Hydrophilic/Hydrophobic Aqueous Polymer Emulsions and Products and Methods Relating Thereto

Information

  • Patent Application
  • 20150284584
  • Publication Number
    20150284584
  • Date Filed
    October 29, 2014
    10 years ago
  • Date Published
    October 08, 2015
    9 years ago
Abstract
Methods for preparing copolymeric emulsions from at least one water soluble monomer and at least one water insoluble monomer are disclosed herein. In some embodiments, one or more surfactants and stabilizers may be used. In some embodiments, the monomers used in the process include, by total monomer weight, at least 50% water soluble monomers and at least 10% water insoluble monomers. Copolymer emulsions formed from the reaction product of at least one water soluble monomer and at least one water insoluble monomer are also disclosed along with articles coated with such emulsions and coating formulations made from such emulsions as well as methods for the manufacture and coating of such articles.
Description
FIELD

A coating formulation made from a copolymer emulsion used to coat articles and a method for the manufacture and coating of such articles.


BACKGROUND

Medical articles, such as gloves and other elastomeric articles, often come in contact with liquids and fluids during their use. Such articles form a barrier between the user's skin and the external environment. Medical gloves, such as examination gloves and surgical gloves, are examples of articles used in the healthcare setting, and they play a key role in minimizing the spread of infectious diseases. Such articles are used frequently by health care professionals. Therefore, it is important for medical articles such as gloves to provide an effective barrier, while providing an adequate level of comfort to the user. Coated articles in particular are ideally smooth and non-tacky, and they preferably have a coating that does not flake off. There is a need in the art for such articles, and methods of making such articles.


Coatings have been used in products, such as for enhancing the desirable features of rubber gloves. Previous coatings have been developed, such as those disclosed in U.S. Pat. Nos. 4,548,844; 4,575,476; 6,242,042; 6,706,313; 7,179415; 6,772,443; 7,032,251; 6,706,836; 6,743,880; 7,019,067; 6,653,427; 6,828,399; 6,284,856; and 5,993,923, each of which is incorporated in its entirety as if set forth fully herein. All references cited herein are incorporated by reference in their entirety.


SUMMARY

A novel and useful preparation of a copolymer emulsion is provided. In one embodiment, a method for forming a copolymer emulsion is provided by combining and copolymerizing at least one water soluble monomer and at least one water insoluble monomer, wherein the monomers used in the process are comprised of at least 50% by weight water soluble monomer and at least 10% by weight water insoluble monomer as measured by the total monomer weight.


In another embodiment, the method for the preparation of a copolymer emulsion is provided that includes concurrently combining a monomer feed and a pre-emulsion feed to form an emulsion, wherein the monomer feed comprises at least 50% by weight water soluble monomer based on the total monomer weight of the monomer feed and the pre-emulsion feed, and the pre-emulsion feed comprises at least 10% by weight water insoluble monomer based on the total monomer weight of the monomer feed and the pre-emulsion feed.


In still another embodiment, the method for the preparation of a copolymer emulsion is provided by concurrently combining a monomer feed and a pre-emulsion feed to form a monomer mixture, wherein the monomer feed comprises at least 50% by weight water soluble monomer and wherein the pre-emulsion feed comprises at least 10% water insoluble monomer, with such percentages based on the total monomer weight of the monomer feed and the pre-emulsion feed. The method further requires introducing into a reactor and agitating an initial charge that includes a stabilizer, a surfactant, an initiator, and deionized water and maintaining the reactor contents at about 55° C. and at a pH above about 6.0. The method also includes introducing about 6% of the monomer feed and about 6% of the pre-emulsion feed into the reactor and maintaining the temperature and pH for about ten minutes, followed by introducing an activator feed into the reactor. The activator feed, which includes deionized water and sodium hydroxymethanesulfinate, is introduced at a rate such that the contents of the activator feed will be exhausted concurrently with or after the exhaustion of the monomer feed and the pre-emulsion feed. The remaining monomer feed and pre-emulsion feed are introduced into the reactor at a constant rate to fully feed the remaining contents over a span of about 4.5 hours. Then, after the monomer feed, pre-emulsion feed, and activator feed have been fully introduced into the reactor, a post feed, including a second initiator, is introduced into the reactor and the temperature and pH is maintained for about one hour to complete polymerization.


In still another embodiment, articles are provided comprising a coating comprising at least one water soluble monomer and at least one water-insoluble monomer, and methods of making the same. Methods of making such articles are also provided.


The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate one or more embodiments and, together with the description, serve to explain the principles of the copolymer emulsion and related processes of making and of using.





BRIEF DESCRIPTION OF THE DRAWINGS

A full and enabling disclosure, including the best mode thereof directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended drawings, in which:



FIG. 1A is a scanning electron microscope image, at 500 times magnification, of a surgical glove coated with a comparative water-soluble coating without a crosslinker;



FIG. 1B is a scanning electron microscope image of the glove in FIG. 1A at 1000 times magnification;



FIG. 2A is a scanning electron microscope image, at 500 times magnification, of a second surgical glove coated with a comparative water-soluble coating and applied with a crosslinker;



FIG. 2B is a scanning electron microscope image of the glove in FIG. 2A at 1000 times magnification.



FIG. 3A is a scanning electron microscope image, at 500 times magnification, of a surgical glove coated with one embodiment of an emulsion coating as disclosed herein and applied with a crosslinker;



FIG. 3B is a scanning electron microscope image of the glove in FIG. 3A at 1000 times magnification;



FIG. 4A is a scanning electron microscope image, at 200 times magnification, of a surgical glove coated with a comparative solvent-based coating and applied with a crosslinker;



FIG. 4B is a scanning electron microscope image of the glove in FIG. 3A at 1000 times magnification.



FIG. 5 is a scanning electron microscope image, at 1000 times magnification, of a second surgical glove coated with a comparative solvent-based coating and applied with a crosslinker;



FIG. 6 is a scanning electron microscope image, at 1000 times magnification, of a second surgical glove coated with a second embodiment of an emulsion coating as disclosed herein and applied with a crosslinker; and



FIG. 7 is a scanning electron microscope image, at 1000 times magnification, of a third surgical glove coated with an emulsion coating as disclosed herein and applied with a crosslinker.



FIG. 8A is a scanning electron microscope image, at 1000 times magnification, of the patient-side (i.e., the exterior side of the glove when worn) of a fourth surgical glove coated with another embodiment of an emulsion coating as disclosed herein and applied with a crosslinker and without acid priming.



FIG. 8B is a scanning electron microscope image, at 1000 times magnification, of the patient-side of a fifth surgical glove coated with another embodiment of an emulsion coating as disclosed herein and applied with a crosslinker and with acid priming.



FIG. 9A is a graph of contact angle data glove for the glove of FIG. 8A.



FIG. 9B is a graph of contact angle data glove for the glove of FIG. 8B.



FIG. 10A is a scanning electron microscope image, at 1000 times magnification, of the donning-side (i.e., the side that would contact a user's skin when worn) of the glove of FIG. 8B with high chorine and using a glove turning process.



FIG. 10B a scanning electron microscope image, at 1000 times magnification, of the donning-side of the glove of FIG. 8A with high chorine and using a glove turning process.



FIG. 11A is a graph of contact angle data glove for the glove of FIG. 10A.



FIG. 11B is a graph of contact angle data glove for the glove of FIG. 10B.



FIG. 12A is a scanning electron microscope image, at 1000 times magnification, of the patient-side of a sixth glove coated with another embodiment of an emulsion coating as disclosed herein and applied with a crosslinker and without acid priming.



FIG. 12B is a scanning electron microscope image, at 1000 times magnification, of the patient-side of a seventh glove coated with an emulsion coating as disclosed herein and applied with a crosslinker and with acid priming.



FIG. 12C is a scanning electron microscope image, at 1000 times magnification, of the donning-side of the glove of FIG. 12A coated without acid priming.



FIG. 13A is a scanning electron microscope image, at 1000 times magnification, of the patient-side of an eighth glove coated with an emulsion coating as disclosed herein and applied with a crosslinker and without acid priming.



FIG. 13B is a scanning electron microscope image, at 1000 times magnification, of the patient-side of a glove of FIG. 13A coated with an emulsion coating as disclosed herein and applied with a crosslinker and without acid priming.



FIG. 14 is a scanning electron microscope image, at 1000 times magnification, of the patient-side of a glove coated with a comparative solvent-based coating and applied with a crosslinker and without acid priming.



FIG. 15A is a scanning electron microscope image of a patient-side of a film coated with an emulsion coating as disclosed herein and applied with a crosslinker.



FIG. 15B is a scanning electron microscope image of a patient-side of a film coated with an emulsion coating as disclosed herein and applied with a crosslinker.



FIG. 15C is a scanning electron microscope image of a patient-side of a film coated with a comparative solvent-based coating and applied without a crosslinker.





Repeat use of reference characters in the present specification and drawings is intended to represent same or analogous features or elements.


DETAILED DESCRIPTION

Reference will now be made in detail to presently preferred embodiments, one or more examples of which are illustrated in the accompanying drawings. Each example is provided by way of explanation of the copolymer emulsion and methods of making and using, not limitation thereof. In fact, it will be apparent to those skilled in the art that modifications and variations can be made without departing from the scope or spirit thereof. For instance, features illustrated or described as part of one embodiment may be used on another embodiment to yield a still further embodiment. Thus, it is intended that the disclosure herein covers such modifications and variations as come within the scope of the appended claims and their equivalents.


The polymer emulsions provided herein are acrylic emulsion copolymers that are the reaction product of a mixture of monomers. As used herein, the term “monomer” is meant in a broad sense to encompass monomers and oligomers as would be used in building a desired copolymer. The polymer emulsions are prepared by copolymerizing at least one hydrophilic water soluble monomer together with at least one hydrophobic water insoluble monomer. As used herein, monomer percentages are based on the weight percent of the total (soluble and insoluble) monomer weights.


The emulsions may be prepared by copolymerizing a water soluble monomer mixture, which is referenced as the “monomer feed,” and a water insoluble monomer mixture, which is referenced as the “pre-emulsion feed.” As described in detail herein, these feeds may be combined, optionally with other components such as surfactants and stabilizers, to create a polymeric emulsion.


The monomer feed used to form an emulsion may include 2-hydroxyethyl methacrylate, 4-hydroxybutyl acrylate, 2-hydroxybutyl acrylate, or mixtures thereof. These particular monomers are water soluble monomers that form water insoluble polymers. 2-hydroxyethyl methacrylate may be obtained from Mitsubishi Rayon, of Tokyo, Japan, and, in some embodiments, the 2-hydroxyethyl methacrylate may have a purity of about 97% or greater. In some embodiments, an emulsion may be prepared by copolymerizing monomers that include at least about 40% water soluble monomers. In other embodiments, an emulsion may be prepared by copolymerizing monomers that include at least about 50% water soluble monomers. In some embodiments, about 50% to about 90% water soluble monomers may be used, including each intermittent value therein, including 75%. In some embodiments, about 60% to about 80% water soluble monomer may be used, and in other embodiments about 72% to about 80% water soluble monomer may be used. In still further embodiments, about 30% to about 90% water soluble monomer may be used. Specific exemplary embodiments are provided in the examples below. The monomer feed may also include deionized water.


