Hydrophilic silicones

Information

  • Patent Application
  • 20080085986
  • Publication Number
    20080085986
  • Date Filed
    October 04, 2006
    17 years ago
  • Date Published
    April 10, 2008
    16 years ago
Abstract
A process for producing a soluble silicone product is provided. The process includes the steps of chemically reacting a polydialkoxysiloxane with an aliphatic alcohol with or without a catalyst in a reaction mixture, removing produced alcohol from the mixture; recovering the water soluble portion of produced silicone product, purifying the water soluble portion; and recovering hydrophilic material in the water insoluble portion.
Description
DETAILED DESCRIPTION OF THE INVENTION

A method of preparing a water soluble silicone is provided. The method comprises the reaction between a polydialkoxysiloxane (the alkoxy usually being either methoxy or ethoxy) and an alcohol, such as glycerol, Bronopol, or mixtures of glycerol and Bronopol. In the inventive process, the alkoxy group of the silicone undergoes a reaction with an aliphatic hydroxyl group of the alcohol in order to form an —Si—O—CH2‘ configuration with the alkoxy group of the alcohol. This reaction has been referred to in the past as “transetherification.”


To carry out this reaction, the polydialkoxysiloxane is mixed with the alcohol, with or without the addition of a catalyst. Progress of the reaction is monitored by sampling the reaction mixture and testing for the appearance of water-soluble material. If the reaction velocity is inconveniently low, it may be increased by heating the reaction mixture. When a satisfactory amount of water-soluble material has been produced and recovered, the catalyst, if any, is removed or neutralized and the water-soluble fraction of the reaction mixture is purified, preferably by means of chromatography.


In general, what has been discovered is that certain alcohols react under mild conditions with alkoxy groups situated on a polysiloxane chain in order to undergo what could be termed an “exchange reaction” or a “transetherification”; for example, the methoxy or ethoxy groups of the polyalkoxysiloxane are lost as methanol or ethanol while the alkoxy moiety of the reacting alcohol (usually of higher boiling point than that of methanol or ethanol) is bound to the polysiloxane. The inventive reaction thus provides a simple and rapid methodology for the modification of the chemical and physical properties of “silicones” having alkoxy groups in order to produce new chemical structures suitable for numerous applications.


The reaction with alkoxy groups requires a free alcohol group which has been in the past a primary, aliphatic group. It seems likely that reaction can be obtained also with secondary or tertiary groups, or with phenols, but probably with greatly decreased rates. The chemical reaction involved can be represented by the following equation:







In theory, the above reaction is probably readily reversed so that, in a closed system, equilibrium would likely be reached in which all the species indicated would be present at concentrations not drastically different from each other. However, if the reactive groups on the silicone are methoxy or ethoxy, while R2 is somewhat larger, the above reaction will easily go to completion by allowing the more volatile product to escape. In the present invention, two alcohols (R2OH), namely, glycerol and Bronopol are preferred, but other alcohols can be used for the inventive reactions without departing from the scope of the invention.


Modifying silicones in accordance with the invention produces materials that are suitable as bases for numerous dermatological preparations, both human and veterinary. In addition, possible uses may be found as materials of construction, paints and coatings for home, agricultural and industrial products where some affinity for water is desirable. The inventive material is both water soluble and compatible with human skin, where it is able to form an extremely thin film on it. This film resists washing with water and imparts a feeling of softness, while protecting the skin from bacterial and fungal invasion by virtue of added protective agents.


The inventive reaction is carried out on a practical scale by mixing the alkoxypolysiloxane, usually methoxy or ethoxy, with the alcohol to be coupled to the silicone and then heating at between about 140°-300° F. for 20 hours or more. The addition of an acidic catalyst, such as hydrochloric acid or trichloroacetic acid, or a basic catalyst, such as N-ethyldisopropylamine or triethylamine, to the reaction may be found useful in achieving desired reaction rates. If the substituting alcohol has, in addition to the hydroxyl group consumed in the coupling reaction, additional hydrophilic groups, the polysiloxane product may be water soluble. After heating the reaction mixture and then cooling to room temperature, the water soluble portion can be obtained by mixing with water and recovering the water soluble portion by centrifugation, decantation or filtration. The residue left after the extraction with water may be expected to contain polysiloxane species that have reacted with a number of alcohol molecules too few to give water solubility but, nevertheless, with a sufficient number to become very hydrophilic. Such material may prove to be well suited for incorporation into dermatological salves and creams or other products where some wettability is desirable.


