HYDROLYTICALLY STABLE FUNCTIONALIZED POLYPHOSPHONATE FLAME RETARDANT

Information

  • Patent Application
  • 20150240080
  • Publication Number
    20150240080
  • Date Filed
    September 11, 2013
    11 years ago
  • Date Published
    August 27, 2015
    9 years ago
Abstract
Functionalized non-halogenated flame retardants are disclosed having improved hydrolytic stability, represented by decreased conductivity measured in units of ? S/cm when immersed in distilled water and heated to 80 C. The functionalized flame retardant comprises polyphosphonate functionalized by epoxy-functional styrene-acrylic oligomer or aromatic carbodiimide, and optionally antioxidant. Also disclosed are polymer compounds, comprising the functionalized flame retardant described above and a second polymer resin; and flame retardant plastic articles made from such polymer compounds.
Description
FIELD OF THE INVENTION

This invention concerns functionalized polyphosphonate flame retardants having improved hydrolytic stability, represented by decreased conductivity measured in units of μS/cm when immersed in distilled water and heated to 80° C.; polymer compounds containing such polyphosphonate flame retardants; and flame retardant plastic articles made from such polymer compounds.


BACKGROUND OF THE INVENTION

Thermoplastic compounds, unlike wood, metal, or glass, do not rot, rust or shatter. For that reason, the world in the past seventy years has seen a revolution in material science arising from the combination of thermoplastic resin and one or more functional additives to provide specific properties to the resin.


During processing, polymers are heated to reach a molten state for mixing with other ingredients and then forming into the shape of the final article. However, once the final polymeric article is made, the melting and even potential burning of the article when exposed to excessive heat or open flame can be detrimental to property and persons. Some polymers, such as polyvinyl chlorides, are inherently more able to withstanding exposure to heat and/or an open flame without melting or burning. On the other hand several commonly used polymers such as polyolefins, polyesters, and polycarbonates are more vulnerable to melting or burning.


Therefore, the plastic industry has focused on making polymeric materials having improved flame retardancy. Flame retardant additives, drip suppressants, mineral fillers and char formers are used as functional additives to help thermoplastic compounds retard the effects of heat or flame from causing a material to melt or even burn. Many early flame retardants relied on halogen-containing compounds, but more recently several non-halogenated fame retardants have been developed. Non-halogenated flame retardants have become popular, because they minimize the release of halogenated chemicals if the plastic article would begin to degrade, melt or burn.


Polyphosphonates are highly desirable as non-halogenated flame retardants that can be included as an additive to improve fire retardancy of thermoplastic and elastomeric compounds. However, compared to other types of non-halogenated flame retardants, polyphosphonates have a high affinity for capturing moisture, increasing the risk of hydrolysis and degradation when these compounds are exposed to heat and humidity. Degradation of polyphosphonates leads to lower molecular weight, and consequently a loss of mechanical properties, such as tensile strength, impact resistance and tensile modulus. In addition, the fire resistance of the polyphosphonate becomes diminished due to the lower molecular weight, which increases the melt flow properties, and thereby causes the material to be more likely to drip when exposed to a flame or heat.


Polyphosphonate compositions containing functional additives to improve stability when exposed to heat and moisture are disclosed in U.S. Pat. No. 7,666,932 (Freitag). However, these additives are limited to sterically hindered phenolic antioxidants, hydrolytically stable organophosphites, organophosphites, antioxidants, sterically hindered lactone antioxidants and combinations thereof. Moreover, U.S. Pat. No. 7,666,932 explicitly teaches that epoxy oligomers provide no improvement to the stability of polyphosphonate.


SUMMARY OF THE INVENTION

What the art needs is a functionalized polyphosphonate flame retardant having improved hydrolytic stability.


The present invention finds that, unexpectedly, epoxy-functional styrene-acrylic oligomer or aromatic carbodiimides can be used as functional additives to significantly improve the hydrolysis resistance of polyphosphonates, making such polyphosphonates more valuable as non-halogenated flame retardants.