In still further embodiments, the monomer feed may include other water soluble monomers, including, without limitation, quaternary amine (meth)acrylate monomers, other hydroxy-alkyl (meth)acrylate monomers, N-vinyl lactam monomers, ethylenically unsaturated carboxylic acid monomers, and mixtures thereof. In some embodiments, additional water soluble monomers that result in water soluble polymers may be added to the monomer feed to impart flexibility, polarity, crosslinking, solubility, adhesion, or other desired properties. In some embodiments, such water soluble monomers may include 2-hydroxyethyl acrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate (which has limited water solubility), acrylic acid, methacrylic acid, itaconic acid, N-vinyl pyrrolidone, N-vinyl caprolactam, 1-vinyl-2-piperidone, 1-vinyl-5-methyl-2-pyrrolidone, acrylamide, methacrylamide, N-isobutoxymethyl acrylamide. Ethoxylated (meth)acrylate monomers with an average of 10 ethylene oxide units, such as ethoxylatedhydroxyethylmethacrylate, are available from Nippon Nyukazai Co., Ltd. of Chuo-ku, Tokyo under the product designation MA-100A. Quaternary amine (meth)acrylates, such as dimethylaminoethyl acrylate methyl chloride quaternary, are available from CPS Chemical Co. of Old Bridge, N.J. under the product designation Agelfex FA1Q80MC. By way of example, these other monomers may be present in the monomer feed in some embodiments up to about 25% by weight of the water soluble monomers in the monomer feed. In some other embodiments, these other monomers may be present in amounts up to about 25% by weight of the entire emulsion (including the monomer feed and pre-emulsion feed).


A pre-emulsion feed may include at least one water insoluble monomer. By way of example, and without limitation, the water insoluble monomers that may used in the pre-emulsion feed include methyl acrylate, ethyl acrylate, butyl acrylate, propyl acrylate, 2-ethylhexyl acrylate, butyl methacrylate, methyl methacrylate, lauryl methacrylate, stearyl methacrylate, 2-ethylhexyl methacrylate, trifluoroethyl methacrylate, isooctyl acrylate, isodecyl acrylate, isobornyl acrylate, dimethylaminoethyl methacrylate, styrene, vinyl esters (such as vinyl acetate, vinyl butyrate, vinyl propionate, vinyl isobutyrate, vinyl valerate, and vinyl versitate), diesters of dicarboxylic acid (such as di-2-ethylhexyl maleate, di-octyl maleate, di-ethylhexylfumarate, di-ethyl fumarate, and di-butyl fumarate), isobornyl acrylate, cyclohexyl acrylate, and similar monomers. By way of example, one water insoluble monomer that may be used in embodiments, namely 2-methacryloylxyethyl phthalic acid, is available from Mitsubishi Rayon Co., Ltd. under the product designation Acryester PA. In some embodiments, an emulsion may be prepared by copolymerizing monomers that include at least about 10% to about 50% water insoluble monomers. In other embodiments, an emulsion may be prepared by copolymerizing monomers that include at least about 10% to about 60% or about 70% water insoluble monomers.


In addition, the pre-emulsion feed may include more than one water insoluble monomer, such as mixtures of the foregoing insoluble monomers. For example, in one embodiment, both 2-ethylhexyl acrylate and methyl methacrylate may be included in the pre-emulsion feed at about 11% each. In other embodiments, these amounts may be varied.


In some embodiments, the pre-emulsion feed may also include methacrylic acid as a monomer, wherein methacrylic acid is a water soluble monomer. In some embodiments, water soluble monomers may be added to the pre-emulsion feed, such as 2-hydroxyethyl acrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate (limited water solubility), acrylic acid, methacrylic acid, itaconic acid, N-vinyl pyrrolidone, N-vinyl caprolactam, 1-vinyl-2-Piperidone, 1-vinyl-5-methyl-2-pyrrolidone, acrylamide, Methacrylamide, N-isobutoxymethyl acrylamide. As indicated above, ethoxylated (meth)acrylate with an average of 10 ethylene oxide units, such as ethoxylatedhydroxyethylmethacrylate, may be obtained from Nippon Nyukazai Co., Ltd. of Chuo-ku, Tokyo under the product designation MA-100A. In addition, quaternary amine (meth)acrylates, such as dimethylaminoethyl acrylate methyl chloride quaternary, are available from CPS Chemical Co. of Old Bridge, N.J. under the product designation Agelfex FA1Q80MC.


Although the amount of methacrylic acid, or other water soluble monomers, may vary for each emulsion and each application, exemplary amounts (as based on the weight percent of the total (soluble and insoluble) monomer weights) may include about 0% to about 25%, including each interval therein, and in other embodiments the amount may be about 0% to about 15%, including each interval therein. In some embodiments, this amount may be about 0% to about 10% or about 1% to about 10%, including each interval therein. In other embodiments, this amount may be about 10% of the total monomer weight. In yet other embodiments, this amount may be about 1 to 5%, including each intermittent value therein.


The pre-emulsion feed may also include an internal crosslinker, which may increase the gel content of the resulting polymer. In some embodiments, the internal crosslinker may include at least one multifunctional acrylate monomer. Such multifunctional acrylate monomer may include, by way of example, polyethylene glycol diacrylate, hexanedioldiacrylate, trimethylolpropanetriacrylate, pentaerythritoltriacrylate, and propylene glycol diacrylate. The internal crosslinker may be added at about 0.1 to about 1.0 parts by weight of the pre-emulsion feed.


By way of example, emulsions may be prepared by combining a monomer feed and a pre-emulsion feed in a reactor. In some embodiments, sequential polymerization may be employed in which the first monomer mixture may be added to a reactor and at least partially reacted and then the second monomer mixture is slowly introduced and reacted. In some embodiments, sequential polymerization may result in a polymer having a core made of the first monomer feed and a shell made of subsequent monomer feeds. Examples and further disclosure of sequential polymerization may be found in U.S. Pat. No. 6,706,836 (including examples 26 and 27), U.S. Pat. No. 6,465,591, and U.S. Pat. No. 6,828,399 and U.S. Published Patent Application No. 2003/0144446, each of which is incorporated in its entirety as if set forth fully herein.


In other embodiments, concurrent feeds may be used in which a first monomer mixture and a second monomer mixture are concurrently introduced into a reactor and reacted. In some embodiments employing a concurrent feed, a portion of a first monomer mixture and a portion of a second monomer mixture may be initially provided in the reactor. However, when such starting material is identical to the monomer feeds that are subsequently and concurrently introduced into the reactor, then the resulting polymeric emulsion is not believed to have a core and shell but instead has a consistent formulation. The examples provided herein provide parameters that may be used in certain embodiments using concurrent feeds. Although the foregoing processes have been described using only two monomer mixtures, one of ordinary skill in the art would readily appreciate that additional mixtures and feeds may be used in some embodiments.


An initiator, such as a dissociative initiator, a redox initiator, or an oil soluble initiator may also be added during the process. By way of example, such initiators may include, but are not limited to, persulfates such as ammonium persulfate, potassium persulfate and sodium persulfate, hydrogen peroxide, tert-butyl hydroperoxide, and azo compounds such as 4,4′-azobis(4-cyanovaleric acid). Redox initiators include, but are not limited to, persulfates with bisulfate, such as sodium persulfate with sodium metabisulfite, hydrogen peroxide with ferrous ion, sulfite ion, bisulfite ion or ascorbic acid, and hydroperoxides with sulfoxylates, such as tert-butyl hydroperoxide with sodium formaldehyde sulfoxylate. By way of example, such oil soluble initiators may include, but are not limited to, 2,2′-azobis (isobutyronitrile), 2,2′-azobis(2-methylbutyronitrile), benzoyl peroxide, and lauryl peroxide. Based on the disclosure herein, other initiators are known to those of skill in the art that would be suitable for use herein.


In preparing a polymeric emulsion, a surfactant may also be utilized in the method disclosed herein. In some embodiments, the surfactant may be sodium lauryl ether sulfate, such as Disponil FES 77 (32%) available from Cognis (a part of the BASF Group), of Cincinnati, Ohio. The surfactant may be included in an initial charge mixture as indicated in the examples herein. In some embodiments, surfactant may be added in an amount of from about 0.5% to about 5% as based on the dry weight of surfactant to weight of the monomers. In other embodiments, surfactant may be added in an amount of about 0.1% to about 10% based on the dry weight of surfactant to the weight of the monomers. In still other embodiments, this surfactant amount may be about 0.2% to about 5%, and in other embodiments the surfactant amount may be about 0.5% to about 2%. Based upon the disclosure herein, other surfactants are known to those of skill in the art that would be suitable for use herein.


By way of further example, and without limitation, other anionic surfactants that may be suitable for use in embodiments disclosed herein include sodium dioctylsulfosuccinate, lauryl sulfates, octyl sulfates, 2-ethylhexyl sulfates, lauramine oxide, decyl sulfates, tridecyl sulfates, cocoates, lauroylsarcosinates, lauryl sulfosuccinates, linear Ciodiphenyl oxide disulfonates, lauryl sulfosuccinates, lauryl ether sulfates (1 and 2 moles ethylene oxide), mystristyl sulfates, oleates, stearates, tallates, ricinoleates, cetyl sulfates.


In some embodiments, nonionic surfactants may be used along with anionic surfactants. By way of example, and without limitation, nonionic surfactants that may be used in embodiments disclosed herein include, methyl gluceth-10, PEG-20 methyl glucose distearate, PEG-20 methyl glucose sesquistearate, C11-15 pareth-20, ceteth-12, dodoxynol-12, laureth-15, PEG-20 castor oil, polysorbate 20, steareth-20, polyoxyethylene-10 cetyl ether, polyoxyethyl-ene-10 stearyl ether, polyoxyethylene-20 cetyl ether, polyoxyethylene-oleyl ether, polyoxyethylene-20 oleyl ether, ethoxylatednonylphenol, ethoxylatedoctylphenol, ethoxylateddodecylphenol, or ethoxylated fatty (C6-C22) alcohol, including 3 to 20 ethylene oxide moieties, polyoxyethylene-20 isohexadecyl ether, polyoxyethylene-23 glycerol laurate, polyoxy-ethylene-20 glyceryl stearate, PPG-10 methyl glucose ether, PPG-20 methyl glucose ether, polyoxyethylene-20 sorbitan monoesters, polyoxyethylene-80 castor oil, polyoxyethylene-15 tridecyl ether, polyoxyethylene-6 tridecyl ether, laureth-2, laureth-3, laureth-4, PEG-3 castor oil, PEG 600 dioleate, PEG 400 dioleate, oxyethanol, 2,6,8-trimethyl-4-nonyloxypolyethylene, oxyethanol: octylphenoxypolyethoxy ethanol, nonylphenoxypolyethoxy ethanol, and 2,6,8-trimethyl-4-nonyloxypolyethylene alkyleneoxypolyethyeneoxyethanol.