The water soluble material produced by the inventive process is then preferably fractionated, either by size exclusion chromatography (SEC) or high performance liquid chromatography (HPLC). Fractionation by HPLC could serve to separate reaction produced products into many categories with slightly varying properties. This would reflect the enormous number of ways in which the polysiloxane structure may be substituted, both with respect to the degree of substitution and with respect to the arrangement of substituent groups along the polysiloxane chain.


Silicones substituted with glycerol or Bronopol, or combinations of the two, can be quite water soluble and, when applied in aqueous solution to the skin, leave a very thin film on the skin. They can impart also an hydrophobicity and an exceptionally smooth texture, which remains despite repeated exposures to water. The water solubility of such modified silicones strongly suggests that hydrophobic interactions between the polysiloxane and the skin are taking place. The modified silicones of the invention may promote healing in burn cases, both in terms of accelerating the healing process and in moderating pain.


The inventive silicone products could also be used as additions to finishes for many manufactured products since such additions discourage the accumulation of dust or other airborne contaminants. They are also potentially useful as a special class of lubricants since they could be attached covalently to surfaces using the reaction described in the equations set forth above, provided that the surface to be treated has free alcoholic —OH groups to act as an anchor for the polysiloxane.


Experimental results showing the feasibility for the synthesis of hydrophilic silicones by reacting polyalkoxysiloxones with aliphatic alcohols are given in Table 1 below along with a brief indication of some of the properties of these products:















TABLE 1






Silicone
Amt
Amt
Amt
Hrs. @



Example
substituents
Silicone
Glycerol
Bronopol
200° F.
Result







214-
—0 Me
5 ml
2 ml
3 g
20
Transparent gel indicating


112-7





extensive reaction.


214-
—0 Et
5 ml
2 ml
3 g
20
Very little reaction as judged


112-8





visually. Small amt. gel; most








liquid silicone left.


214-
—0 Et
5 ml
2 ml
3 g
60
Extensive reaction. Stiff


113-8





transparent gel. Skin test:








judged better than Example








214-112-7


214-
—0 Me
5 ml
0.5 ml  
0.5 g  
20
Clear colorless liquid; 2 mm


116-9





solid gel on bottom of vial.








Added 15 ml H2O & mixed -->








turbid susp. little foaming; 8da








later→ gel.


214-
—0 Et
5 ml
0.5 ml  
0.5 g  
20
Clear slightly amber liquid


116-10





with foaming; transparent








solid on bottom. Added 15 ml








H2O & mixed --> turbid








suspension (much foaming).








8 days later: had formed clear








liquid - no gel.






















TABLE 2






Silicone
Amt
Amt
Amount
Hrs. @



Example
substituents
Silicone
Glycerol
Bronopol
200° F.
Result







214-
—O Me
5 ml
0.2 ml
0.1 g
20
Clear colorless liquid with


116-11





solid transparent layer on








bottom. 15 ml H2O added &








mixed - turbid suspension -->








no foam.








8 days later: had formed stiff








gel throughout.


214-
—OEt
5 ml
0.2 ml
0.1 g
20
Clear, pale amber liquid with


116-12





small translucent deposit on








bottom. 15 ml H2O added &








shaken-→foam. 8days later:








clear liquid, no gel.


214-133-
—OEt
20 ml 
0
2.0 g
20
H2O extraction→


Sup.1





75 ml ext., 3.8 g dry wt.








Excellent








cosmetic appeal.









It will thus be seen that the objects set forth above, among those made apparent by the description, are attained by the inventive reaction and the silicone products produced thereby.


The inventive scope is now defined in the following claims.

