. These spokes 38 emanate radially there from to an outer, circular ring-like body member, referred hereinafter as buffering radial rings body member 37, which could be of single to multiple frequency depending on the needed capacity load, emanating radially there from to an outer from the previous buffering radial rings body member 37, these buffering radial rings body member 37 being attached to said spokes providing structural stability to the HKT-Wheel Turbine 20 and supplying support to the kinetic drivers 31 distributed throughout the HKT-Wheel Turbine 20, to the periphery radial ring body member 34.
A plurality of multifaceted cells 33 containing a multiplicity of buckets, are disposed inside the perimeter of the spokes 38 body members, further attached to the spokes 38 body members by mechanical means, following a set pattern; distributed between the main hub 39 and to the outer periphery radial ring body member 34 following the said set pattern; said multifaceted cells 33 being generally perpendicular to said spokes 38 body members. Each cell 33 is rectangular with four buckets of equal size each with a depression of 12″ by 24″ wide by 6′ to 10′ long forming a bucket in shape with the actual shape varying according to the available water head. The general appearance of a single cell of kinetic driver 31 is also shown. These kinetic drivers 31 are used to capture the energy from the water current allowing the harvesting of the kinetic energy by using 180 degrees of the waterwheel incident flow covering wall to wall the wheel 20 annulus.
The principles in which the invention is based are on Newton's Laws in the given interpretation of mass, acceleration, momentum, and (most importantly) force assumed to be externally defined quantities, but not the only interpretation of the way one can consider the laws to be a definition of these quantities. The third law states that all forces exist in pairs, establishing that “in waterwheels all internal forces are in equal opposite pairs, actions and reactions between neighboring masses. This means that when we sum over all parts of the wheel we count all these forces and they all cancel each other in pairs; therefore, the total torque is just that from the external forces.” The third law implies that nothing could ever change its motion, since the two equal and opposite forces would always cancel each other. The two forces, however, are always on two different objects, so it would seem more appropriate to add them in the first place and we only add forces that are acting on the same object. Since the forces always maintain a relationship, the Newton's First and Second Laws will come into play where if an object is at rest will stay at rest unless an external force acts upon it. The second law states that the net force on an object is equal to the rate of change (that is, the derivative) of its linear momentum in an inertial reference frame.
This motion imparted by the kinetic drivers 31 follows the precepts of Newton's Third Law of Motion where we only count the spokes and the number of cell units of kinetic drivers 31 in contact with the water with minimum resistance by the accompanying pair that it is out of water or out of the influence of the water mass pound force masked by the wheel mounting enclosure; thus the wheel 20 will have a positive acceleration imparted and the degree of acceleration will depended on the net force after all positive and negative forces have been counted. Newton's Second Law establishes that if a force generates a motion, a double force will generate double the motion, a triple force triple the motion and so on, whether that force be impressed altogether at once, gradually or successively. The illustration model having 84 cells is very significant to the velocity imparted to wheel 20 having 42 cells constantly imparting acceleration to the runner 20. If we apply the precepts of Newton's Second Law, each cell of kinetic driver will be imparting an impulse thus a force that magnifies by the number of cells of kinetic drivers 31 applying impulse (forces). Once we know the net force of the resulting acceleration on an independent HKT-Wheel 36, a deployment of 4 independent wheels 36 will provide the runner 20 4 times the net force of an independent HKT-Wheel 36, 4 times the intensity imparted to the wheel axis, higher angular momentum with larger capacity for the electrical generator.
The number of rows of cells of kinetic drivers 31 will vary depending on the size of the HKT-Wheel Turbine 20 and the available water head. The example used in the presentation is exhibiting twelve spokes 38 with three cells of kinetic drivers 31 on each spoke 38 and twelve that will have four cells of kinetic drivers 31, corresponding sequentially to every other of the spokes 38, distributed between the outer periphery radial ring body member 34 and the wheel central hub 39 with a space between each cells of kinetic driver 31. This space is occupied by an interlocking X shape bracing 44; wherein said interlocking X shape bracing 44 are connected to the spokes 38, thus, the four cells of kinetic drivers 31 on the sequential spoke 38 that only have three cells of kinetic drivers 31 will be positioned in the following spoke body members 38 behind each open space. Therefore, between two sequential spokes body members 38 will cover wall to wall the wheel 20 peripheral annulus transferring the kinetic energy from the water to the wheel shaft 44 in the 180 degrees effective of the orbital wheel position.