In addition, a stabilizer may also be used in the process to form an emulsion. In some embodiments, a suitable stabilizer includes polyvinyl alcohol, such as BP-04 (15%) grade from Chang Chun Pertochemical Co., Ltd. of Taipei, Taiwan or Mowiol 4-88 from Kuraray America, Inc. of Houston, Tex. In some embodiments, Elvanol 51-03 from Dupont Chemical of Wilmington, Del. and/or Selvol 203 from Sekisui Specialty Chemical Co., Ltd. of Osaka, Japan may be used stabilizers. The stabilizer may be included in an initial charge mixture and/or a pre-emulsion mixture. In some embodiments, a stabilizer may be added in an amount from about 1% to about 10% as based on the dry weight of stabilizer to the weight of the monomers. Based upon the disclosure herein, other stabilizers are known to those of skill in the art that would be suitable for use herein.


Finally, a crosslinker may be optionally used in preparing emulsions. In some embodiments, a crosslinker may be added to the copolymer in an amount of from about 0 to about 15%, including each intermittent value therein, as based on the dry weight of crosslinker to the dry weight of the copolymer. In some embodiments, a crosslinker may be added in an amount of from about 0 to about 10% based upon the dry weight of the copolymer. In other embodiments, the about 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10% based on the dry weight of the copolymer. Suitable crosslinkers include, but are not limited to, formaldehydes, melamine formaldehydes, metal salts, aziridines, isocyanates, dichromates, and similar crosslinkers. Additional crosslinkers may include polyfunctionalaziridine, polyamide-epichlorohydrin-type resin, or carbodiimide compounds. Exemplary metal salts that may be used as crosslinkers in some embodiments include, without limitation, zirconium ammonium carbonate, zinc ammonium carbonate, aluminum acetate, calcium acetate, chromium acetate, zinc acetate, zirconium acetate. In other embodiments, no crosslinker is used in preparing an emulsion. Unless otherwise noted herein, percentages used to reference crosslinkers indicate dry weight of crosslinker to the dry weight of the copolymer. In some embodiments, the crosslinker comprises melamine formaldehyde or mixtures comprising melamine formaldehyde. In some embodiments, the crosslinker may be present in a percent weight amount of preferably about 1% to about 10%, more preferably 2% to 5%, and most preferably 3% to 4%.


As indicated above, the emulsions may be prepared by copolymerizing the water soluble monomer or monomers in the monomer feed and the water insoluble monomer or monomers in the pre-emulsion feed. In one exemplary embodiment, the preparation process may be conducted by also introducing an initial charge (also referenced as a “reactor charge”), a catalyst feed, an activator feed, and a post add feed into the reactor during the manufacturing process.


An exemplary process for preparing emulsions may commence by introducing an initial charge into a reactor. In some embodiments, the initial charge may include deionized water and one or more surfactants. The surfactants may be selected to improve the miscibility of the monomers or groups of monomers that will be copolymerized. In some embodiments, sodium lauryl ether sulfate may be used as a surfactant in the initial charge.


The initial charge may also include a stabilizer, such as polyvinyl alcohol, a surfactant, such as sodium lauryl ether sulfate, an initiator, such as tertiary-butyl hydroperoxide, an activator, such as sodium hydroxymethanesulfinate (available under the name Bruggolite E01 from Bruggemann Chemical of Newton Square, Pa.), and an oxygen scavenger, such as sodium iron ethylenediaminetetraacetate (“NaFe EDTA”) (available from Supreme Resources, Inc. of Suwanee, Ga.). This initial charge may be added to a reactor and agitation may be initiated at an appropriate rate, such as at 80 revolutions per minute, to begin the preparation process. The reactor contents may also be heated to a temperature in the range of about 50° C. to about 60° C. In some embodiments, the reactor contents may be heated in the range of about 53° C. to about 55° C. In other embodiments, the reactor contents may be heated to about 55° C.


After the contents of the reactor are heated to the desired temperature, a portion of the monomer feed and a portion of the pre-emulsion feed may be added to the reactor. In some embodiments, the ratio of monomer feed to the pre-emulsion feed added to the reactor at this stage may be between about 2.5:1 and about 3.5:1, and in some embodiments the ratio may be about 3:1. In addition, an initial amount of feed may be added that is approximately 5-7% of the weight percentage of each of the monomer feed and the pre-emulsion feed.


Following the addition of these initial monomer mixtures to the reactor, the addition of the activator feed to the reactor may be initiated. The activator feed may include sodium hydroxylmethanesulfinate, such as Bruggolite E01 available from Bruggemann Chemical of Newton Square, Pa. In some embodiments, the activator feed may be supplied at a constant rate such that the contents will be exhausted contemporaneously with, or after, the subsequently-initiated monomer and pre-emulsion feeds become exhausted. In some embodiments, the activator feed may be exhausted within about thirty minutes of the monomer feed and pre-emulsion feed being exhausted, such as twenty minutes thereafter.


After initiating the activator feed, agitation of the reactor contents may be continued without additional content being added for a short period, such as ten minutes. Then, after a suitable lapse, the monomer feed and the pre-emulsion feed may be fed into the reactor. These feeds may be added at respective addition rates such that their contents are completely added to the reactor at the end of a predetermined time. For instance, in some embodiments, the contents of these feeds may be constantly added over the course of about 4.5 hours. As indicated above, the activator feed is also fed at a rate to deplete at the same time as the monomer and pre-emulsion feeds are depleted.


After the contents of the monomer feed and the pre-emulsion feed have been entirely added to the reactor, the reactor may be maintained at the desired temperature discussed above. The reactor environment may be maintained for approximately 30 minutes, and then a post add feed may be added to the reactor. The post add feed may include an initiator, such as tertiary-butyl hydroperoxide or a biocide, such as Acticide GA, available from Thor Specialties, Inc. of Trumbull, Conn. (which is an aqueous blend of chlorinated and non-chlorinated isothiazolinones and 2-bromo-2-nitro-1, 3-propanediol). After the post add feed has been introduced, the reaction environment may be maintained for approximately one hour.


By way of example and without intending to limit the scope, an example of one emulsion may be formed using the components set forth in Table 1 by performing the following steps, which in some embodiments may be performed in the recited order:

    • 1. add the initial charge to the reactor and set agitation to 80 RPM;
    • 2. heat and maintain the reactor contents at 55° C.;
    • 3. prepare the monomer, catalyst and activator feeds;
    • 4. add the following contents to the reactor when the existing reactor contents reach 55° C.:
      • Monomer Feed: 13.7 lbs
      • Pre-Emulsion Feed: 4.7 lbs;
    • 5. start the activator feed (t=0);
    • 6. after 10 minutes (t=10), begin introducing the pre-emulsion, monomer, and catalyst feeds over 270 minutes;
    • 7. maintain the reactor contents at 55° C.;
    • 8. after the pre-emulsion supply is exhausted from the feed, flush the tank and lines with rinse deionized water;
    • 9. after the activator feed has been completely added (˜t=300); maintain the environment with agitation for 30 minutes; and
    • 10. after the aforementioned 30-minute period (˜t=330), add post add feed and maintain the reactor contents at about 55° C. for 1 hour (until ˜t=390).












TABLE 1










Batch Size





600 lbs



Parts
% total
Batch





Initial Charge





BP-04 (15%) polyvinyl alcohol
8.12
0.0203
12.2


Disponil FES 77 (32%)
0.08
0.0002
0.12


NaFe EDTA
0.01
0.0000
0.01


t-Butyl Hydroperoxide
0.10
0.0002
0.14


DI Water
56.16
0.1402
84.1


Reactor Charge Total
64.46

96.55


Monomer Feed





DI Water
140.09
0.3497
209.8


2-Hydroxyethyl Methacrylate
75.00
0.1872
112.3


Feed Total
215.09

322.2


Pre Emulsion (Initial Tank)





DI Water
7.92
0.0198
11.9


Disponil FES 77 (32%)
3.56
0.0089
5.3


Polyvinyl alcohol (BP-04 (15%))
8.12
0.0203
12.2


2-Ethylhexyl Acrylate
11.00
0.0275
16.5


Methyl Methacrylate
11.00
0.0275
16.5


Methacrylic Acid
3.00
0.0075
4.5


Ammonium Hydroxide (19%)
2.25
0.0056
3.37


Pre-Emulsion Total
46.84

70.2


Catalyst Feed





DI Water
16.28
0.0406
24.4


t-Butyl Hydroperoxide
0.38
0.0009
0.57


Catalyst Total
16.66

25.0


Activator Feed





DI Water
14.05
0.0351
21.0


Bruggolite E01
0.28
0.0007
0.42


Activator Total
14.32

21.5


Post Add Feed





t-Butyl Hydroperoxide
0.20
0.0005
0.30


Biocide (Acticide GA)
0.11
0.0003
0.17


DI Water
1.98
0.0049
2.97


Rinse Water





DI Water
4.21
0.0105
6.3


Dilution





DI Water
36.69
0.0916
55.0


Total
400.56
1.000
600.0










Based on the foregoing procedures using the components in Table 1,


the feed rate information may be summarized as follows:














Monomer
Rate 1
Rate 2
Catalyst
Rate 1





Weight (lbs)
13.7
308.5
Weight (lbs)
25.0


Time (min)

270
Time (min)
270


Rate

1.14
Rate
0.09


(lbs/min)


(lbs/min)





PreEmulsion
Rate1
Rate 2
Activator
Rate 1





Weight (lbs)
4.7
65.5
Weight (lbs)
21.5


Time (min)

270
Time (min)
300


Rate

0.24
Rate
0.07


(lbs/min)


(lbs/min)









By way of a second example, an emulsion was also prepared by performing the following steps using the components set forth in Table 2 below:

    • 1. adding reactor charge to the reactor; agitating and heating the reactor contents to 53-55° C. with a 55° C. bath;
    • 2. adding 35.2 g monomer feed and 11.1 g pre-emulsion feed to the reactor;
    • 3. initiating the activator feed at a rate to exhaust in 300 minutes, i.e., at 0.17 g/min (51.0 g);
    • 4. maintaining the system for 10 minutes and then initiating the monomer feed and the pre-emulsion feed to exhaust in 270 mins, i.e., at 1.90 g/min (512.8 g) and 0.57 g/min (154.7 g), respectively;
    • 5. maintaining the reaction environment in the system for 30 minutes;
    • 6. adding the post add feed after the contents of the activator feed have been completely added; and
    • 7. maintaining the reaction environment for about 1 hour and then cooling.