One aspect of the present invention is a polyphosphonate flame retardant having polyphosphonate and either epoxy-functional styrene-acrylic oligomer or aromatic carbodiimide as a functional additive, and optionally antioxidant. The functionalized polyphosphonate flame retardant has improved hydrolytic stability represented by decreased conductivity of 10% or more compared to the polyphosphonate flame retardant without the functionalized additive as measured in units of μS/cm when immersed in distilled water and heated at 80° C. from six weeks to twenty weeks. In other words, reduced hydrolytic stability can be measured in this test by increased conductivity. Between the sixth and twentieth week of testing, the improved polyphosphonate flame retardants of the invention have lower conductivities per unit time than conventional polyphosphonate flame retardants. After twenty weeks of testing at the extreme conditions of immersion at 80° C. (176° F.) for almost five consecutive months, unfortunately, all polyphosphonates suffer from hydrolytic instability.


Another aspect of the invention is the functionalized polyphosphonate flame retardant described above, in a polymer compound. The polymer is preferably selected from a group consisting of polyester, polyurethanes, polyphenyl ethers, cellulose polymers, specialty polyester elastomers and combinations thereof. More preferably the polymer is polylactic acid (PLA), a biopolymer.


Another aspect of the invention is the polyphosphonate flame retardant described above, wherein about 0.1 weight percent to about 0.5 weight percent of the flame retardant is the functional additive in a thermoplastic compound.


Features of the invention will be explored below.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a drawing showing the test results for the hydrolysis resistance of several different non-halogenated flame retardants at 80° C. immersed in distilled water for 36 weeks.



FIG. 2 is a drawing showing the test results for the hydrolysis resistance of the Examples and Comparative Example at 80° C. immersed in distilled water for 36 weeks.





EMBODIMENTS OF THE INVENTION

Polyphosphonate


Polyphosphonates used in this invention are polymer compounds containing repeating monomer units of CH3—PO(OH)2; CH3—PO(OH)—OR, where R represents alkyl or aryl groups; or R1O—PO(R3)—OR2, where R1 and R2 are aromatic or aliphatic and R3 represents alkyl C1-C6 or aromatic. The polyphosphonates can be linear or branched. Preferred are polyphosphonate homopolymers having a polyphosphorous content of greater than about 8 weight percent, a glass transition temperature of at least about 100° C., and a limiting oxygen index of about 50% or higher. Polyphosphonates for this invention have a high molecular weight represented by about 10,000 g/mol or higher; and preferably about 20,000 g/mol or higher.


Commercially available polyphosphonates can be purchased from FRX Polymers under the FRX brand name, including the homopolymer FRX 100 polyphosphonate.


Functional Additives


Aromatic carbodiimides have been used as anti-hydrolysis agents for polyurethanes, polyethylenes, polybutylene terephthalate, thermoplastic polyester elastomers, polyamides and ethylene-vinyl acetate polymers; however, as presently known, they evidently have not been used for polyphosphonates. In this invention, aromatic carbodiimide reacts with the hydroxyl group on the polyphosphonate to form a urea group, as shown below. This reaction, shown in Equation I, has no negative impact on the performance of the polyphosphonate, but stabilizes the resulting modified polyphosphonate in the presence of water.




embedded image


Stabaxol® is a commercially available aromatic carbodiimide product line manufactured by RheinChemie.


Epoxy-functional styrene-acrylic oligomers are typically used as functional additives for a variety of uses including improving chain extension, compatibilization, hydrolytic stabilization, and increased dispersion. Similarly to aromatic carbodiimide, epoxy-functional styrene-acrylic oligomers have not been used as an anti-hydrolysis agent for polyphosphonates. In the invention, shown in Equation II with explanation of the first reagent below the Equation II, the epoxy-functional styrene-acrylic oligomer reacts with the hydroxyl group on the polyphosphonate, which opens the epoxy ring and forms an ether linkage to the polyphosphonate, as shown below. The new ether linkage helps to prevent hydrolysis of the resulting modified polyphosphonate in the presence of water.




embedded image


In Equation II,



embedded image


For the formula of ADR shown above, R1 to R6 each represent any of H, CH3, or an aliphatic chain; and units x, y, z each represent a number ranging from 1-20. A commercially available example of epoxy-functional styrene-acrylic oligomer is the Joncryl® product line manufactured by BASF.


Antioxidants


Antioxidants are frequently used polymer additives that can be used to prevent oxidation of the polyphosphonate during the extrusion process. The formation of free radicals is inhibited by antioxidants, thereby enhancing the stability of polymers against light and heat. Preferable for use in this invention is a blend of a phenolic and phosphite antioxidants. Antioxidants are commercially available from a wide variety of manufacturers, including the IRGANOX® and IRGAFOS® brands sold by BASF, and the ETHANOX® and ETHAPHOS® brands sold by Albermarle Corporation.