When used in flowing river waters or the ocean, each independent HKT-Wheel 36 will have means added like a periphery radial ring body members 34 and/or debris deflecting accessories disposed proximate to said wheel and components whereby damage by water flowing debris is prevented.
A typical HKT-Wheel Turbine 20 has 4 independent wheels 36 and an independent HKT-Wheel 36 has, depending of design capacity load, a total of 84 type multifaceted cells of kinetic drivers 31; therefore, a 4 independent HKT-Wheel 36 will provide a total of 420 cells of kinetic drivers 31 to a typical HKT-Wheel Turbine 20 covering a minimum span of 24′. The design of multifaceted kinetic drivers 31 exploits the normal properties of water consistent with Bernoulli's principle which concluded that, pressure and velocity are inversely related, in other words, as one increases the other decreases and states that for all changes in movement, the sum of static and dynamic pressure in a fluid remains the same. Due to the Venturi effect in the reduction in fluid pressure that will result as the water flow is constricted by the reduced space between the kinetic drivers 31, the fluid velocity will increase to satisfy the equation of continuity, while the water pressure will decrease due to the conservation of energy, the gain in kinetic energy will be balanced by the drop in pressure or pressure gradient force. Therefore, based on this principle the distribution of the cells of kinetic drivers 31 on the spokes 38 will substantially increase the harvesting of the kinetic energy by using 180 degrees of the waterwheel 20 incident flows and allowing the water to flow through the waterwheel 20 and distribute the water pressure over the plurality of multifaceted cells of kinetic drivers 31. Higher number of kinetic drivers 31 in the radial direction translates into a greater reduction of the needed head without the loss of potentially recoverable kinetic energy. A larger separation will allow for larger size of the wheel 20 to contain larger kinetic drivers 31 where larger torque is required. A larger separation will prevent the increase of drag allowing better water flow though the wheel 20. The same purpose will be achieved by reducing the water head and reducing proportionally the separation of the kinetic drivers 31.
The Wheel Mounting Enclosure 21 is of solid construction having a cavity created within the mount 21. Said cavity is equal to 50% of the height of the runner 20 where the runner 20 rest exposing the upper/lower end into the bed of the body of water 16. The space between the HKT-Wheel Turbine 20 and the internal walls of the Wheel Enclosure 21 is the smallest engineering design tolerance will permit allowing the lowest opposite force to the pair effectively engaged in the water.
Common waterwheels designs avoid the natural behavior of fluids while immerse, or the form drag. The form of an object in fluids mechanics is defined by its shape. The shape of an object located in some space is the part of that space occupied by the object, as determined by its external boundary abstracting from other properties such as material composition, as well as from the object's other spatial properties, such as position and orientation in space. Therefore, the fixed location and angle of the cell within the waterwheel, as it traverse the orbital rotation axis, becomes engaged in the opposite direction of the water flow, creating a form drag of opposite force over the axle, where the performance began to decay. We shall refer to this spatial moment as the point in the waterwheel where the cell becomes a retreating blade.
In the HKT-Wheel Turbine 20 the effects of the retrieving blade are neutralized by the Wheel Enclosure 21 separated from the wheel 20 consistent with design capacity factors. The design will allow the blade to transfer the kinetic energy from the water to the wheel shaft 44 in the 180 degrees effective of the orbital wheel position. It will de-load as it enters the Wheel Enclosure 21 without creating undue friction or pressure on the HKT-Wheel Turbine 20 until the kinetic drivers 31 move into position of angle of attack to start again the cycle. The kinetic energy stored in the HKT-Wheel Turbine 20 while rotating is harnessed through a drive shaft 43 connected to the main hub 39 that connects to ancillary equipment such as Electromagnetic Generator 6, Mechanical Drive 7 (only applicable when diploid in dry land like in the COMHES), Step-up Gear 8, designed to improve the generator's 10 performance as illustrated in use in the COM HES 1, and similar deployments in rivers, ocean and tidal currents, exemplified in
The concept of independent KTT-Wheels 36 provides flexibility of maintenance operation. It can be replaced individually when repair is needed with the down time reduced.
One additional advantage of the HKT-wheel Turbine 20 flexibility of configuration is that will allow the interchange of generators with similar Turbine 20 of similar electrical production configuration. Current hydroelectric generators are not interchangeable since each generator is designed to meet specifically the parameters of the available head at the dam and no two dams are identical.