TABLE 2







Wt




(grams)








Reactor Charge




Mowiol 4-88 (15%)
28.9



Disponyl FES 77 (32%)
0.28



NaFe EDTA
0.02



TBHP 70
0.28



DI Water
197.3



Reactor Charge Total
226.8



#1 Monomer Feed




DI Water
279.6



2-Hydroxyethyl Methacrylate
267.0



TBHP 70
1.41



Monomer Feed Total
548.0



#2 Pre-Emulsion Feed




DI Water
28.2



Disponyl FES 77 (32%)
12.7



Mowiol 4/88 (15%)
28.9



NH3 (30%)
7.0



2-Ethyhexyl Acrylate
78.3



Methacrylic Acid
10.7



Emulsion Feed Total
165.8



#3 Activator Feed




DI Water
50.0



Buggolite E01
0.99



Activator Feed Total
51.0



Post Add Feed




TBHP 70
0.71



Acticide GA
0.40



DI Water
7.05



Dilution




DI Water
425.00



Total
1424.8









As evidenced by the foregoing description and examples, aqueous emulsions prepared with total monomer amounts including over 50% water soluble monomers and at least 10% water insoluble monomers may be provided. In some embodiments, water soluble monomers may account for between about 50% and about 90% of the total monomers used in the process, including each intermittent value therein. In other embodiments, water soluble monomers may account for about 75% of the total monomer content. In addition, the emulsion may be formed using about 10% or more water insoluble monomers. In some embodiments, one or more water soluble monomers may account for about 10% to about 50%, including each intermittent value therein, of the total monomers used in the process. In some embodiments, multiple different soluble and/or insoluble monomers may be used as part of the monomer contents. In embodiments in which the emulsions are used as coatings, the water soluble monomer(s) may impart a hydrogel nature to the coating, which may provide desirable donning characteristics, and the water insoluble monomer(s) may provide other desirable properties and performances characteristics to the coating. Therefore, the water soluble and water insoluble monomer proportions may be varied to result in the desired characteristics for a particular application.


Testing was performed on samples of water-soluble copolymer coatings, solvent-based copolymer coatings, and copolymer emulsion coatings, wherein the polymer emulsions were prepared in accordance with the procedures disclosed herein. The samples were prepared using the indicated monomer ratios. The emulsion samples were prepared using the procedures set forth above for the Table 2 components except as modified by the components for each sample as identified below.













TABLE 3







Sample Reference
Polymer Base
HEMA/EHA/MAA









 1
Water
60/30(HBA)/10



 2
Water
60/30(HBA)/10



 3
Water
90/0/10



 4
Water
90/0/10



 5
Water
97/0/3 



 6
Water
87/3(HBA)/10



(90% Sample 3 -





10% Sample 2)





 7
Water
87/3(HBA)/10



(90% Sample 3 -





10% Sample 2)





 8
Solvent
68/23/9



 9
Solvent
93/5/2 



10
Solvent
95/5/0 



11
Solvent
75/25/0



12
Emulsion
75/22/3



13
Emulsion
75/22/3



14
Emulsion
75/22/3



15
Emulsion
75/22(EHMA)/3



16
Emulsion
75/22(EHMA)/3



17
Emulsion
75/22(LM)/3



18
Emulsion
75/22(LM)/3, with Silica



19
Emulsion
(HEMA/EHA/MMA/MAA:





75/11/11/3)



20
Emulsion
(HEMA/EHA/MMA/MAA:





75/14/8/3)



21
Emulsion
(HEMA/EHA/MMA/MAA:





75/17/6/3)



22
Emulsion
(HEMA/EHA/MMA/MAA:





75/19/3/3)



23
Emulsion
(HEMA/EHA/MMA/MAA:





75:11.8:11.8:1.5)



24
Emulsion
(HEMA/EHA/MMA/MAA:





75/10.3/10.3/4.5)



25
Emulsion
(HEMA/EHA/MMA/MAA:





75/9.5/9.5/6.0)










As used above and herein, the term HEMA references 2-hydroxyethyl methacrylate, EHA references 2-ethylhexyl acrylate, HBA represents 4-hydroxybutyl acrylate, MAA references methacrylic acid, EHMA references 2-ethylhexyl methacrylate, LM references lauryl methacrylate, and MMA references methyl methacrylate. In addition, the crosslinkers referenced above are 2% XC113 (available from Shanghai Zealchen Co. Ltd. of Shanghai, China) which is a polyfunctionalaziridine, 0.5% Tyzor AA (available form DuPont of Wilmington, Del.), which is titanium acetylacetonate, 2% Polycup 172 (available from Ashland of Columbus, Ohio), which is a water soluble, polyamide-epichlorohydrin-type resin, and 2% Carbodilite E-02 (available from Nissinbo Chemical Inc. of Chiba, Japan), which is a carbodimide compound. The amount of crosslinker is based on dry weight of crosslinker to dry weight of copolymer.


The comparative samples evaluated were prepared in accordance with the following general procedures and using the approximate parameters indicated below:









TABLE 4







Samples 1 and 2










grams
Procedures












Reactor Charge

1. Add Reactor Charge and heat to


Deionized water
485.0
about 74-75° C. with a N2 purge.


Initial Initiator

Wait approximately 15 to 30 minutes.


Denonized Water
15.0
2. Add Initial Initiator to heated


Sodium Persulfate
3.0
Reactor Charge.


(1.0% BOM)

3. After ten minutes, start Monomer


Monomer Feed

Feed at 3.33 g/min (3 hours).


2-Hydroxymethyl
180.0
4. After Monomer Feed, wait thirty


methacrylate

minutes and then start Cook-off #1 at


4-Hydroxybutyl acrylate
90.0
0.84 g/min (1 hour).


Methacrylic acid
30.0
5. After about thirty minutes after


Deionized water
285.0
Cook-off #1 added, start Cook-off #2


Ammonium hydroxide
14.0
at 0.84 g/min (1 hour).


Cook-off #1

6. Add dilution water as needed.


Deionized water
50.0
7. After Cook-off #2 completely


Sodium Persulfate
0.30
added, wait about thirty minutes and


Cook-off #2

then dilute to 4% and start cooling and


Deionized water
50.0
discharge.


Sodium Metabisulfite
0.30



Total
1202.6
















TABLE 5







Samples 3 and 4










grams
Procedures












Reactor Charge

1. Add Reactor Charge and heat to


Deionized water
727.5
74-75° C. with a N2 purge. Wait


Initial Initiator

approximately 15 to 30 minutes.


Denonized Water
22.5
2. Add Initial Initiator to heated Reactor


Sodium Persulfate
2.25
Charge.


(0.5% BOM)

3. After ten minutes, start Monomer


Monomer Feed

Feed at 5.27 g/min (3 hours).


2 -Hydroxymethyl
405
4. After Monomer Feed, wait thirty


methacrylate

minutes and then add Cook-off #1.


Methacrylic acid
45.0
5. After one hour, add Cook-off #2.


Deionized water
477.5
6. After one hour, dilute to 4% and start


Ammonium hydroxide
21.0
cooling and discharge.


Cook-off #1




Deionized water
50.0



Sodium Persulfate
0.5



Cook-off #2




Deionized water
50.0



Sodium Metabisulfite
0.5



Total
1801.7
















TABLE 6







Sample 5










grams
Procedures












Reactor Charge

1. Add Reactor Charge and heat to


Deionized Water
565.0
74-75° C. with a N2 purge. Wait


Initial Initiator

approximately 15 to 30 minutes.


Denonized Water
15.0
2. Add Initial Initiator to heated reactor.


Sodium Persulfate
3.0
3. Wait ten minutes after Initial Initiator


Monomer Feed

added and then start Monomer Feed at


2-HEMA (San Esters)
291.0
3.29 g/min (592 g) (3 hrs.) and turn N2


Methacrylic acid
9.0
off.


Deionized water
283.0
4. After monomer feed added, wait one


Ammonium hydroxide
12.0
hour and then add Cook-off #1.


(19%)

5. After Cook-off #1 added, wait one


Cook-off #1

hour and then add cook-off #2.


Deionized Water
10.00
6. One hour after Cook-off #2 added,


Sodium Persulfate
0.30
dilute to 4%, and start cooling and


Cook-off #2

discharge.


Deionized Water
10.00



Sodium Metabisulfite
.30



Acticide GA
1.40



Total
1200.0

















TABLE 7







Sample 8










grams
Procedures












Monomer Mix

1. Add Reactor Charge and heat to


2-Hydroxyethyl
204.0
74-75° C. with a N2 purge. (For sample


Methacrylate

8, the reaction temperature fluctuated


(San Esters)

from about 70° C. to about 76° C. but


2-Ethylhexyl Acrylate
69.0
was primarily maintained within the


Methacrylic Acid
27.0
indicated 74-75° C. range.) Wait


Ethanol
204.0
approximately 15 to 30 minutes.


Ethyl Acetate
69.0
2. Add Initial Initiator to heated Reactor


Methanol
27.0
Charge. Remove N2 after the addition.


Reactor Charge

3. After ″kick off,″ wait ten minutes and


Monomer Mix
150.0
start Monomer Feed at 3.33 g/min


Initial Initiator

(599 g) (3 hours). For Sample 8,


Vazo 64 (0.1% BOM)
0.08
Monomer Feed was started about thirty


Ethanol
10.00
minutes after adding Initial Initiator.


Monomer Feed

4. Start Solvent Feed as needed: (2 hr) =


Monomer Mix
450.0
2.28 g/min (273 g). For Sample 8,


Vazo 64 (0.1% BOM)
0.23
Solvent Feed was started about 2.5


Solvent Feed

hours after Monomer Feed started and


Ethanol
204
continued for about 45 minutes, and


Ethyl Acetate
69
then restarted after about 15 minutes.


Cook-off Feed

5. After Monomer Feed, wait about


Vazo 64
1.0
15-30 minutes and then start Cook-off


Ethanol
40.00
Feed at 0.34 g/min (41 g). Wait one


Final Dilution

hour, then dilute to 4% and start cooling


Isopropyl Alcohol
75.70
and discharge.


Total
1000.0
As used herein, ″kick off″ indicates




when reaction or polymerization




begins and is noted with an increase in




reaction temperature or bubbles in the




reactor as the reaction begins to boil or




increase in viscosity and trap air.





Note:


Vazo 64 is 2,2′-Azobis(2-methylpropionitrile), available from DuPont of Wilmington, Delaware.













TABLE 8







Sample 9










grams
Procedures












Monomer Mix

1. Add Reactor Charge and heat to


2-Hydroxyethyl
279.0
74-75° C., with a N2 purge. Wait


Methacrylate

approximately 15 to 30 minutes.


(San Esters)

2. Add Initial Initiator to heated Reactor


2-Ethylhexyl Acrylate
15.0
Charge.


Methacrylic Acid
6.0
3. After kick-off bubbling noticed, wait


Methanol
231.0
ten minutes and start Monomer Feed at


Ethyl Acetate
69.0
2.50 g/min (450.2 g) (3 hours). For


Reactor Charge

Sample 9, Monomer Feed started at


Monomer Mix
150.0
about thirty minutes after Initial Initiator


Initial Initiator

added.


Vazo 64 (0.1% BOM)
0.08
4. Start Solvent Feed as needed at 2.28


Ethyl Acetate
10.0
g/min (273 g) (2 hr). For Sample 9,


Monomer Feed

Solvent Feed started at about 2.5 hours


Monomer Mix
450.0
after Monomer Feed started and run


Vazo 64 (0.1% BOM)
0.23
for about 1.5 hours and then restarted


Solvent Feed

after about 1.5 hours to add the


Ethanol
204
remainder of Solvent Feed after


Ethyl Acetate
69
Cook-off started.


Cook-off Feed

5. After Monomer Feed, wait 30


Vazo 64
1.0
minutes (for Sample 9 the wait was


Ethyl Acetate
20.0
about one hour) and then start Cook-off


Ethanol
20.0
Feed at 0.34 g/min (41 g) (2 hours).


Final Dilution

Wait one hour (about 30 minutes for


Isopropyl Alcohol
75.70
Sample 9) after the Cook-Off Feed


Ethanol
200.0
added, then dilute to 4% and start


Total
1200
cooling and discharge.
















