Hydrolysable silanes

Information

  • Patent Grant
  • 9321792
  • Patent Number
    9,321,792
  • Date Filed
    Friday, December 7, 2012
    12 years ago
  • Date Issued
    Tuesday, April 26, 2016
    8 years ago
Abstract
This invention relates to hydrolysable silanes useful in the modification of elastomers, and as coupling agents for diene elastomer compositions containing a filler. In particular the invention relates to novel hydrolysable silanes containing an aziridine ring herein named (Az).
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a U.S. national stage filing under 35 U.S.C. §371 of PCT Application No. PCT/EP12/74730 filed on 7 Dec. 2012, currently pending, which claims the benefit of GB Patent Application No. 1121133.1 filed 8 Dec. 2011 under 35 U.S.C. §119 (a)-(d) and 35 U.S.C. §365(a). PCT Application No. PCT/EP12/74730 and GB Patent Application No. 1121133.1 are hereby incorporated by reference.


This invention relates to hydrolysable silanes useful in the modification of elastomers, and as coupling agents for diene elastomer compositions containing a filler. In particular the invention relates to novel hydrolysable silanes containing an aziridine ring herein named (Az).


WO-A-2010/139473 describes various hydrolysable silanes as coupling agents between an inorganic filler and an elastomer. The silanes include those containing an aromatic group having an unsaturated substituent, such as triethoxy(4-vinylphenethyl)silane and 3-(N-styrylmethyl-2-aminoethylamino)propyltriethoxysilane, and those containing a heterocyclic ring such as N-(3-triethoxysilylpropyl)-dihydroimidazole and 1-(3-triethoxysilylpropyl)-pyrrole.


Other examples of hydrolysable silanes which have been proposed as coupling agents include unsaturated silanes containing an ester group, such as an acryloxypropyltrialkoxysilane, described in WO-A-2010/125124.


The paper ‘Molecular recognition by a silica-bound fullerene derivative’ by A. Bianco et al in J. Am. Chem. Soc 1997, volume 119, at pages 7550-7554 describes N-[3-(triethoxysily)propyl]-2-carbomethoxyaziridine and its reaction with fullerene.


EP1942161 describes N-(3-diethoxymethylsilyl)propyl 2-carboethoxy aziridine. The European Journal of Organic Chemistry, Vol. 13, 2006, pages 2934-2941 describes the synthesis of methyl N-(3-(Trialkoxysilyl)-propyl)aziridine-2-carboxylates. The Journal of the American Chemical Society, Vol. 119(32), 1997, pages 7550-7554 and Tetrahedron, Vol. 57(32), 2001, pages 6997-7002 describe MeO2C-(Az)-(CH2)3Si(Oet)3.


A hydrolysable silane according to the present invention has the formula Y—OC(O)-(Az)-Z wherein Y and Z each represent a hydrocarbyl or substituted hydrocarbyl group having 1 to 40 carbon atoms, at least one of Y and Z being a group of the formula RaR′3-aSi-A in which R represents a hydrolysable group; R′ represents a hydrocarbyl group having 1 to 8 carbon atoms; a has a value in the range 1 to 3 inclusive; and A represents a divalent organic spacer linkage having at least one carbon atom, provided that when Z is a 3-(triethoxysilyl)propyl group Y has at least 2 carbon atoms. Z is on the nitrogen atom of the (Az) ring.


The hydrolysable silanes of the invention are capable of bonding strongly to diene elastomers under the processing conditions used for producing elastomer products such as tyres, reacting through the aziridine ring which reacts with C═C bonds of the elastomer through cycloaddition. The hydrolysable silanes of the invention are also capable of bonding strongly to fillers through hydrolysis of the silane group, thus forming very effective coupling agents.


The hydrolysable silanes of the invention can in general be prepared by reacting an alkyl or substituted alkyl 2,3-dibromopropionate of the formula Y—OC(O)—CHBr—CH2Br with an amine of the formula Z—NH2.