The deployment and retrieval of the HKT-Wheel 20, when necessary for maintenance, will be accomplished as a unit by means of a suitable marine deployment ship with cranes. By having option for deployment, the platforms stations/structures could be permanently erected to facilitate the transmission of electricity to shore facilities; however, it provides also the option for deployment fully submerged where it will make easier the common use of ocean waters in shipping lanes where more tide influenced or ocean currents resources exist, in addition, the complete operation of harvesting kinetic energy can be made totally to disappear from view, does not harm the wildlife and can respect the natural beauty of the landscape where it is used. The view also illustrates the flexibility of the HKT-Wheel 20 to operate in both directions of the movement of tidal currents without the need to reposition the HKT-Wheel 20. Other elements previously disclosed are also shown.
The
Similar to
As mentioned before, the hydrokinetic wheel turbine 100 are locked into the main shaft 200 as the wheel is slipped through a plurality of hub key slot 140 designed into the wheel main hub 110, into a plurality of driveshaft key 240 designed into the main shaft 200, held in place by wheel hub locking rings 270 positioned at each end of the hydrokinetic wheel turbine 100. The hydrokinetic wheel turbine 100 will be able to work in both direction should the deployment location requires it. The hydrokinetic wheel turbine 100 and main shaft 200 are fixed to the covered wheel mount 220 by means of two bearing mounts 90 and 101. Said wheel covered mount 220, on deployments fully submerged, exposes the upper 50% of the runner(s) 100 to the dynamic pressure of the current of the water source while shielding the bottom 50% from the dynamic pressure of the water incident flow.
Further, as mentioned above, the buckets 130 are mounted in the inside periphery of the spokes 150, distributed between the wheel central hub 110 and the outer ring 121. The task of these multifaceted buckets 130 is to react to the available water head consistent with the form drag created by the shape of the buckets 130 providing maximum resistance to the current flow over them as to cause the runner 100 to rotate along its horizontal axis 200.
The open spaces separating each cells/buckets 130 are occupied by a plurality of interlocking X shape bracing 160, providing lateral support between the spokes 150 and the bucket 130. Thus, the multifaceted buckets 130 will be positioned behind each interlocking X shape bracing 160 presented by the spoke 150 in front. The rigid structure will be capable of withstanding the extended exposure to the hydrodynamic forces of roll, pitch, jaw, and dynamic pressure of the water incident flow, transferring all stresses toward the core and center of the wheel turbine 100.
The
Similar to
Further, in order to provide a more efficient path for the incident flow at least two vertical walls 2300 extends from the base 2200. The two vertical walls 2305, 2306 creates a channel for the incident flow to impact/push the rotary element 2000. As shown in
The present invention has been illustrated by the description of an exemplary processes and system components and while the various processes and components have been described in considerable detail, it has not be the intention of the presentation in any way as to limit the scope of the invention to such details as to preclude any additional advantages and modifications which may also readily appear to those ordinarily skilled in the art. The invention in its broadest aspects is therefore not limited to the specific details, implementations, or illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the spirit' or scope of applicant's general inventive concept. For a definition of the complete scope of the invention, the reader is directed to the appended claims.