TABLE 9







Sample 10









Monomer Mix
grams
Procedures












2-Hydroxyethyl
285.0
1. Add Reactor Charge and


Methacrylate

heat to 68-70° C., with


2-Ethylhexyl
15.0
a N2 purge. Wait


Acrylate EHA

approximately 15 to 30 minutes.


Methanol
240.0
2. Add Initial Initiator to


Ethanol
270.0
heated Reactor Charge.


Ethyl Acetate
140.0
3. After Kick-off, wait ten


Reactor Charge

minutes and then start


Monomer Mix (75g
240.0
Monomer Feed (w/N2) at


monomer)

3.96 g/min (713.2 g)


Initial Initiator

(3 hours).


Vazo 64 (0.1% BOM)
0.08
4. After Monomer Feed added,


Ethyl Acetate
10.00
wait 30 minutes and then


Monomer Feed

start Cook-off Feed


Monomer Mix
710.0
at 0.34 g/min (41 g)


Vazo 64 (0.1% BOM)
0.22
(2 hours).


Cook-off Feed

5. Hold 1 Hour after


Vazo 64
1.0
Cook-off Feed added, then


Ethyl Acetate
20.0
dilute to 4% and start


Ethanol
20.0
cooling and discharge.


Total
1001.3
















TABLE 10







Sample 11











Monomer Mix
grams
Procedures















2-Hydroxyethyl
225.0
1. Add Reactor Charge and



Methacrylate

heat to 68-70° C., with



2 Ethylhexyl
75.0
a N2 purge. Wait



Acrylate

approximately



Methanol
240.0
15 to 30 minutes.



Ethanol
270.0
2. Add Initial Initiator



Ethyl Acetate
140.0
to heated Reactor Charge.



Reactor Charge

3. After Kick-off, wait 10



Monomer Mix (75g
240.0
minutes and then start



monomer)

Monomer Feed



Initial Initiator

(w/N2) at 3.96 g/min (713.2 g)



Vazo 64
0.08
(3 hours).



(0.1% BOM)

4. After Monomer Feed



Ethyl Acetate
10.00
added, wait 30 minutes



Monomer Feed
710.0
and then start Cook-off



Monomer Mix
0.22
Feed at 0.34 g/min (41 g)



Vazo 64

(2 hours).



(0.1% BOM)

5. Dilute to 4% and start



Cook-off Feed

cooling and discharge.



Vazo 64
1.0




Ethyl Acetate
20.0




Ethanol
20.0




Total
1001.3

















TABLE 11







Samples 12, 13, and 14









Reactor Charge
grams
Procedures












Mowiol 4/88 (15%)
28.9
1. Add Reactor Charge


Disponyl FES 77(32%)
0.28
and heat to 53-55° C., with


NaFe EDTA
0.02
a 55° C. bath.Wait


TBHP 70
0.28
approximately 15 to 30


Deionized Water
197.3
minutes.


Monomer Feed

2. Add 35.2 g Monomer


Deionized Water
279.6
Feed and 11.1 g Pre-


HEMA
267.0
Emulsion. Wait


TBHP 70
1.41
approximately 15 to 30 minutes.


Pre-Emulsion

3. Start Activator Feed. At 0.17 g/min


DI Water
28.2
(51.0 g) (300 min).


Disponyl FES 77 (32%)
12.7
4. After fifteen minutes,


Mowiol 4/88 (15%)
28.9
start Monomer Feed and


NH3 (30%)
7.0
Pre-Emulsion. Monomer


Ethyhexyl Acrylate
78.3
Feed at 1.90 g/min


Methacrylic Acid
10.7
(512.89 g) (270 minutes)


Activator Feed

and Pre-Emulsion at 0.57


Deionized Water
50.0
g/min (154.7 g) (270 minutes).


Buggolite E01
0.99
5. Wait 30 minutes after


Post Add

Activation Feed added,


TBHP 70
0.71
and then add Post Add.


Acticide GA
2
Then, dilute to 4% and



drops
start cooling and discharge.


Deionized Water
7.05



Deionized Water
425



Total
1425
















TABLE 12







Samples 15 and 16









Reactor Charge
grams
Procedures












Mowiol 4/88 (15%)
28.9
1. Add Reactor Charge and


Disponyl FES 77(32%)
0.28
heat to 53-55° C., with


NaFe EDTA
0.02
a 55° C. bath. Wait


TBHP 70
0.28
approximately 15 to 30


Deionized Water
197.3
minutes.


Monomer Feed

2. Add 35.2 g Monomer


Deionized Water
559.2
Feed and 11.1 g Pre-


2-Hydroxyethyl
267.0
Emulsion.


Methacrylate

3. Start Activator Feed at


TBHP 70
1.4
0.17 g/min (51.0 g)


Pre-Emulsion

(300 min).


Deionized Water
28.2
4. After 10 minutes, start


Disponyl FES 77 (32%)
12.7
Monomer Feed and Pre-


Mowiol 4/88 (15%)
28.9
Emulsion. Monomer Feed at


NH3 (19%)
7.0
2.93 g/min (792.4 g)


2-Ethylhexyl methacrylate
78.3
(270 min) and Pre-Emulsion


Methacrylic Acid
10.7
at 0.57 g/min


Activator Feed

(154.7 g) (270 min).


Deionized Water
50.0
After Monomer Feed and Pre-


Buggolite E01
1.0
Emulsion added, add 10 g of


Post Add

deionized water from


TBHP 70
0.71
Dilution.


Acticide GA
0.40
5. Wait 30 minutes after


DI Water
7.05
Activation Feed added,


Dilution

then add Post Add. Wait one hour


Deionized Water
135.6
after Post Add


Total
1425.0
added, then dilute to 4%




and start cooling and discharge.
















TABLE 13







Samples 17 and 18









Reactor Charge
grams
Procedures












Mowiol 4/88 (15%)
28.9
1. Add Reactor Charge and


Disponyl FES 77 (32%)
0.28
heat to 53-55° C., with


NaFe EDTA
0.02
a 55° C. bath. Wait approximately


TBHP 70
0.28
15 to 30


Deionized Water
197.3
minutes.


Monomer Feed

2. Add 35.2 g Monomer


Deionized Water
559.2
Feed and 11.1 g Pre-


2-Hydroxyethyl
267.0
Emulsion.


Methacrylate

3. Start Activator Feed


TBHP 70
1.41
at 0.17 g/min (51.0 g)


Pre-Emulsion

(300min).


Deionized Water
28.2
4. After 10 minutes, start


Disponyl FES 77 (32%)
12.7
Monomer Feed and Pre -


Mowiol 4/88 (15%)
28.9
Emulsion. Monomer Feed


NH3 (19%)
7.0
at 2.93 g/min (792.4 g)


Lauryl Methacrylate (LM)
78.3
(270 min) and Pre-Emulsion


Methacrylic Acid
10.7
at 0.57 g/min


Activator Feed

(154.7 g) (270min).


Deionized Water
50.0
5. Wait 30 minutes after


Buggolite E01
0.99
Activation Feed added,


Post Add

then add Post Add.


TBHP 70
0.71
Wait one hour after Post Add


Acticide GA
0.40
added, then dilute to 4%


DI Water
7.05
and start cooling and


Dilution

discharge.


Deionized Water
135.6



Total
1425.0
















TABLE 14







Sample 19









Reactor Charge
grams
Procedures












Mowiol 4/88 (15%)
28.9
1. Add Reactor Charge and


Disponyl FES 77(32%)
0.28
heat to 53-55° C., with


NaFe EDTA
0.02
a 55° C. bath. Wait


TBHP 70
0.28
approximately 15 to 30


Deionized Water
197.3
minutes.


Monomer Feed

2. Add 35.2 g Monomer Feed


Deionized Water
559.2
and 11.1 g Pre-


2-Hydroxyethyl Methcrylate
267.0
Emulsion.


TBHP 70
1.41
3. Start Activator Feed


Pre-Emulsion

at 0.17 g/min (51.0 g) (300


Deionized Water
28.2
minutes).


Disponyl FES 77 (32%)
12.7
4. After 10 minutes start


Mowiol 4/88 (15%)
28.9
Monomer Feed and Pre-


NH3 (19%)
7.0
Emulsion with Monomer


2-EHA
39.2
Feed at 2.90 g/min


Methyl Methacrylate
39.2
(792.4g) (270min)


Methacrylic Acid
10.7
and Pre-Emulsion at 0.57


Activator Feed

g/min (154.7g) (270min).


Deionized Water
50.0
5. Wait thirty minutes after


Buggolite E01
0.99
Activator Feed added


Post Add

and then add Post Add.


TBHP 70
0.71
Wait one hour and then


Acticide GA
0.40
dilute to 4% and start


Deionized Water
7.05
cooling and discharge.


Rinse Water




Deionized Water
15.00



Dilution




Deionized Water
130.60



Total
1425.0









The emulsion samples 20, 21 and 22 evaluated were prepared in accordance with the following general procedures and using the approximate parameters indicated in Table 15 below:

    • 1. Add the Reactor Initial Charge and heat the batch to 55° C.;
    • 2. Add 1.1 gram of Pre-emulsion and 68.8 gram of Monomer Feed to the reactor;
    • 3. Hold the batch to allow the batch temperature to equilibrate to 55° C.;
    • 4. Start the Activator Feed at 0.17 g/min for 15 minutes;
    • 5. Co-feed the Monomer Feed and the Pre-emulsion feed for 270 minutes;
    • 6. After the Activator Feed, cook the batch for 30 minutes;
    • 7. Add Post-Add and hold for another 60 minutes;
    • 8. Cool down the batch and add biocides, rinse and dilution.














TABLE 15








Sample 20
Sample 21
Sample 22




Charge
Charge
Charge



Reactor Initial Charge
(gram)
(gram)
(gram)





















BP-04 (15%)
34.3
34.3
34.3



NaFe EDTA
0.02
0.02
0.02



t-BHP, 70%
0.20
0.20
0.20



Deionized Water
190.5
190.5
190.5



Monomer Feed






Deionized Water
547.0
547.0
547.0



2-Hydroxyethyl
262.0
262.0
262.0



Methacrylate






t-BHP, 70%
0.83
0.83
0.83



Pre-Emulsion






Deionized Water
21.5
21.5
21.5



Disponil FES 77 (32%)
15.2
15.2
15.2



BP-04 (15%)
34.3
34.3
34.3



Ammonia, 19%
16.0
16.0
16.0



2-Ethylhexyl Acrylate
48.1
57.8
67.4



Methyl Methacrylate
28.9
19.3
9.6



Methacrylic Acid
10.5
10.5
10.5



Activator Feed, solids






Deionized Water
49.6
49.6
49.6



Bruggolite E01
1.00
1.00
1.00



Post Add






t-BHP, 70%
0.20
0.20
0.20



Deionized Water
2.00
2.00
2.00



Bruggolite E01
0.19
0.19
0.19



NaFe EDTA
0.01
0.01
0.01



Deionized Water
5.00
5.00
5.00



Biocides






Acticide GA
0.40
0.40
0.40



Deionized Water
6.90
6.90
6.90



Rinse Water






Deionized Water
14.70
14.70
14.70



Dilution






Deionized Water
110.70
110.70
110.70



Grand Total
1400.1
1400.2
1400.1










In addition, in some embodiments, the dry donning performance of a coating can be further improved by the acid monomer, such as methacrylic acid, in the monomer feed and/or the pre-emulsion feed. By way of example, the emulsion samples 23, 24 and 25 evaluated were prepared based upon the Table 16 below in accordance with the following general procedures and using the approximate parameters indicated below:

    • 1. Add the Reactor Initial Charge and heat the batch to 55° C.;
    • 2. Add 1.1 gram of Pre-emulsion and 68.8 gram of Monomer Feed to the reactor;
    • 3. Hold the batch to allow the batch temperature to equilibrate to 55° C.;
    • 4. Start the Activator Feed at 0.17 g/min for 15 minutes;
    • 5. Co-feed the Monomer Feed and the Pre-emulsion feed for 270 minutes;
    • 6. After the Activator Feed, cook the batch for 30 minutes;
    • 7. Add Post-Add and hold the batch for another 60 minutes;
    • 8. Cool down the batch and add biocides, rinse and dilution.