Claims
  • 1. A method of producing a water soluble silicone comprising chemically reacting a polyalkoxysiloxane with an aliphatic alcohol by means of a reaction mixture in order to produce a silicone material.
  • 2. The method of claim 1, wherein said polyalkoxysiloxane includes alkoxy groups selected from the group consisting of methoxy and ethoxy.
  • 3. The method of claim 2, wherein the aliphatic alcohol is selected from the group consisting of glycerol and 2-bromo-2-nitropropane-1,3-diol.
  • 4. The method of claim 1, wherein the reacting step is carried out by adding to the reaction mixture one of an acidic catalyst selected from the group consisting of hydrochloric acid and trichloroacetic acid and a basic catalyst selected from the group consisting of N-ethyidiisopropylamine and triethylamine.
  • 5. The method of claim 1, wherein the reacting step is carried out at a temperature of between 140° F. and 300° F.
  • 6. The method of claim 2, further including the step of removing produced methanol or ethanol by bubbling a gas through the reaction mixture.
  • 7. The method of claim 6, wherein the gas is selected from the group consisting of air and nitrogen.
  • 8. The method of claim 1, wherein the polyalkoxysiloxane is polydialkoxysiloxane.
  • 9. The method of claim 1, further including the step of obtaining a water soluble portion from the produced silicone material by an extraction mechanism selected from the group consisting of centrifugation, decantation and filtration.
  • 10. The method of claim 9, wherein the water soluble portion of the produced silicone material is purified by means of fractionation.
  • 11. The method of claim 10, wherein fractionation is carried out by chromatography selected from the group consisting of size exclusion chromatography and high performance liquid chromatography.
  • 12. The method of claim 9, further including the step of recovering any water insoluble hydrophilic residue material as a result of carrying out said obtaining step.
  • 13. A water soluble silicone product prepared by a process comprising the step of chemically reacting a polyalkoxysiloxone with an aliphatic alcohol in a reaction mixture in order to produce a modified silicone material.
  • 14. The product of claim 13, wherein polyalkoxysiloxane includes alkoxy groups selected from the group consisting of methoxy and ethoxy.
  • 15. The product of claim 14, wherein the aliphatic alcohol is selected from the group consisting of glycerol and 2-bromo-2-nitropropane-1,3-diol.
  • 16. The product of claim 13, wherein the chemical reacting step is carried out by adding to the reaction mixture one of an acidic catalyst selected from the group consisting of hydrochloric acid and trichloroacetic acid and a basic catalyst selected from the group consisting of N-ethyldiisopropylamine and triethylamine.
  • 17. The product of claim 13, wherein the chemical reacting step is carried out at a temperature of between 140° F. and 300° F.
  • 18. The product of claim 13, wherein the process further includes the step of removing produced methanol or ethanol by bubbling a gas through the reaction mixture.
  • 19. The product of claim 13, wherein said process further includes the step of obtaining a water soluble silicone portion from the silicone material produced as a result of the chemical reacting step by carrying out a recovery mechanism selected from the groups consisting of centrifugation, decantation and filtration.
  • 20. The product of claim 19, further including the step of purifying the water soluble portion produced by said obtaining step by means of fractionation.
  • 21. A water insoluble silicone product prepared by a process comprising the steps of: chemically reacting a polyalkoxydiloxane with an aliphatic alcohol in a reaction mixture in order to produce a silicone material; andrecovering from the reaction mixture water insoluble hydrophyllic silicone residue material.
  • 22. The product of claim 21, wherein said recovery step comprises carrying out an extraction mechanism on said silicone material in order to separate out said water insoluble silicone material from produced water soluble silicone.
  • 23. The product of claim 20, wherein the chemical reacting step is carried out by adding to the reaction mixture one of an acidic catalyst selected from the group consisting of hydrochloric acid and trichloroacetic acid and a basic catalyst selected from the group consisting of N-ethyldiisopropylamine and triethylamine.
  • 24. The product of claim 20, wherein the chemical reacting step is carried out at a temperature of between 140° F. and 300° F.
  • 25. A water soluble silicone product produced by a process comprising the steps of: chemically reacting a polydialkoxysiloxane with an aliphatic alcohol in a reaction mixture; andrecovering from the reaction mixture the produced water soluble portion of the silicone product.
  • 26. The product of claim 25, further including the step of removing produced alcohol from the reaction mixture.
  • 27. The product of claim 25, further including the step of purifying the water soluble portion of the produced silicone product.
  • 28. The product of claim 25, further including the step of adding a catalyst to the reaction mixture
  • 29. A process for producing a water soluble silicone product comprising the steps of: chemically reacting a polydialkoxysiloxane with an aliphatic alcohol in a reaction mixture; andrecovering from the reaction mixture the produced water soluble portion of the silicone product.
  • 30. The process of claim 29, further including the step of removing produced alcohol from the reaction mixture.
  • 31. The process of claim 29, further including the step of purifying the water soluble portion of the produced silicone product.
  • 32. The process of claim 29, further including the step of adding a catalyst to the reaction mixture.
  • 33. A process for producing a water insoluble silicone product comprising: chemically reacting a polydialkoxysiloxane with an aliphatic alcohol in a reaction mixture; andrecovering from the reaction mixture any produced water insoluble portion of the silicone product.
  • 34. The process of claim 33, further including the step of adding a catalyst to the reaction mixture.