1. Field of the Invention
The present invention relates generally to the field of hydrolasing tools for deployment in storage tanks. More specifically, the present invention discloses a remotely-operated hydrolasing system for mobilizing hardened salt cake in large storage tanks.
2. Statement of the Problem
A number of hazardous waste storage facilities around the country have large underground storage tanks containing hardened salt cake. A problem exists in dissolving or mobilizing these salts, so that they can be removed from the storage tanks for treatment or disposal. The conventional approach has been to sluice water through the storage tanks to dissolve the salt cake. This has been less than completely satisfactory in breaking down salt cake due to the hardened nature of the salt cake and its limited solubility.
In more accessible environments, salt cake can be more effectively removed from surfaces by means of high-pressure jets of waters. This is commonly known as “hydrolasing,” However, hydrolasing presents a number of major obstacles to its use in underground storage tanks and in dealing with hazardous waste. The primary obstacle is a lack of access provided when dealing with large underground storage tanks. For example, many storage tanks have a 12-inch diameter opening and a 9-foot riser leading into the interior of the tank. The bottom of the tank can be more than 50 feet below the surface of the earth. In addition, the tank may contain obstacles must be maneuvered around. These limitations create significant obstacles to deploying, operating and recovering a hydrolasing apparatus within a storage tank.
Dealing with hazardous wastes creates additional obstacles. The hydrolasing head must have sufficient power to break apart and mobilize the waste in order to be effective. However, it should be unable to penetrate the corroded steel wall of the tank, which might release hazardous waste into the surrounding environment. In addition, the hydrolasing process should minimize the generation of aerosols that can escape through the riser into the environment.
3. Solution to the Problem
The present invention addresses the shortcomings of the prior art by providing a hydrolasing system that can be readily deployed in and recovered from underground storage tanks. Once deployed within a storage tank, the hydrolasing system can be maneuvered on its drive wheels to avoid obstacles and allow careful control of the areas of the tank to be treated.
This invention provides a hydrolasing system for use in storage tanks that includes a remotely-operated water lance that folds so that it can be deployed and retrieved through a small-diameter riser. After deployment, the system can be remotely operated within the tank to remove hardened salt cake.
These and other advantages, features, and objects of the present invention will be more readily understood in view of the following detailed description and the drawings.
The present invention can be more readily understood in conjunction with the accompanying drawings, in which:
Remotely-Operated Water Lance. Turning to
The hydrolasing head 17 is typically mounted near the distal end of the main body 12, as shown in the figures. The hydrolasing head 17 can be driven by reaction-type nozzles, for example, so that the head is self-rotating. Rotation is imparted by the angular setting of the nozzles in the hydrolasing head 17, thereby eliminating the need for separate drive motors. An integral swivel assembly can be employed to allow for free rotation of the hydrolasing head 17 during operation. The attained rotational speed is dependent on applied resistance of the fluid media in which it operates, the primary resistances being offered by the depth under water and the suspended and dissolved salts concentrations. Alternatively, fixed nozzles could be used in place of, or in addition to a rotating hydrolasing head.
The hydrolasing head 17 itself is protected by a non-rotating cage 18. The purpose of the protective cage 18 is two-fold. First, it protects the nozzles from impacting with the tank steel bottom and salt cake. Second, it establishes the required standoff of the nozzles relative to the target material and protects the steel plate from direct contact.
The ROWL 10 is connected to the surface by an umbilical 24 extending from the hollow core near the proximal end of the main body 12 (i.e., through the tail of the ROWL 10). The umbilical 24 contains pneumatic air lines for actuation of the various hydraulic cylinders and motors, a high-pressure hose, and the tether cable. Thus, the high-pressure nozzles of the hydrolasing head 17 are supplied by the high-pressure hose passing through the main body 12 of the ROWL 10, up the umbilical 24, and to an external high-pressure pump. In the preferred embodiment, the ROWL 10 is entirely pneumatic. However, other configurations could be readily substituted. The hydrolasing head 17 can also be selectively activated and deactivated remotely from a control station outside the tank via the umbilical 24. In addition, the umbilical 24 serves as a flexible connection for inserting and withdrawing the hydrolasing system through the tank riser, as will be discussed below.