The substituted alkyl 2,3-dibromopropionates of the formula Y—OC(O)—CHBr—CH2Br in which Y is a group of the formula RaR′3-aSi-A-, that is the substituted alkyl 2,3-dibromopropionates of the formula RaR′3-aSi-A-OC(O)—CHBr—CH2Br, where R, R′, a and A are defined as above, are new compounds. They can be prepared by the reaction of an acrylate of the formula RaR′3-aSi-A-OC(O)—CH═CH2 with bromine at ambient temperature or below. Other 2,3-dibromopropionates of the formula Y—OC(O)—CHBr—CH2Br can similarly be prepared from an acrylate of the formula Y—OC(O)—CH═CH2 with bromine.


In the hydrolysable silanes of the invention, at least one of Y and Z is a group of the formula RaR′3-aSi-A in which R represents a hydrolysable group. The hydrolysable group can for example be an alkoxy or acyloxy group. Hydrolysable groups in which each group R is an alkoxy group having 1 to 4 carbon atoms such as methoxy, ethoxy, propoxy, isopropoxy or butoxy may be preferred, although other alkoxy groups having up to 8 carbon atoms can be used. Since the alcohol corresponding to the alkoxy group is released on hydrolysis, the most preferred alkoxy group is usually ethoxy. An example of a suitable acyloxy group is acetoxy. Preferably both Y and Z contain a silane.


Hydrolysable silanes in which a=3 may be preferred as having the maximum number of hydrolysable groups. Examples of groups of the formula RaR′3-aSi-A in which a=3 include trialkoxysilylalkyl groups such as triethoxysilylalkyl or trimethoxysilylalkyl groups, or triacetoxysilylalkyl groups. However hydrolysable silanes in which a=2 or a=1 are also useful coupling agents. In such hydrolysable silanes the group R′ is a hydrocarbyl group having 1 to 8 carbon atoms. Preferred groups R′ include alkyl groups having 1 to 4 carbon atoms such as methyl or ethyl, but R′ can be an alkyl group having more carbon atoms such as hexyl or 2-ethylhexyl or can be an aryl group such as phenyl. Examples of groups of the formula RaR′3-aSi-A in which a=2 include diethoxymethylsilylalkyl, diethoxyethylsilylalkyl, dimethoxymethylsilylalkyl or diacetoxymethylsilylalkyl groups.


In the group of the formula RaR′3-aSi-A, A represents an alkylene group having 2 to 6 carbon atoms. Preferred examples of groups A are —(CH2)3—, —(CH2)4—, and —CH2CH(CH3)CH2— groups. The group of the formula RaR′3-aSi-A can for example be a 3-(triethoxysilyl)propyl, 4-(triethoxysilyl)butyl, 2-methyl-3-(triethoxysilyl)propyl, 3-(trimethoxysilyl)propyl, 3-triacetoxysilylpropyl, 3-(diethoxymethylsilyl)propyl, 3-(diethoxyethylsilyl)propyl, 3-(dimethoxymethylsilyl)propyl or 3-(diacetoxymethylsilyl)propyl group.


In the hydrolysable silanes in which Y is a group of the formula RaR′3-aSi-A-, Z can be any hydrocarbyl or substituted hydrocarbyl group having 1 to 40 carbon atoms. Z can for example be an alkyl group having 1 to 6 carbon atoms such as methyl, ethyl, butyl or hexyl, or can be a longer chain alkyl group, or can be an aryl group having 6 to 10 carbon atoms such as phenyl or tolyl or an aralkyl group such as benzyl or 2-phenylpropyl. Z can alternatively be a substituted hydrocarbyl group such as a hydroxyalkyl, aminoalkyl, or alkoxyalkyl group or a group of the formula

RaR′3-aSi-A-.


Similarly in the hydrolysable silanes in which Z is a group of the formula RaR′3-aSi-A—, Y can in general be any hydrocarbyl or substituted hydrocarbyl group having 1 to 40 carbon atoms, subject to the proviso that when Z is a 3-(triethoxysilyl)propyl group Y has at least 2 carbon atoms. Y can for example be an alkyl group having 1 to 10 or more carbon atoms, an aryl group having 6 to 10 carbon atoms, an aralkyl group or a substituted hydrocarbyl group.