TABLE 16








Sample 23
Sample 24
Sample 25




Charge
Charge
Charge



Reactor Initial Charge
(gram)
(gram)
(gram)





















BP-04 (15%)
33.7
33.7
33.7



NaFe EDTA
0.02
0.02
0.02



t-BHP, 70%
0.20
0.20
0.20



Deionized Water
191.1
191.1
191.1



Monomer Feed






Deionized Water
547.0
547.0
547.0



2-Hydroxyethyl






Methacrylate
262.0
262.0
262.0



t-BHP, 70%
0.83
0.83
0.83



Pre-Emulsion






Deionized Water
34.1
18.0
10.0



Disponil FES 77 (32%)
15.2
15.2
15.2



BP-04 (15%)
33.7
33.7
33.7



Ammonia, 19%
8.0
24.0
32.0



2-Ethylhexyl Acrylate
41.1
35.9
33.3



Methyl Methacrylate
41.1
35.9
33.3



Methacrylic Acid
5.3
15.8
21.0



Activator Feed






Deionized Water
49.6
49.6
49.6



Bruggolite E01
1.00
1.00
1.00



Post Add






t-BHP, 70%
0.40
0.40
0.40



Deionized Water
1.80
1.80
1.80



Bruggolite E01
0.19
0.19
0.19



NaFe EDTA
0.01
0.01
0.01



Deionized Water
5.00
5.00
5.00



Biocides






Acticide GA
0.40
0.40
0.40



Deionized Water
6.90
6.90
6.90



Rinse Water






Deionized Water
10.60
10.60
10.60



Dilution






Deionized Water
180.70
180.70
180.70



Grand Total
1470.0
1470.0
1400.1










In embodiments for rubber or latex gloves, the gloves may require the ability of donning, i.e, the ability to slide a glove on and off the surface of the skin, with minimal friction. As such, a flexible, non-tacky glove coating applied to the interior of a glove may be useful to allow donning, wet or dry, of the glove with minimal blocking and without undue friction or clinging. Thus, for these and/or other considerations, comparative testing of the foregoing coating samples above was performed by coating latex films with the sample coatings, wherein one sample coating was applied to each film. Prior to application to the film, solvent-based coating samples were diluted to approximately 4% total solid concentration using a mixture of methanol and ethyl acetate, and the emulsion and water soluble coatings were diluted with deionized water to approximately 4% total solid concentration. Then, for samples indicated as having a crosslinker, the indicated crosslinker was added to the copolymer. The polymer solution was then coated on latex film using a standard dipping procedure. Subsequently, the coated film was chlorinated with chlorine strength of about 100 parts per millions in order to remove any powder and reduce the surface tackiness.


The samples were tested to determine their dry static and kinetic coefficients of friction (“COF”) and also to determine their levels of stickiness and smoothness. The results are reported below in Table 17 for solvent-based polymer coatings, Table 18 for water-soluble polymer coatings, and Table 19 for polymeric emulsions.













TABLE 17








Sample 8
Sample 9
Sample 10
Sample 11



Solvent
Solvent
Solvent
Solvent





2-hydroxethyl
68
93
95
75


methacrylate






2-ethylhexyl
23
5
5
25


acrylate






methacrylic acid
9
2




4-hydroxybutyl






acrylate






2-ethylhexyl






methacrylate






lauryl methacrylate






methyl methacrylate






total
100
100
100
100





Crosslinker
2%
2%
0.5%
0.5%


added
XC113
XC113
Tyzor AA
Tyzor AA





Test Data






COF - Static
0.09
0.10
0.03
0.08


COF - Kinetic
0.07
0.09
0.03
0.07


Stickness—
non tacky
non tacky
non tacky
non tacky


Formed






Stickness—
non tacky
non tacky
non tacky
non tacky


Chlorinated






Smoothness—
smooth
smooth
smooth
smooth


Formed






Smoothness—
smooth
smooth
smooth
smooth


Chlorinated























TABLE 18






Sample
Sample
Sample
Sample
Sample
Sample
Sample



1
2
3
4
5
6
7



Water
Water
Water
Water
Water
Water
Water



Soluble
Soluble
Soluble
Soluble
Soluble
Soluble
Soluble






















2-hydroxyethyl
60
60
90
90
97
87
87


methacrylate









2-ethylhexyl









acrylate









methacrylic
10
10
10
10
3
10
10


acid









4-hydroxybutyl
30
30



3
3


acrylate









2-ethylhexyl









methacrylate









methyl









methacrylate









total
100
100
100
100
100
100
100


Crosslinker
N/A
2%
N/A
2%
2%
2%
2%


added

Polycup

Polycup
Polycup
Polycup
XC113




172

172
172
172



Test Data









COF—Static
2.23
N/R
2.18
N/R
0.18
N/R
0.62


COF—Kinetic
0.69
N/R
0.6
N/R
0.48
N/R
0.46


Stickiness—
tacky
tacky
tacky
tacky
non
tacky
non


Formed




tacky

tacky


Stickiness—
tacky
tacky
tacky
tacky
non
tacky
non


Chlorinated




tacky

tacky


Smoothness—
draggy
draggy
draggy
draggy
less
draggy
less


Formed




draggy

draggy


Smoothness—
draggy
draggy
draggy
draggy
less
draggy
less


Chlorinated




draggy

draggy
























TABLE 19






Sample
Sample
Sample
Sample
Sample
Sample
Sample
Sample



12
13
14
15
16
17
19
18



Emulsion
Emulsion
Emulsion
Emulsion
Emulsion
Emulsion
Emulsion
Emulsion























2-hydroxyethyl
75
75
75
75
75
75
75
75


methacrylate










2-ethylhexyl
22
22
22



11



acrylate










methacrylic
3
3
3
3
3
3
3
3


acid










4-hydroxybutyl










acrylate










2-ethylhexyl



22
22





methacrylate










lauryl





22

22


methacrylate










methyl










methacrylate






11



total
100
100
100
100
100
100
100
100


Crosslinker
N/A
2%
2%
2%
2%
2%
2%
2%


added

Polycup
Carb.
Polycup
Carb.
Polycup
Carb.
Polycup




172
E-02
172
E-02
172
E-02
172


Test Data










COF—Static
0.97
0.39
1.5
0.69
0.74
Tacky at
0.05
0.74


COF—Kinetic
0.95
0.45
1.45
1.02
0.82
formed
0.12
0.5








level




Stickiness—
non
non
non
non
non
tacky
non
non


Formed
tacky
tacky
tacky
tacky
tacky

tacky
tacky


Stickiness—
non
non
non
non
non
Not
non
non


Chlorinated
tacky
tacky
tacky
tacky
tacky
chlori-
tacky
tacky


Smoothness—
less
less
less
less
less
nated
less
less


Formed
draggy
draggy
draggy
draggy
draggy

draggy
draggy


Smoothness—
less
less
less
less
less

less
less


Chlorinated
draggy
draggy
draggy
draggy
draggy

draggy
draggy









The following Tables 20-23 show the results of additional experiments testing the coefficients of friction (“COF”) for Samples A-G, which are polymeric emulsions containing HEMA/EHA/MMA/MAA (75/11/11/3). The coating refers to % total solid content (TSC), and CYMEL® 373 refers to a methylated melamine-formaldehyde crosslinker available from Cytec Industries of Woodland Park, N.J.










TABLE 20








SAMPLE










A
B












Coating TSC (%)
4.0
4.0


CYMEL ® 373 (%)
4.0
3.5


Acid Priming (HCl %)
0
0












Coefficient of Friction (COF)













Donning

Donning



Donning Palm
Finger
Donning Palm
Finger


















Sample
Static
Kinetic
Static
Kinetic
Static
Kinetic
Static
Kinetic


Average
0.04
0.04
0.08
0.09
0.04
0.06
0.08
0.09


Std Dev
0.01
0.01
0.07
0.09
0.01
0.01
0.00
0.01










Physical Properties of Chlorinated Gloves (Unaged)









Tensile Strength (kg/cm2)
280
281


Stress 300% (kg/cm2)
17
15


Stress 500% (kg/cm2)
49
38


Ultimate Elongation %
845
885







Powder Content









Powder Content
Not tested
1.22


(mg/glove)









Observations









Coating Evenness
Fair
Fair


*Degree of Coating
4
4


Flaking



















TABLE 21








SAMPLE










C
D












Coating TSC (%)
4.0
4.0


CYMEL ® 373 (%)
3.5
3.5


Acid Priming (HCl %)
0.03
1.5












Coefficient of Friction (COF)













Donning

Donning



Donning Palm
Finger
Donning Palm
Finger


















Sample
Static
Kinetic
Static
Kinetic
Static
Kinetic
Static
Kinetic


Average
0.03
0.04
0.06
0.08
0.02
0.03
0.04
0.08


Std Dev
0.01
0.01
0.02
0.02
0.01
0.01
0.00
0.01










Physical Properties of Chlorinated Gloves (Unaged)









Tensile Strength (kg/cm2)
254
243


Stress 300% (kg/cm2)
14
15


Stress 500% (kg/cm2)
32
34


Ultimate Elongation %
845
924







Powder Content









Powder Content
Not tested
0.86


(mg/glove)









Observations









Coating Evenness
Good
Good


*Degree of Coating
3
2


Flaking

















TABLE 22








SAMPLE










E
F












Coating TSC (%)
3.5
3.5


CYMEL ® 373 (%)
3.5
3.5


Acid Priming (HCl %)
0
1.5












Coefficient of Friction (COF)













Donning

Donning



Donning Palm
Finger
Donning Palm
Finger


















Sample
Static
Kinetic
Static
Kinetic
Static
Kinetic
Static
Kinetic


Average
0.08
0.08
0.04
0.05
0.03
0.04
0.07
0.07


Std Dev
0.08
0.07
0.04
0.04
0.02
0.02
0.03
0.03










Physical Properties of Chlorinated Gloves (Unaged)









Tensile Strength (kg/cm2)
273
236


Stress 300% (kg/cm2)
15
11


Stress 500% (kg/cm2)
37
28


Ultimate Elongation %
845
924







Powder Content









Powder Content
1.56
Not tested


(mg/glove)









Observations









Coating Evenness
Good
Excellent


*Degree of Coating
3
2


Flaking



















TABLE 23





SAMPLE
G
















Coating TSC (%)
3.5


CYMEL ® 373 (%)
3.5


Acid Priming (HCl%)
1.0









Coefficient of Friction
Donning
Donning


(COF)
Palm
Finger











Sample
Static
Kinetic
Static
Kinetic


Average
0.05
0.05
0.04
0.05


Std Dev
0.02
0.00
0.00
0.00










Physical Properties of


Chlorinated


Gloves (Unaged)











Tensile Strength ( kg/cm2)
223


Stress 300% ( kg/cm2)
11


Stress 500% ( kg/cm2)
20


Ultimate Elongation %
963


Powder Content



Powder Content
0.78


(mg/glove)



Observations



Coating Evenness
Excellent


*Degree of Coating
2


Flaking










The stickiness and smoothness observed in the testing were recorded using a known solvent-based product having suitable performance on gloves as the reference. As shown by the results in Tables 17, 18, and 19, some exemplary emulsions generally provide comparable or lower coefficient of friction results. The exemplary emulsion coatings also provide improved stickiness and smoothness results as compared with water-based coatings. Sample 19 also provides comparable friction results as compared with solvent-based coatings. In addition, some emulsion samples provided comparable coefficient of friction results when compared with the solvent-based coatings. It is to be noted that some surface roughness of the coating may be desirable in certain embodiments, such as for coatings applied to gloves and other donning materials, because the roughness or morphology may provide for less contact between the material and the user's skin, which may provide desirable donning properties.