Optional Other Additives


The compound of the present invention can include other conventional plastics additives in an amount that is sufficient to obtain a desired processing or performance property for the compound. The amount should not be wasteful of the additive nor detrimental to the processing or performance of the compound. Those skilled in the art of thermoplastics compounding, without undue experimentation but with reference to such treatises as Plastics Additives Database (2004) from Plastics Design Library (www.elsevier.com), can select from many different types of additives for inclusion into the compounds of the present invention.


Non-limiting examples of optional additives include adhesion promoters; biocides (antibacterials, fungicides, and mildewcides), anti-fogging agents; anti-static agents; bonding, blowing and foaming agents; dispersants; fillers and extenders; smoke suppressants; impact modifiers; initiators; lubricants; micas; pigments, colorants and dyes; plasticizers; processing aids; release agents; silanes, titanates and zirconates; slip and anti-blocking agents; stabilizers; stearates; ultraviolet light absorbers; viscosity regulators; waxes; catalyst deactivators, and combinations of them.


Table 1 shows acceptable, desirable, and preferable ranges of ingredients useful in the flame retardant of the present invention, all expressed in weight percent (wt. %) of the entire compound. The compound can comprise, consist essentially of, or consist of these ingredients.












TABLE 1






Acceptable
Desirable
Preferable







Polyphosphonate homopolymer
93-99.9
 97-99.9
99.4-99.9


Anti-hydrolysis agent
0.1-0.5  
0.1-0.25
0.1


Antioxidant
0-6.5
 0-2.9
0.1-0.5









Processing


The preparation of the flame retardant and polymer compounds containing the flame retardant of the present invention is uncomplicated. The compound of the present can be made in batch or continuous operations.


Mixing in a continuous process typically occurs in an extruder that is elevated to a temperature that is sufficient to melt the polymer matrix with addition either at the head of the extruder or downstream in the extruder of the solid ingredient additives. Extruder speeds can range from about 50 to about 500 revolutions per minute (rpm), and preferably from about 100 to about 300 rpm. Typically, the output from the extruder is pelletized for later extrusion or molding into polymeric articles.


Mixing in a batch process typically occurs in a mixer that is also elevated to a temperature that is sufficient to melt the polymer matrix to permit addition of the solid ingredient additives. The mixing speeds range from 60 to 1000 rpm and temperature of mixing can be ambient. Also, the output from the mixer is chopped into smaller sizes for later extrusion or molding into polymeric articles.


Subsequent extrusion or molding techniques are well known to those skilled in the art of thermoplastics polymer engineering. Without undue experimentation but with such references as “Extrusion, The Definitive Processing Guide and Handbook”; “Handbook of Molded Part Shrinkage and Warpage”; “Specialized Molding Techniques”; “Rotational Molding Technology”; and “Handbook of Mold, Tool and Die Repair Welding”, all published by Plastics Design Library (www.elsevier.com), one can make articles of any conceivable shape and appearance using compounds of the present invention.


USEFULNESS OF THE INVENTION

Literally, any plastic article useful in a human-occupied space such as a building, a vehicle, or a tunnel can benefit from this improved non-halogenated polyphosphonate flame retardant. Although brittle on its own, when blended with thermoplastic resins, the resulting flame retardant compound can readily be shaped by extrusion, molding, calendering, thermoforming, additive manufacturing, or other means of shaping into any plastic article.


Hydrolytically stable polyphosphonates are highly desirable for their ability to withstand high temperatures and humidity during melt mixing with thermoplastic resins, molding processes, and for their final use in flame retardant plastic articles. Moreover, polyphosphonate is a very effective non-halogenated flame retardant for certain polymers such as polyesters, polyurethanes, polyphenyl ethers, and cellulose polymers. In particular, polyphosphonates are uniquely suited for use with PLA. Therefore, the present invention allows compounds of such polymers to be useful in a wider variety of polymer applications that require flame retardancy, and especially for biopolymers, such as PLA.


EXAMPLES

Several commonly used non-halogenated flame retardants and PC 2658 polycarbonate as a control comparison were tested for their hydrolytic resistance, as shown in FIG. 1. Extruded pellets of each non-halogenated flame retardant was measured for conductivity using an ExStik® EC500 PH/Conductivity/TDS Meter at room temperature for a baseline conductivity value and then immersed in distilled water heated to 80° C. Afterwards each flame retardant was tested every two weeks, for 36 weeks. For testing of each flame retardant, the ratio of 5 grams flame retardant to 56.7 ml distilled water was maintained. 20,000 μs/cm is the detection limit of the ExStik® EC500 PH/Conductivity/TDS Meter.