Thus the hydrolysable silane may have the formula Y—OC(O)-(Az)-A′-Si-R*aR″3-a wherein R* represents a hydrolysable group; R″ represents a hydrocarbyl group having 1 to 8 carbon atoms; a has a value in the range 1 to 3 inclusive; A′ represents a divalent organic spacer linkage having at least one carbon atom; and Y represents a hydrocarbyl or substituted hydrocarbyl group having 1 to 40 carbon atoms. For example the Z moiety may contain at least one group R* which is a methoxy group, or may contain at least one group R* which is an alkoxy group having 3 to 8 carbon atoms, or the -A′-Si-R*aR″3-a moiety may contain at least one R″ group. For any -A′-Si-R*aR″3-a moiety, Y may represent an alkyl group having 2 to 10 or more carbon atoms, an aryl group having 6 to 10 carbon atoms, an aralkyl group or a substituted hydrocarbyl group.


Hydrolysable silanes in which both Y and Z are substituted hydrocarbyl groups of the formula RaR′3-aSi-A- are particularly preferred examples of hydrolysable silanes of the invention. Examples of such hydrolysable silanes include




embedded image



and similar silanes in which one or both of the 3-(triethoxysilyl)propyl groups is replaced by a different RaR′3-aSi-A- group selected from those listed above.


Other examples of hydrolysable silanes comprise silanes having a substituted C atom on the Az ring. For example it can be:




embedded image


A hydrolysable silane of the formula Y—OC(O)-(Az)-Z wherein Y and Z each represent a hydrocarbyl or substituted hydrocarbyl group having 1 to 40 carbon atoms, at least one of Y and Z being a group of the formula RaR′3-aSi-A in which R represents a hydrolysable group; R′ represents a hydrocarbyl group having 1 to 8 carbon atoms; a has a value in the range 1 to 3 inclusive; and A represents a divalent organic spacer linkage having at least one carbon atom, Az represents an aziridine ring wherein Z is bonded to Az through its nitrogen atom, provided that when in Z, A is a propyl group Y has at least 3 carbon atoms and provided that when Y is a silane, Z can either be a silane or alkyl, aryl or substituted hydrocarbyl group


A hydrolysable silane according to claim 1 of the formula RaR′3-aSi-A-OC(O)-(Az)-Z wherein R, R′, A and a are defined as in claim 1 and Z represents a hydrocarbyl or substituted hydrocarbyl group having 1 to 40 carbon atoms.


A hydrolysable silane according to claim 1 or claim 2, characterised in that each group R is an alkoxy group having 1 to 4 carbon atoms.


A hydrolysable silane according to claim 3, characterised in that each group R is an ethoxy group.


A hydrolysable silane according to any of claims 1 to 4, characterised in that a=3.


A hydrolysable silane according to any of claims 2 to 5, characterised in that A represents an alkylene group having 2 to 6 carbon atoms.


A hydrolysable silane according to any of claims 2 to 6, characterised in that Z represents an alkyl group having 1 to 6 carbon atoms.


A hydrolysable silane according to any of claims 2 to 6, characterised in that Z represents an aryl group having 6 to 10 carbon atoms.


A hydrolysable silane according to any of claims 2 to 6, characterised in that Z represents a substituted alkyl group of the formula -A′-SiRaR′3-a in which R, R′ and a are defined as in claim 1 and A′ represents a divalent organic spacer linkage having at least one carbon atom separating the silicon atom from the aziridine ring.


The hydrolysable silane of the formula (C2H5O)3Si—(CH2)3—OC(O)-Az-(CH2)3—Si(C2H5O)3.


A hydrolysable silane according to claim 1 of the formula Y—OC(O)-(Az)-A′-Si-R*aR″3-a wherein R* represents a hydrolysable group; R″ represents a hydrocarbyl group having 1 to 8 carbon atoms; a has a value in the range 1 to 3 inclusive; A′ represents a divalent organic spacer linkage having at least one carbon atom; and Y represents a hydrocarbyl or substituted hydrocarbyl group having 1 to 40 carbon atoms.


A hydrolysable silane according to claim 11, characterised in that the Z moiety contains at least one group R* which is a methoxy group.


A hydrolysable silane according to claim 11, characterised in that the Z moiety contains at least one group R* which is an alkoxy group having 3 to 8 carbon atoms.


A hydrolysable silane according to any of claims 11 to 13, characterised in that the Z moiety contains at least one R″ group.