As shown in the accompanying figures, scanning electron microscopic images were obtained for some of the samples. FIGS. 3A and 3B are images of a film coated with an emulsion prepared using 75% 2-hydroxyethyl methacrylate, 22% 2-ethylhexyl acrylate, and 3% methacrylic acid. FIG. 6 is an image of a film coated with an emulsion prepared using 75% 2-hydroxyethyl methacrylate, 22% lauryl methacrylate, and 3% methacrylic acid, and FIG. 7 is an image of a film coated with an emulsion prepared using 75% 2-hydroxyethyl methacrylate, 22% lauryl methacrylate, and 3% methacrylic acid.


As shown in the referenced images, the coating on films using an emulsion as disclosed herein exhibits little cracking and provides a relatively smooth application. In particular, those emulsion coatings show less cracking and a smoother application to the film than the samples employing water-based coatings shown in FIGS. 1A, 1B, 2A, and 2B. In addition, the emulsion coatings also advantageously exhibit less cracking and less severe cracking as compared with the film having a solvent-based coating shown in FIGS. 4A and 4B. The emulsion coatings also evidence a smoother application and less severe cracking as compared with the film having a solvent-based coating in FIG. 5. These results are also demonstrated by the emulsion coating shown in FIGS. 12A, 12B, and 12C, which are discussed in detail below.


Additional physical properties were also determined for certain testing samples. Also, a control solvent-based coating was used for comparison testing, wherein the control is known to be effective in glove coating applications. These physical properties are recorded in the following table, and any referenced crosslinker was added at 2% based upon the dry weight of the crosslinker to the dry weight of the copolymer. As indicated by those results, emulsions formed in accordance with the disclosure herein provide comparable or favorable stretch and strength characteristics when compared with solvent-based and water-based coatings. These emulsions also provide cost savings and reduced pollutants as compared with solvent-based coatings.










TABLE 24








Polymer base












Solvent
Water
Emulsion
Solvent









Coating Type

















Sample 1
Sample 3

Sample
Sample
Sample
Sample



Control
(soft)
(hard)
Sample 7
12
13
8
9

















Crosslinker
Not
Not added
XC113
Not
Polycup
XC113
XC113



added


added
173

















Formed level










Tensile Strength (kg/cm2)
271
215
216
Not tested
280
264
Not
Not









tested
tested


Modulus @ 300% (kg/cm2)
12
18
20
Not tested
19
18
Not
Not









tested
tested


Modulus @ 500% (kg/cm2)
31
51
62
Not tested
50
46
Not
Not









tested
tested


Ultimate Elongation (%)
904
845
766
Not tested
845
845
Not
Not









tested
tested


Chlorinated level










Tensile Strength (kg/cm2)
317
288
282
256
328
290
255
267


Modulus @ 300 % (kg/cm2)
13
15
14
21
18
16
17
20


Modulus @ 500 % (kg/cm2)
36
40
37
51
42
38
43
45


Ultimate Elongation (%)
884
845
845
865
845
884
825
825









The nano-hardness and reduced modulus were also measured for some of the foregoing samples by nano-indention testing, which provided the following results, as shown in Table 25.













TABLE 25







Polymer base
Hardness (GPa)
Reduced Modulus (GPa)









Emulsion
0.072
1.969



Sample 13





(2% Polycup 172)





Emulsion
0.069
1.861



Sample 17





(2% Polycup 172)





Emulsion
0.055
1.977



Sample 18





(2% Polycup 172)





Solvent
0.023
0.611



Sample 11










Testing, including flaking observation, was performed on latex films coated with Samples 19, 20, 21 and 22 and an acid priming step comprising an HCl solution of 1% using the following procedures:

    • 1. The emulsion-based copolymer was diluted with deionized (“DI”) water to 3.5-4.0% of the total solids content (“TSC”).
    • 2. 3.5-4.0% of the crosslinker Cymel 373 was added to the Sample 19, 20, 21 and 22 emulsion based on dry weight of the crosslinker to the dry weight of the copolymer.
    • 3. The polymer solution was chilled and maintained at about 34° C.
    • 4. Prior to the application of the polymer coating, the glove sample was pretreated by dipping into an HCl acid priming solution and dried in the oven at 100° C. to 150° C. for 1 to 2 minutes.
    • 5. The polymer solution was then coated onto the pretreated latex film, the latex film being heated up to a temperature of about 40-45° C. prior to the coating process.
    • 6. After coating, the mold upon which the film was applied was rotated in the oven to ensure even coating on the film.
    • 7. The coated film was then cured at 140° C. for 30 minutes.
    • 8. The coated film was then chlorinated on the donning and/or patient side to remove any powder with chlorine strength of about 80 ppm.
    • 9. The coated films were then tested as indicated in the table below. The aged samples were aged using a heat accelerated aging process, as specified in ASTM D-412 method, in which the aged gloves were placed in an oven for 7 days at about 70° C. The unaged samples were tested without performing such a heat treatment aging process.


Based upon the testing procedures above, the following results were obtained as shown in Table 26 below, wherein the degree of coating flaking was evaluated on a scale of 1 to 5 with 1 indicating the lowest flake and 5 indicating the highest flake. As can be seen, the degree of flaking and the characteristic performance of a coating can be controlled by the ratio of “hard” monomers to “soft” monomers.










TABLE 26








Coating












Sample 19
Sample 20
Sample 21
Sample 22














Coating
3.5
3.5
3.5
3.5


TSC (%)






Cymel
3.5
3.5
3.5
3.5


373 (%)






Acid
1
1
1
1


Priming






(% HCl)












Coefficient of Friction (COF)
















Donning
Donning
Donning
Donning
Donning
Donning
Donning
Donning



Palm
Finger
Palm
Finger
Palm
Finger
Palm
Finger


























Sample
Static
Kinetic
Static
Kinetic
Static
Kinetic
Static
Kinetic
Static
Kinetic
Static
Kinetic
Static
Kinetic
Static
Kinetic


Average
0.11
0.09
0.05
0.06
0.27
0.30
0.21
0.19
0.3
0.29
0.13
0.15
0.39
0.36
0.17
0.15


Std Dev
0.03
0.02
0.02
0.04
0.15
0.17
0.18
0.15
0.18
0.20
0.03
0.03
0.33
0.31
0.03
0.05










Physical Properties of Sterile Gloves (Unaged)











Tensile
261
256
260
252


Strength






(kg/cm2)






Stress
11
11
14
12


300%






(kg/cm2)






Stress
24
27
32
30


500%






(kg/cm2)






Ultimate
884
924
924
924


Elonga-






tion %











Physical Properties of Sterile Gloves (Aged)











Tensile
198
195
220
194


Strength






(kg/cm2)






Stress
10
8
11
12


300%






(kg/cm2)






Stress
21
14
30
27


500%






(kg/cm2)






Ultimate
884
884
884
884


Elonga-






tion %











Observations











Coating
Not Tested
No
No
No


Sedimen-






tation






Internal
Not Tested
Slightly
No
Slightly


Tacky






during






Processing






Dry
Good
Good
Good with inconsistency
Good with inconsistency


donning






*Degree of
1
1
2
1


Coating






Flaking









Testing, including flaking observation, was performed on latex films coated with Sample 19, 23, 24 and 25 using the following procedures:

    • 1. The emulsion-based copolymer was diluted with deionized (“DI”) water to 3.5-4.0% of the total solids content (“TSC”).
    • 2. 3.5-4.0% of the crosslinker Cymel 373 was added to the Sample 19, 23, 24 and 25 emulsion based on dry weight of the crosslinker to the dry weight of the copolymer.
    • 3. The polymer solution was chilled and maintained at about 34° C.
    • 4. Prior to application of the polymer coating, the glove sample was pretreated by dipping in an AluminiumSulphate priming solution and dried in the oven at 100° C. to 150° C. for 1 to 2 minutes.
    • 5. The polymer solution was coated on the pretreated latex film, the latex film being heated up to a temperature of about 40-45° C. prior to the coating process.
    • 6. After coating, the mold upon which the film was applied was rotated in the oven to ensure even coating on the film.
    • 7. The coated film was then cured at 140° C. for 30 minutes.
    • 8. The coated film was then chlorinated on the donning and/or patient side to remove any powder with chlorine strength of about 80 ppm.
    • 9. The coated films were then tested as indicated in the table below. The aged samples were aged using a heat accelerated aging process, as specified in ASTM D-412 method. In general, the aged gloves were placed in an oven for 7 days at about 70° C. The unaged samples were tested without performing such a heat treatment aging process.


Based upon the testing procedures above, the following results were obtained, as shown in Table 27 below, wherein the degree of coating flaking was evaluated on a scale of 1 to 5 with 1 indicating the lowest flake and 5 indicating the highest flake. As can be seen, the best dry donning performance was achieved at 1.5% (wt/wt) methacrylic acid level (MAA), as exhibited with Sample 23. Overall, the best physical properties exhibited for both aged and unaged, were observed with Sample 23.