Table 2 below provides a description of each non-halogenated flame retardant and the type of polymer recommended for use with each non-halogenated flame retardant. Although polyphosphonates, represented by FRX 100 polyphosphonate, show very poor resistance to hydrolysis in comparison to many other flame retardant compounds, polyphosphonate is the only flame retardant recommended for PLA and its blends, and it is also useful for polyesters, polyurethane, polyphenylene ether, polycarbonate and cellulose polymers.











TABLE 2







Types of polymers


Brand Name
Chemical description
recommended for







DOPO-HQ
10-(2,5-dihydroxyphenyl)-
Epoxy, Polyester



9,10-dihydro-9-xa-10-



phosphaphenanthrene-10-



oxide


Exolit 1312
Formulated Aluminum
Polyamide



Phosphinate plus N-synergist


FP-800
Organophosphate
Polycarbonate,




Acrylonitrile




Butadiene Styrene




(ABS)


FP-2200
Mixture of piperazine
Polyolefin



pyrophosphate, phosphoric



acid, zinc oxide


FRX-100
Polyphosphonate
Polylactic Acid,




Polycarbonate,




Polyester,




Polyurethane,




Polyphenylene ether,




and Cellulose




Polymers


SPB-100
Poly(bis(phenoxy)
Polycarbonate,



phosphazene)
Other Engineering




Thermoplastics









Examples 1-4 and Comparative Examples A

According to Freitag in U.S. Pat. No. 7,666,932, “since polyphosphonates with a desirable combination of properties where heretofor unknown materials, no additives have been specifically designed for use with these polymers. Therefore, it is not obvious, which, if any, of the available additives will provide protection to polyphosphonates from degradation due to exposure to high temperature (>250° C.) and air (oxygen), moisture or combination thereof.” (Col. 3, Lines 32-39).


Freitag continues, “Many additives that are reported to provide stability to plastics were investigated” (Col. 5, Lines 7-8); however, of these additives, several, including epoxy oligomers, “none of which provided any improvement.” (Col. 6, Lines 6-7). Notwithstanding this limited set of functional additives taught by Freitag, the present invention has found, unexpectedly, that an epoxy-functional styrene-acrylic oligomer or aromatic carbodiimide can react with polyphosphate to form a functionalized polyphosphate compound that is significantly more hydrolytically resistant.


Examples 1 and 2 tested epoxy-functional styrene-acrylic oligomer and Examples 3 and 4 tested aromatic carbodiimide compared to Example A, the control composition without either agent. The list of ingredients for the examples is shown in Table 3.











TABLE 3





Ingredient Name
Purpose
Commercial Source







FRX-100
Non-halogenated flame
FRX Polymers


Polyphosphonate
retardant additive


Homopolymer


Joncryl 4368 epoxy-
Anti-hydrolysis agent
BASF


functional styrene-


acrylic oligomer


Stabaxol P 100
Anti-hydrolysis agent
Rhein Chemie


aromatic carbodiimide


Irganox B225
Antioxidant
Ciba


(Blend of Irgafos 168


and Irganox 1010)









Table 4 shows the amount of each ingredient for Examples 1-4 and Comparative Example A and their mixing conditions in a Prism TSE 16 mm twin screw extruder (L/D=40/1). The FRX-100 was dried at 80° C. for 4 hours before melt-mixing. The extrudate was pelletized for later injection or compression molding.











TABLE 4









Example (Wt. %)













1
2
3
4
A
















FRX-100 Polyphosphonate (dried)
99.8
99.4
99.8
99.4
99.9


B225 stabilizer (blend of Irganox 1010 and
0.1
0.1
0.1
0.1
0.1


IRGAFOS 168)


Joncryl 4368 epoxy-functional styrene-acrylate
0.1
0.5





copolymer


Stabaxol P-100 aromatic carbodiimide


0.1
0.5



Total
100%
100%
100%
100%
100%


Extruder Temperature (All Zones and Die) (° C.)
230
230
230
230
230


RPM
300
300
300
300
300


% Torque
45-50
50-60
52-60
45-47
50-60


Die Pressure (Bar)
3
4
5
6
3


Feeder Rate %
25
25
24
25
25


Comment
Brittle
Brittle
Brittle
Brittle
Brittle









For the hydrolysis resistance testing, extruded pellets of each Comparative Example and Example were measured for conductivity using an ExStik® EC500 PH/Conductivity/TDS Meter at room temperature for a baseline conductivity value and then immersed in distilled water heated to 80° C. The ratio of 5 grams to 56.7 ml distilled water was maintained for hydrolysis resistance testing of the Comparative Example and Examples. After every two weeks of continuous immersion, each Example and Comparative Example was then re-tested for conductivity using the same meter.