A hydrolysable silane according to any of claims 11 to 14, characterised in that Y represents an alkyl group having 2 to 10 carbon atoms.


A process for the preparation of a hydrolysable silane of the formula Y—OC(O)-(Az)-Z as defined in claim 1, characterised in that an alkyl or substituted alkyl 2,3-dibromopropionate of the formula Y—OC(O)—CHBr—CH2Br is reacted with an amine of the formula Z—NH2


A substituted alkyl 2,3-dibromopropionate of the formula RaR′3-aSi-A-OC(O)—CHBr—CH2Br, wherein R represents a hydrolysable group; R′ represents a hydrocarbyl group having 1 to 8 carbon atoms; a has a value in the range 1 to 3 inclusive; and A represents a divalent organic spacer linkage having at least one carbon atom.


Examples for the preparation of hydrolysable silanes that are reactive towards diene elastomers.







EXAMPLE 1



embedded image


Detailed synthesis of N-(3-triethoxysilylpropyl)aziridine-2-(3-triethoxysilylpropyl)carboxylate. A 500 ml two necked round bottom flask, fitted with a condenser, nitrogen sweep and magnetic stirrer, was charged with 23.4 g 3-aminopropyltriethoxysilane, 27.8 g triethylamine and 160 ml toluene and inerted with nitrogen. To this ice-cold mixture was added drop-wise a solution of 46.0 g (3-triethoxysilylpropyl)-2,3-dibromopropionate in 160 ml toluene. Mixture was refluxed for 6 hours and solids filtered off over diatomaceous earth. Solvent and volatiles were removed in vacuo affording the aziridine as a light orange liquid. Formation of the aziridine ring was confirmed by nuclear magnetic resonance spectroscopy.


EXAMPLE 2



embedded image


Detailed synthesis of N-(butyl) aziridine-2-(3-triethoxysilylpropyl) carboxylate. A 500 ml two necked round bottom flask, fitted with a condenser, nitrogen sweep and magnetic stirrer, was charged with g 7.7 g n-butylamine, 27.8 g triethylamine and 160 ml toluene and inerted with nitrogen. To this ice-cold mixture was added drop-wise a solution of 46.0 g (3-triethoxysilylpropyl)-2,3-dibromopropionate in 160 ml toluene. Mixture was refluxed for 6 hours and solids filtered off over diatomaceous earth. Solvent and volatiles were removed in vacuo affording the aziridine as a light orange liquid. Formation of the aziridine ring was confirmed by nuclear magnetic resonance spectroscopy.


EXAMPLE 3



embedded image


Detailed description of the N-benzyl azaridine 2-(3-triethoxysilylpropyl)carboxylate. A 1 L two-necked round bottom flask, fitted with a condenser, nitrogen sweep and magnetic stirrer, was charged with 14.1 g benzylamine, 33.2 g triethylamine and 160 ml toluene and inerted with nitrogen. To this ice-cold mixture was added drop-wise a solution of 57.2 g (3-triethoxysilylpropyl)-2,3-dibromopropionate in 160 ml toluene. Mixture was refluxed for 6 hours and solids filtered off over diatomaceous earth. Solvent and volatiles was removed in vacuo affording the aziridine as a light orange liquid. Formation of the aziridine ring was confirmed by nuclear magnetic resonance spectroscopy.


PROPHETIC EXAMPLE 1



embedded image


Detailed synthesis of N-(3-triethoxysilylpropyl)aziridine-2,3-bis(3-triethoxysilylpropylcarboxylate). A 500 ml two necked round bottom flask, fitted with a condenser, nitrogen sweep and magnetic stirrer, will be charged with 23.4 g 3-aminopropyltriethoxysilane, 27.8 g triethylamine and 160 ml toluene and inerted with nitrogen. To this ice-cold mixture will be added drop-wise a solution of 72.2 g bis(3-triethoxysilylpropyl)-2,3-dibromosuccinate in 160 ml toluene. Mixture will be refluxed for 6 hours and solids filtered off over diatomaceous earth. Solvent and volatiles will be removed in vacuo affording the aziridine as a light orange liquid. Formation of the aziridine ring will be confirmed by nuclear magnetic resonance spectroscopy.