Continuation-in-part of application Ser. No. 12/587,232, filed on Oct. 2, 2009, now U.S. Pat. No. 9,593,665
Number | Name | Date | Kind |
---|---|---|---|
4517 | Hand | May 1846 | A |
4843 | Rowand | Nov 1846 | A |
302769 | Pallausch | Jul 1884 | A |
436595 | Collins | Sep 1890 | A |
679109 | Colman | Jul 1901 | A |
707857 | Marburg | Aug 1902 | A |
973869 | Logan | Oct 1910 | A |
1276374 | Keller | Aug 1918 | A |
1368454 | Rebman | Feb 1921 | A |
1409249 | Shepard | Mar 1922 | A |
1649644 | Alexeeff | Nov 1927 | A |
1810113 | Schlotzhauer | Jun 1931 | A |
1850721 | Katzenberger | Mar 1932 | A |
2310816 | Taylor | Feb 1943 | A |
3902072 | Quinn | Aug 1975 | A |
3976396 | Antogini | Aug 1976 | A |
4004861 | Soules | Jan 1977 | A |
4052134 | Rumsey | Oct 1977 | A |
4053787 | Diggs | Oct 1977 | A |
4104536 | Gutsfeld | Aug 1978 | A |
4119863 | Kelly | Oct 1978 | A |
4156580 | Pohl | May 1979 | A |
4174923 | Williamson | Nov 1979 | A |
4233892 | Hawkins | Nov 1980 | A |
4260325 | Cymara | Apr 1981 | A |
4260902 | Crider | Apr 1981 | A |
4270056 | Wright | May 1981 | A |
4278896 | McFarland | Jul 1981 | A |
4295783 | Lebost | Oct 1981 | A |
4346305 | White | Aug 1982 | A |
4350900 | Baughman | Sep 1982 | A |
4365934 | Mason | Dec 1982 | A |
4383797 | Lee | May 1983 | A |
4424451 | Schmidt | Jan 1984 | A |
4436480 | Vary | Mar 1984 | A |
4534703 | Flavell | Aug 1985 | A |
4551066 | Frisz | Nov 1985 | A |
4618312 | Williams | Oct 1986 | A |
4676893 | Travade | Jun 1987 | A |
4679985 | Worms | Jul 1987 | A |
4764683 | Coombes | Aug 1988 | A |
4776762 | Blowers, Sr. | Oct 1988 | A |
5009569 | Hector, Sr. | Apr 1991 | A |
5051059 | Rademacher | Sep 1991 | A |
5083899 | Koch | Jan 1992 | A |
5332354 | Lamont | Jul 1994 | A |
5430332 | Dunn, Jr. | Jul 1995 | A |
5440175 | Mayo, Jr. | Aug 1995 | A |
5447412 | Lamont | Sep 1995 | A |
5553996 | Farrar | Sep 1996 | A |
5850108 | Bernard | Dec 1998 | A |
5947678 | Bergstein | Sep 1999 | A |
6006518 | Geary | Dec 1999 | A |
6109863 | Milliken | Aug 2000 | A |
6158953 | Lamont | Dec 2000 | A |
6210113 | Ihrenberger | Apr 2001 | B1 |
6616403 | Smith | Sep 2003 | B1 |
6655907 | Brock | Dec 2003 | B2 |
6755607 | Hester | Jun 2004 | B1 |
7083382 | Ursua | Aug 2006 | B2 |
7086824 | Yang | Aug 2006 | B2 |
7125486 | Chuang | Oct 2006 | B1 |
7466035 | Srybnik | Dec 2008 | B1 |
7521816 | Helfrich | Apr 2009 | B2 |
7564144 | Srybnik | Jul 2009 | B1 |
7591635 | Ryu | Sep 2009 | B2 |
7619320 | Omer | Nov 2009 | B2 |
7661922 | Belinsky | Feb 2010 | B2 |
7696635 | Boone | Apr 2010 | B2 |
7758299 | Jarecki | Jul 2010 | B1 |
7880322 | Cumings | Feb 2011 | B2 |
7902687 | Sauer | Mar 2011 | B2 |
7960852 | Cumings | Jun 2011 | B2 |
7969034 | Winius | Jun 2011 | B2 |
8011876 | Gradwohl | Sep 2011 | B2 |
8076791 | Hostetler | Dec 2011 | B2 |
8096749 | Yang | Jan 2012 | B2 |
8419367 | Fite | Apr 2013 | B2 |
8534068 | Yangpichit | Sep 2013 | B2 |
8552579 | Richter | Oct 2013 | B2 |
8591170 | Rawls | Nov 2013 | B1 |
8829704 | Grigg | Sep 2014 | B2 |
8840360 | Quintal | Sep 2014 | B2 |
8847423 | Wang | Sep 2014 | B2 |
8894348 | Thacker, II | Nov 2014 | B2 |
9024463 | Boone | May 2015 | B2 |
9593665 | Santana | Mar 2017 | B2 |
20060245919 | Krizik | Nov 2006 | A1 |
20070029805 | Marchetti | Feb 2007 | A1 |
20130285382 | Grigg | Oct 2013 | A1 |
20130328315 | Portolan | Dec 2013 | A1 |
20170234288 | Williams | Aug 2017 | A1 |
20180023540 | Lai | Jan 2018 | A1 |
Number | Date | Country | |
---|---|---|---|
20170248113 A1 | Aug 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12587232 | Oct 2009 | US |
Child | 15458909 | US |