Table 5 shows the results of this hydrolysis resistance testing. Increased conductivity represents the generation of charge carrying species, indicating hydrolysis had occurred concomitantly.











TABLE 5









Example












Hydrolysis Resistance Testing (micro Siemens/cm)
1
2
3
4
A















Week 0
3.7
3.4
3.2
3.4
4.3


Improvement Over Comparative Example A
14%
21%
26%
21%


Week 2
235
287
229
141
224


Improvement Over Comparative Example A
−5%
−28% 
−2%
37%


Week 4
390
483
275
203
368


Improvement Over Comparative Example A
−6%
−31% 
25%
45%


Week 6
570
700
395
390
790


Improvement Over Comparative Example A
28%
11%
50%
51%


Week 8
857
1003
807
916
2480


Improvement Over Comparative Example A
65%
60%
67%
63%


Week 10
1332
1811
1637
1648
4360


Improvement Over Comparative Example A
69%
58%
62%
62%


Week 12
2160
2620
3200
2350
5360


Improvement Over Comparative Example A
60%
51%
40%
56%


Week 14
3150
4230
4200
4470
6890


Improvement Over Comparative Example A
54%
39%
39%
35%


Week 16
4700
5710
4760
6060
7060


Improvement Over Comparative Example A
33%
19%
33%
14%


Week 18
5520
5930
5320
6570
7550


Improvement Over Comparative Example A
27%
21%
30%
13%


Week 20
5810
6260
5200
6820
7650


Improvement Over Comparative Example A
24%
18%
32%
11%


Week 22*







Improvement Over Comparative Example A







Week 24
6580
7110
5810
7210
7960


Improvement Over Comparative Example A
17%
11%
27%
 9%


Week 26
6870
7290
6940
7370
8180


Improvement Over Comparative Example A
16%
11%
15%
10%


Week 28
7280
7520
7510
7680
8480


Improvement Over Comparative Example A
14%
11%
11%
 9%


Week 30
7770
7840
7610
8300
8770


Improvement Over Comparative Example A
11%
11%
13%
 5%


Week 32
8030
8040
7980
8500
8780


Improvement Over Comparative Example A
 9%
 8%
 9%
 3%


Week 34
8140
8130
7980
8570
8810


Improvement Over Comparative Example A
 8%
 8%
 9%
 3%


Week 36
7720
7830
7660
8140
8540


Improvement Over Comparative Example A
10%
 8%
10%
 5%





*The samples were not tested for Week 22.






The results in the table above are also visually represented in FIG. 2.


The test conditions are very, very severe upon the polyphosphonate samples. Whereas high temperature and humidity in even the most tropical locations in the world might be 43° C. and 100% humidity, those conditions are a minor fraction of the test conditions endured by the Examples and Comparative Example.


Between six weeks and twenty weeks all Examples were superior in hydrolytic resistance, showing decreased conductivity of 10% or more compared to Comparative Example A. Moreover, Examples 1 and 3, which contained 0.1% epoxy-functional styrene-acrylic oligomer and 0.1% aromatic carbodiimide respectively, performed better than Examples 2 and 4, which contained 0.5% epoxy-functional styrene-acrylic oligomer and 0.5% aromatic carbodiimide respectively. Thus, surprisingly, a smaller amount of functional additive, from less than 0.5% ranging to about 0.1%, the higher the hydrolytic resistance of the polyphosphonate flame retardant and the lower the cost required for additional amounts of additive. It is therefore contemplated that the amount of functional additive can be 0.4% or less, desirably 0.3% or less, or preferably 0.2% or less.