PROPHETIC EXAMPLE 2



embedded image


Detailed synthesis of N-(3-triethoxysilylpropyl)aziridine-2-(2-furyl)-3-(3-triethoxysilylpropylcarboxylate). A 500 ml two necked round bottom flask, fitted with a condenser, nitrogen sweep and magnetic stirrer, will be charged with 23.4 g 3-aminopropyltriethoxysilane, 27.8 g triethylamine and 160 ml toluene and inerted with nitrogen. To this ice-cold mixture will be added drop-wise a solution of 53.1 g 2,3-dibromo-3-(2-furyl)propionic acid (3-triethoxysilylpropyl)ester in 160 ml toluene. Mixture will be refluxed for 6 hours and solids filtered off over diatomaceous earth. Solvent and volatiles will be removed in vacuo affording the aziridine. Formation of the aziridine ring will be confirmed by nuclear magnetic resonance spectroscopy.


PROPHETIC EXAMPLE 3



embedded image


Detailed description of the N-phenyl-2-(3-triethoxysilylpropylcarboxylate)aziridine. A 1 L two-necked round bottom flask, fitted with a condenser, nitrogen sweep and magnetic stirrer, will be charged with 12.7 g aniline, 34.5 g triethylamine and 160 ml toluene and inerted with nitrogen. To this ice-cold mixture will be added drop-wise a solution of 59.4 g (3-triethoxysilylpropyl)-2,3-dibromopropionate in 160 ml toluene. Mixture will be refluxed for 6 hours and solids filtered off over diatomaceous earth. Solvent and volatiles will be removed in vacuo affording the aziridine. Formation of the aziridine ring will be proven by nuclear magnetic resonance spectroscopy.


PROPHETIC EXAMPLE 4



embedded image


Detailed synthesis of N-(3-triethoxysilylpropyl)-2-methyl-2-(3-triethoxysilylpropylcarboxylate)aziridine. A 500 ml two necked round bottom flask, fitted with a condenser, nitrogen sweep and magnetic stirrer, will be charged with 23.4 g 3-aminopropyltriethoxysilane, 27.8 g triethylamine and 160 ml toluene and inerted with nitrogen. To this ice-cold mixture will be added drop-wise a solution of 47.6 g 2,3-dibromo-2-methylpropionic acid (3-triethoxysilylpropyl)ester in 160 ml toluene. Mixture will be refluxed for 6 hours and solids filtered off over diatomaceous earth. Solvent and volatiles will be removed in vacuo affording the aziridine. Formation of the aziridine ring will be confirmed by nuclear magnetic resonance spectroscopy.


PROPHETIC EXAMPLE 5



embedded image


Detailed synthesis of N-(3-triethoxysilylpropyl)-2-methyl-3-(3-triethoxysilylpropylcarboxylate)aziridine. A 500 ml two necked round bottom flask, fitted with a condenser, nitrogen sweep and magnetic stirrer, will be charged with 23.4 g 3-aminopropyltriethoxysilane, 27.8 g triethylamine and 160 ml toluene and inerted with nitrogen. To this ice-cold mixture will be added drop-wise a solution of 47.6 g 2,3-dibromobutyric acid (3-triethoxysilylpropyl)ester in 160 ml toluene. Mixture will be refluxed for 6 hours and solids filtered off over diatomaceous earth. Solvent and volatiles will be removed in vacuo affording the aziridine. Formation of the aziridine ring will be confirmed by nuclear magnetic resonance spectroscopy.


PROPHETIC EXAMPLE 6



embedded image


Detailed synthesis of N-(3-triethoxysilylpropyl)-2,2-dimethyl-3-(3-triethoxysilylpropylcarboxylate)aziridine. A 500 ml two necked round bottom flask, fitted with a condenser, nitrogen sweep and magnetic stirrer, will be charged with 23.4 g 3-aminopropyltriethoxysilane, 27.8 g triethylamine and 160 ml toluene and inerted with nitrogen. To this ice-cold mixture will be added drop-wise a solution of 49.1 g 2,3-dibromo-3-methylbutyric acid (3-triethoxysilylpropyl)ester in 160 ml toluene. Mixture will be refluxed for 6 hours and solids filtered off over diatomaceous earth. Solvent and volatiles will be removed in vacuo affording the aziridine. Formation of the aziridine ring will be confirmed by nuclear magnetic resonance spectroscopy.