The axle assembly is movably mounted to the mid-section of the main body 12 as illustrated for example in
For example, the axle assemble 14 can be equipped with two wheels 16 driven by two independent pneumatic radial piston motors 13 within the axle assembly 14 to support and maneuver the unfolded ROWL 10 in the tank. The pneumatic lines for the drive motors 13 are routed through the interior of the axle assembly 14 and main body 12 of the ROWL 10, and up the umbilical 24 to the control station. Alternatively, the drive motors 13 could be powered hydraulically or by electricity. The drive motors 13 are operated remotely from the control station while the operator observes via a number of video cameras. The cameras can either be mounted to the ROWL or separately lowered into the tank.
In the unfolded position of the embodiment shown in the accompanying drawings, a tail foot 20 can also be extended from the proximal end of the main body 12 of the ROWL 10. A pneumatic cylinder 21 serves as a foot actuator to position the rear foot braces 22 and thereby raise and lower the ROWL's tail. The axle assembly 14, acting as the pivot point translates this into up/down movement of the hydrolasing head 17 at the front of the main body 12. Thus, the elevation of the hydrolasing head 17 within the storage tank can be adjustably controlled by actuation of the pneumatic cylinder 21. It should be understood that other types of foot actuators could be substituted to adjust the elevation of the hydrolasing head 17.
Rotating Alignment Tool.
Umbilical Management System.
Suction Feature.
Optionally, an initial section 54 of the discharge tube 55 adjacent to the suction port 50 can be constricted to a reduced inside diameter to accelerate the flow. This constricted region can be lined with a ceramic material, hardened steel or other abrasion-resistant materials to reduce abrasion on the remainder of the interior of the discharge tube 55. Preferably, the constricted region should create a narrow, cohesive, laminar stream to keep the abrasive materials entrained in the stream (e.g., sand) away from the pipe walls and hosing downstream.
The main body 12 in the embodiment shown in
The embodiment shown in
Method of Operation. The ROWL 10 is deployed through the riser in its folded configuration and is lowered to the tank floor by its umbilical 24 with the umbilical management system. The rotary alignment tool (RAT) 30, operating in conjunction with the umbilical management system, ensures proper alignment of the ROWL 10 during deployment and retrieval.
When the ROWL 10 clears the bottom of the tank riser, it can be unfolded into its operating configuration, as shown in
The ROWL 10 is designed for travel on the tank bottom in the unfolded position, and uses high pressure water supplied through the umbilical 24 to the hydrolasing heads 17 to break apart the salt cake and mobilize (and consequently saturate) the solution. It is anticipated that the best operating configuration will be submerged approximately 6-inches below the surface of the water with the salt cake also submerged. This will allow a rather vigorous boil to occur and keeps much of the salt in solution for pumping.
As previously discussed, the embodiment of the ROWL 10 shown in
Following completion of hydrolasing operations in a storage tank, the ROWL 10 can be returned to its folded state by releasing the air pressure from its pneumatic cylinders 15 and 21, which allows the axle assembly 14 to rotate to an orientation generally parallel to the main body 12 of the ROWL 10, and retracts the tail foot 20. The ROWL 10 can then be retrieved up the riser in its folded state by reeling in the umbilical 24.
The above disclosure sets forth a number of embodiments of the present invention described in detail with respect to the accompanying drawings. Those skilled in this art will appreciate that various changes, modifications, other structural arrangements, and other embodiments could be practiced under the teachings of the present invention without departing from the scope of this invention as set forth in the following claims.
The present application is based on and claims priority to the Applicant's U.S. Provisional Patent Application 60/751,329, entitled “Hydrolasing System for Use in Storage Tanks,” filed on Dec. 16, 2005.
Number | Name | Date | Kind |
---|---|---|---|
5617604 | Erich | Apr 1997 | A |
5640982 | Landry et al. | Jun 1997 | A |
5879515 | Straub et al. | Mar 1999 | A |
6051076 | Oechsle et al. | Apr 2000 | A |
6053267 | Fisher | Apr 2000 | A |
6102145 | Fisher | Aug 2000 | A |
6141810 | Allen et al. | Nov 2000 | A |
6898951 | Severns et al. | May 2005 | B2 |
6969414 | Fisher | Nov 2005 | B2 |
Number | Date | Country |
---|---|---|
2253814 | Mar 1991 | GB |
Number | Date | Country | |
---|---|---|---|
20070137680 A1 | Jun 2007 | US |
Number | Date | Country | |
---|---|---|---|
60751329 | Dec 2005 | US |