Due to extreme conditions of complete and continuous immersion in water with heating to 80° C. (176° F.), hydrolysis of the Examples and Comparative Example was fiercely, rapidly accelerated. Consequently after twenty weeks, even the Examples of the invention became vulnerable to hydrolysis. The comparison of molecular weights in Table 6 according to high performance size extrusion chromatography reveals that the molecular weights of Comparative Example A and Examples 1-4 were reduced by more than 95% after thirty-six weeks. Such a low molecular weight indicates the polymer chains of the polyphosphonate had likely broken down into smaller oligomers or the individual monomers, causing loss of hydrolytic stability under conditions unlikely to be seen in commercial use after taking into consideration the acceleration of the aging study.
















TABLE 6







Mn

Percent
Mw

Percent



(Initial)
Mn*
Change
(Initial)
Mw*
Change






















Example 1
12230
976
92.02%
48775
1554
96.81%


Example 2
12630
966
92.35%
52320
1526
97.08%


Example 3
13740
975
92.90%
48075
1541
96.79%


Example 4
12445
940
92.45%
52165
1483
97.16%


Comparative
10665
933
91.25%
38725
1462
96.22%


Example A





*After 36 weeks of hydrolysis testing






The invention is not limited to the above embodiments. The claims follow.

Claims
  • 1. A flame retardant, comprising: (a) polyphosphonate,(b) functional additive and(c) optionally, antioxidant,wherein the functional additive is selected from the group consisting of epoxy-functional styrene-acrylic oligomer, aromatic carbodiimide, and combinations thereof,wherein the flame retardant has improved hydrolytic stability, represented by decreased conductivity of 10% or more compared to the flame retardant without the functional additive as measured in units of μS/cm when immersed in distilled water and heated at 80° C. for up to 20 weeks.
  • 2. The flame retardant of claim 1, wherein the polyphosphonate has a high molecular weight of about 10,000 g/mol and higher.
  • 3. The flame retardant of claim 1, wherein the polyphosphonate is a homopolymer having a phosphorous content of greater than about 8 weight percent, a glass transition temperature of at least about 100° C., and a limiting oxygen index of about 50% or higher.
  • 4. The flame retardant of claim 1, wherein the antioxidant is selected from a group consisting of phenolic antioxidants, phosphite antioxidants and combinations of them.
  • 5. The flame retardant of claim 1, wherein about 0.1 weight percent to about 0.5 weight percent of the flame retardant is the functional additive.
  • 6. The flame retardant of claim 1, wherein the functional additive is present in a range of less than 0.5 weight percent to about 0.1 weight percent of the flame retardant.
  • 7. The flame retardant of claim 1, wherein the flame retardant has ingredients in amounts expressed in weight percent:
  • 8. The flame retardant of claim 1, further comprising an additive selected from the group consisting of adhesion promoters; biocides; antibacterials; fungicides; mildewcides; anti-fogging agents; anti-static agents; bonding, blowing and foaming agents; dispersants; fillers and extenders; smoke suppressants; impact modifiers; initiators; lubricants; micas; pigments, colorants and dyes; plasticizers; processing aids; release agents; silanes; titanates; zirconates; slip additives; anti-blocking agents; stabilizers; stearates; ultraviolet light absorbers; viscosity regulators; waxes; catalyst deactivators, and combinations of them.
  • 9. An article produced from the flame retardant of claim 1.
  • 10. A flame retardant polymer compound, comprising: at least one flame retardant according to claim 1; andat least one second polymer.
  • 11. The flame retardant polymer compound of claim 10, wherein the second polymer is selected from a group consisting of polyester, polyurethane, polyphenyl ether, cellulose polymer, polycarbonate, polyamide, polystyrene, high impact polystyrene, polyacrylate, polyacrylonitrile, polyepoxy, poly(acrylonitrile butadiene styrene), polyimide, polyarylate, poly(arylene ether), polyethylene, polypropylene, polyphenylene sulfide, poly(vinyl ester), polyvinyl chloride, bismaleimide polymer, polyanhydride, liquid crystalline polymer, polyether, polyphenylene oxide, and combinations of them.
  • 12. The flame retardant polymer compound of claim 10, wherein the second polymer is polylactic acid.
  • 13. An article produced from the flame retardant polymer compound of claim 1.
  • 14. The article of claim 13, wherein the article is shaped by extrusion, molding, calendering, thermoforming, or additive manufacturing.
CLAIM OF PRIORITY

This application claims priority from U.S. Provisional Patent Application Ser. No. 61/699,932 bearing Attorney Docket Number 12012018 and filed on Sep. 12, 2012, which is incorporated by reference.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2013/059217 9/11/2013 WO 00
Provisional Applications (1)
Number Date Country
61699932 Sep 2012 US