PROPHETIC EXAMPLE 7



embedded image


Detailed synthesis of N-(3-triethoxysilylpropyl)-2-phenyl-3-(3-triethoxysilylpropylcarboxylate)aziridine. A 500 ml two necked round bottom flask, fitted with a condenser, nitrogen sweep and magnetic stirrer, will be charged with 23.4 g 3-aminopropyltriethoxysilane, 27.8 g triethylamine and 160 ml toluene and inerted with nitrogen. To this ice-cold mixture will be added drop-wise a solution of 54.2 g 2,3-dibromo-3-phenylpropionic acid (3-triethoxysilylpropyl)ester in 160 ml toluene. Mixture will be refluxed for 6 hours and solids filtered off over diatomaceous earth. Solvent and volatiles will be removed in vacuo affording the aziridine. Formation of the aziridine ring will be confirmed by nuclear magnetic resonance spectroscopy.

Claims
  • 1. A hydrolysable silane of the formula RaR′3-aSi-A-OC(O)-(Az)-Z wherein Z represents a hydrocarbyl or substituted hydrocarbyl group having 1 to 40 carbon atoms; R represents a hydrolysable group; R′ represents a hydrocarbyl group having 1 to 8 carbon atoms; a has a value in the range 1 to 3 inclusive; and A represents a divalent organic spacer linkage having at least one carbon atom, Az represents an aziridine ring wherein Z is bonded to Az through its nitrogen atom.
  • 2. A hydrolysable silane according to claim 1, characterised in that each group R is an alkoxy group having 1 to 4 carbon atoms.
  • 3. A hydrolysable silane according to claim 2, characterised in that each group R is an ethoxy group.
  • 4. A hydrolysable silane according to claim 1, characterised in that a=3.
  • 5. A hydrolysable silane according to claim 1, characterised in that A represents an alkylene group having 2 to 6 carbon atoms.
  • 6. A hydrolysable silane according to claim 1, characterised in that Z represents an alkyl group having 1 to 6 carbon atoms.
  • 7. A hydrolysable silane according to claim 1, characterised in that Z represents an aryl group having 6 to 10 carbon atoms.
  • 8. A hydrolysable silane according to claim 1, characterised in that Z represents a substituted alkyl group of the formula -A′-SiRaR′3-a in which R, R′ and a are defined as in claim 1 and A′ represents a divalent organic spacer linkage having at least one carbon atom separating the silicon atom from the aziridine ring.
  • 9. A hydrolysable silane according to claim 1 of the formula (C2H5O)3Si—(CH2)3—OC(O)-Az-(CH2)3—Si(C2H5O)3.
  • 10. A process for the preparation of a hydrolysable silane of the formula RaR′3-aSi-A-OC(O)-(Az)-Z as defined in claim 1, characterised in that a substituted alkyl 2,3-dibromopropionate of the formula RaR′3-aSi-A-OC(O)—CHBr—CH2Br is reacted with an amine of the formula Z—NH2.
  • 11. A substituted alkyl 2,3-dibromopropionate of the formula RaR′3-aSi-A-OC(O)—CHBr—CH2Br, wherein R represents a hydrolysable group; R′ represents a hydrocarbyl group having 1 to 8 carbon atoms; a has a value in the range 1 to 3 inclusive; and A represents a divalent organic spacer linkage having at least one carbon atom.
Priority Claims (1)
Number Date Country Kind
1121133.1 Dec 2011 GB national
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2012/074730 12/7/2012 WO 00
Publishing Document Publishing Date Country Kind
WO2013/083743 6/13/2013 WO A
US Referenced Citations (41)
Number Name Date Kind
2853488 D'Amico et al. Sep 1958 A
3147161 Abere et al. Sep 1964 A
3169122 Hennes Feb 1965 A
3379707 Lund et al. Apr 1968 A
3408198 Reynolds et al. Oct 1968 A
3779703 Tesoro Dec 1973 A
3810843 Slusarczuk et al. May 1974 A
3855241 Wilkus et al. Dec 1974 A
3928330 Ramey et al. Dec 1975 A
4083861 Seiler et al. Apr 1978 A
5106680 King et al. Apr 1992 A
5369143 Kurimoto et al. Nov 1994 A
5821277 Hirayama et al. Oct 1998 A
5852099 Vanel Dec 1998 A
6494946 Belmont et al. Dec 2002 B1
6794428 Burrington et al. Sep 2004 B2
6806339 Cray et al. Oct 2004 B2
7144967 Sakamoto et al. Dec 2006 B2
7419975 Palermo et al. Sep 2008 B2
7732029 Moorlag et al. Jun 2010 B1
7833404 Matsuda et al. Nov 2010 B2
7847117 Merget Dec 2010 B2
7981966 Kobayashi et al. Jul 2011 B2
8140294 Ramey et al. Mar 2012 B2
8202944 Suzuki et al. Jun 2012 B2
8318858 Oshima Nov 2012 B2
8476375 Backer et al. Jul 2013 B2
8524836 Kavanagh et al. Sep 2013 B2
8569417 Backer et al. Oct 2013 B2
20050234042 Palermo et al. Oct 2005 A1
20100056713 Oshima Mar 2010 A1
20100137499 Moorlag et al. Jun 2010 A1
20110049056 Wyndham et al. Mar 2011 A1
20110146877 Tanaka et al. Jun 2011 A1
20110172367 Backer et al. Jul 2011 A1
20120059121 Backer et al. Mar 2012 A1
20120065319 Backer et al. Mar 2012 A1
20120270997 Tanaka et al. Oct 2012 A1
20120277369 Yoshida et al. Nov 2012 A1
20120330044 Hou Dec 2012 A1
20130079464 Nishioka et al. Mar 2013 A1
Foreign Referenced Citations (16)
Number Date Country
206848 Feb 1984 DE
1123303 Aug 1968 GB
1214451 Dec 1970 GB
1473335 May 1977 GB
180661 Apr 1983 HU
5543143 Mar 1980 JP
10095933 Apr 1998 JP
2001240706 Sep 2001 JP
2004085689 Mar 2004 JP
2004085775 Mar 2004 JP
2004109586 Apr 2004 JP
2005249897 Sep 2005 JP
2008163283 Jul 2008 JP
9429324 Dec 1994 WO
0170866 Sep 2001 WO
2011083050 Jul 2011 WO
Non-Patent Literature Citations (11)
Entry
Matsuo et al: “Introduction of amino groups into the interlayer space of graphite oxide using 3-aminopropylethoxysilanes”, Carbon, Elsevier, Oxford, GB, vol. 45, No. 7, Jun. 1, 2007, pp. 1384-1390.
Organometallics, vol. 13(9), 1994, (Muehleisen, Mathias; Tacke, Reinhold), pp. 3740-3742.
Russian Journal of Applied Chemistry; vol. 82, Issue 5, pp. 928-930; Journal 2009; by V. M. Farzaliev, M. T. Abbasova, A. A. Ashurova, G. B. Babaeva, N. P. Ladokhina and Ya. M. Kerimova.
The Russian Chemical Bulletin, vol. 44(2), 1995, pp. 374-375.
The Vanderbilt Rubber Handbook (1978), pp. 344 through 346.
Journal of Membrane Science, vol. 129(2), 1997, Barbiou, Mihai et al, pp. 197-207.
European Journal of Organic Chemistry, vol. 13, 2006, (Bianco, Alberto et al.), pp. 2934-2941.
Gasparrini, F. et al., “Molecular recognition of p-tert-butylcalixarenes by surface-linked fullerenes C60 and C70”, Tetrahedron, Elsevier Science Publishers, Amsterdam, NL, vol. 57, No. 32, Aug. 6, 2001, pp. 6997-7002.
Bianco et al., “Molecular recognition by a silica-bound fullerene derivative”, J. Am. Chem. Soc. 1997, vol. 119, pp. 7550-7554.
Brunauer et al., Adsorption of Gases in Multimolecular Layers, Feb. 1938, pp. 309-319, vol. 60.
Chemische Berichte, vol. 120(4), 1987, Brueckmann, Ralf, et al., pp. 635-641.
Related Publications (1)
Number Date Country
20140364627 A1 Dec 2014 US