TABLE 27








Coating












Sample 19
Sample 23
Sample 24
Sample 25














Coating
3.5
3.5
3.5
3.5


TSC (%)






Cymel
3.5
3.5
3.5
3.5


373 (%)






Aluminum
  1.5%
  1.5%
  1.5%
  1.5%


sulphate






Priming












Coefficient of Friction (COF)
















Donning
Donning
Donning
Donning
Donning
Donning
Donning
Donning



Palm
Finger
Palm
Finger
Palm
Finger
Palm
Finger



























Stat-
Kinet-
Stat-
Kinet-
Stat-
Kinet-
Stat-
Kinet-
Stat-
Kinet-
Stat-
Kinet-
Stat-
Kinet-
Stat-
Kinet-


Sample
ic
ic
ic
ic
ic
ic
ic
ic
ic
ic
ic
ic
ic
ic
ic
ic


Average
0.16
0.17
0.34
0.33
0.13
0.14
0.03
0.04
0.08
0.08
0.02
0.04
0.18
0.21
0.08
0.09


Std Dev
0.04
0.04
0.33
0.33
0.00
0.00
0.00
0.00
0.03
0.02
0.00
0.03
0.03
0.07
0.04
0.04










Physical Properties of Sterile Gloves (Unaged)











Tensile
289
274
280
268


Strength






(kg/cm2)






Stress
11
12
11
12


300%






(kg/cm2)






Stress
25
24
24
29


500%






(kg/cm2)






Ultimate
924
924
943
924


Elongation






%











Physical Properties of Sterile Gloves (Aged)











Tensile
287
280
302
277


Strength






(kg/cm2)






Stress
12
11
12
12


300%






(kg/cm2)






Stress
29
24
27
26


500%






(kg/cm2)






Ultimate
943
943
924
884


Elongation






%






Powder
1.82
1.46
1.42
1.40


content






(mg/glove)











Observations











Coating
No
No
Yes
Yes


sedimen-






tation






Internal
Slightly
No
Yes
Yes


tacky






during






processing






Dry
Fair
Best among samples
Fair
Fair


donning






*Degree
2
2
2
2


of Coating






Flaking













In some embodiments, the emulsion coatings may be applied to an article, such as latex or rubber gloves. The article may be formed by any methods known in the art, such as those described in U.S. Pat. No. 4,548,844, U.S. Pat. No. 6,673,404, U.S. Pat. No. 6,828,387, and U.S. Pat. No. 8,110,266, each of which is incorporated by reference in its entirety. In some embodiments wherein the article is a glove, the glove may be formed by dipping processes known in the art. During the manufacture of those gloves, a hand mold (also called a “glove mold” or mandrel) may be used for dipping. The mandrel may be a porcelain mold in the shape of a hand. As referenced above and in additional data herein, the “formed level” refers to the article production process in which the mold first has a release coating directly applied to the mold followed by dipping in latex to form the glove. Then a coating, such as the solvent-based, water-based, or emulsion copolymers discussed herein, may be applied on the latex, such as on the donning side of the glove.


In some embodiments wherein a glove is formed about a mold, the mold may first be cleaned with a material, such as citric acid. Then the mold may be dipped into a coagulant material, dried, and then further dipped into a liquid rubber material such as latex. The rubber coated mold may then be dried and then dipped into a leaching solution. The leaching solution may allow coagulant salts to dissolve and/or be washed away.


The glove may be molded with the patient side in contact with the mold and the donning side on the exterior. When the glove is removed from the mold, the glove is commonly inverted such that the donning side is then on the interior of the glove and the patient side is on the exterior.


In some embodiments, after the dipping of the rubber coated mold in a leaching solution, the rubber coated mold may be dried, for example, by air drying or by use of a dryer, and then subjected to an acid priming process. The acid priming process may comprise the application of acid to either side of the glove, preferably the side in which a coating is applied. The acid priming process may comprise dipping the rubber coated mold (i.e., the glove on the mold) into a liquid composition comprising an acid, such as sulfuric acid or hydrochloric acid. The acid may then be diluted, and in some embodiments, the liquid composition comprising an acid may comprise acid solutions up to 20%, more preferably up to about 5%, and still more preferably from 1% to about 4.5% (w/w). In other embodiments, it is preferable to provide an acid solution comprising 1% to about 3% by weight. In another embodiment, the glove may be dipped into a liquid composition comprising a solution of aluminum sulphate as the acid priming solution. The liquid composition in this embodiment can comprise aluminum sulphate in amounts of up to about 10% (w/w), more preferably up to about 7%, and still more preferably from 0.5% to about 3%. In other embodiments, it is preferable to provide amounts of aluminum sulphate from 0.5% to about 1.5%.


After the dipping of the rubber coated mold in the liquid composition, the rubber coated mold may be dipped or rinsed in a bath, such as an alkaline solution or preferably an aqueous solution. Unlike other processes in the art, the dipping or rinsing of the rubber coated mold into an alkaline solution, such as a solution comprising ammonia or ammonium hydroxide, is not required with the processes disclosed herein. This provides a benefit over other coating processes in the art. In processes utilizing an alkaline solution, an additional dipping tank is typically required to facilitate the alkaline dipping, and it requires additional efforts to control the required concentration pH of the alkaline solution during an actual continuous dipping process. The process disclosed herein, which can be accomplished with rinsing in an aqueous bath, is more cost efficient while providing an adequate rinsing of any excessive acid on a rubber coated mold.


The coating of the formed article, such as a glove, may comprise the application of a coating material, such as a formulation comprising the copolymer emulsion described above. In some embodiments, the temperature of the glove mold may be adjusted prior to the application of the coating material. In some embodiments, the glove mold is brought to a temperature of preferably about 20° C. to 60° C., more preferably about 30° C. to 50° C., and most preferably about 35° C. to 45° C. In some embodiments, the glove mold is brought to these temperatures immediately prior to the application of the coating material. In some embodiments, the coating material is applied to the glove on the glove mold by dipping the mold, with the glove on it, into the coating material. Alternatively, the coating material may be sprayed onto the glove on the glove mold. In some embodiments, the glove is dipped into the coating material for a time period. In some embodiments, the time period is preferably about 2 to 120 seconds, more preferably about 5 to 90 seconds, even more preferably about 10 seconds to 60 seconds, and most preferably about 15 to 25 seconds. In some embodiments, the coating material is maintained at a temperature range during the application, preferably between about 15° C. to 75° C., more preferably between about 20° C. to 60° C., even more preferably between about 25° C. to 50° C., and most preferably between about 30° C. to 40° C. Since the glove on the mold is heated prior to dipping or coating with the polymer emulsion, the glove temperature can become quite hot. This may cause the temperature of the coating composition to rise, thus, it may be necessary to chill the coating composition during dipping in order to prevent or minimize increasing the temperature of the coating composition.


After the application of the coating material, the emulsion coated glove may be cured, for example, by heating in an oven. In some embodiments, the curing occurs with preset heating parameters for a time period, preferably about 5 minutes to 120 minutes, more preferably about 10 minutes to 90 minutes, even more preferably about 15 to 60 minutes, and most preferably about 20 to 40 minutes. In some embodiments, the air flow in the oven is controlled, for example, to remove excessive moisture. Unlike known processes in the art, wherein the curing step is required to occur at lower temperatures, the process disclosed herein may comprise a curing step that occurs at higher temperatures. This provides an advantage, as the use of higher temperatures in the curing process may allow for the use of a shorter curing time. In addition, in some embodiments, the use of higher temperatures allows for improved and optimal cross-linking for both the article, such as a latex glove, and the coating material, which can provide desired physical properties and adhesion. In some embodiments, the curing process occurs at a temperature of between about 100° C. to 160° C., more preferably about 120° C. to 150° C., and most preferably about 135° C. to 145° C. In preferred embodiments, the curing process occurs at a temperature of about 135° C. to 145° C., and the curing time is about 20 to 40 minutes. This is an improvement over other processes in the art, wherein the curing time can be much longer, typically two or more times as long.


Following the curing step, the emulsion coated gloves may be further treated by any methods known in the art. For example, in some embodiments, the emulsion coated gloves may be subjected to a post-cure leaching process wherein the mold containing the emulsion coated glove is dipped in a leaching solution and rinsed. In some embodiments, the emulsion coated glove may then be dipped in a further liquid, such as a slurry comprising silicone and/or calcium carbonate. In some processes, chlorination may be performed in which the coated glove may be washed in chlorinated water. In order to chlorinate the donning side, which may typically be on the interior of the glove after it is removed from the mold, a glove turning process is required in which the glove is turned inside out such that the donning side is on the exterior and the patient side is on the interior. One or both of the donning side and the patient side may be chlorinated. The chlorination step may remove any dip release coating, such as calcium carbonate, that may have been applied prior to molding the latex in order to assist with removing the glove from the mold. In addition, the chlorination process may create a roughened surface on the glove and/or harden the latex in some instances. The glove may be subjected to further treatment, such as a lubricating agent. Examples of lubricating agents include silicone and ammonium salts of alkyl phosphate and cetylpyridium chloride (CPC),


In one exemplary embodiment, a glove may be prepared by performing the following steps, in which some embodiments the steps may be performed in the exemplary order provided:

    • Cleaning the glove mold with a suitable acid (followed by optional rinsing);
    • Coagulent dipping (e.g., calcium nitrate), at a temperature of about 52 to about 59° C.;
    • Oven drying (with hot air) at a temperature of about 133° C. to about 205° C.;
    • Latex dipping;
    • Oven drying (with hot air) at a temperature of about 139° C. to about 163° C.;
    • Hot pre-cure leaching at a temperature of about 55° C. to about 73° C.;
    • Air drying;
    • Acid priming;
    • Water rinsing;
    • Copolymer emulsion coating dipping;
    • Curing at 100° C. to 160° C.;
    • Post-cure leaching at 51° C. to 75° C. and rinse;
    • Slurry dipping with calcium carbonate or silicone (0.2 to 0.8%);
    • Final drying at about 108° C. to 118° C.;
    • Glove stripping (removing the glove from the mold);
    • Dry turning;
    • Chlorination (e.g., about 100 ppm chlorine strength);
    • Lubrication using a suitable lubricant, such as silicone ammonium salt of alkyl phosphate and cetylpyridium chloride (CPC);
    • First drying;
    • Wet turning; and
    • Final drying.


The foregoing method describes an exemplary embodiment, and one of ordinary skill in the art would appreciate that some steps may be omitted and/or additional and/or alternative steps may be employed in alternative embodiments. By way of example, and without limitation, after cleaning the glove mold with acid and rinsing, the mold also may be dipped into an alkaline bath to neutralize the acid and then rinsed with water. In some embodiments, the glove mold may be brushed to ensure a smooth surface on the glove mold. In addition, quality testing may be performed on a manufactured glove to detect potential defects, such as air testing (in which the glove is inflated with air) and/or water testing (in which the glove is filled with water).


The amount of the coating applied to a substrate, such as a glove, may be varied depending upon the characteristics of the substrate, the characteristics desired to be imparted to the substrate, and the particular coating employed. In some embodiments, it may be desired to apply the least amount of coating necessary to obtain the desired result. In some embodiments, the applied coating weights may, depending on the coating and the intended use, range from about 0.1 to about 100 g/m2. For some pressure sensitive embodiments, the amount may be in the range of about 15 g/m2 to about 45 g/m2 in some embodiments. Other amounts of coating may be appropriate depending upon the particular process and desired characteristics of the article being manufactured.


As set forth in the following table, additional data was collected for certain samples as applied during a glove manufacturing process. As with the previous data, this data also shows that emulsions as disclosed herein generally provide improved characteristics as compared with water-based coatings. These emulsion coatings also provide environmental advantages over solvent-based coatings.
















TABLE 28












Gloves Coating

COF (Dry)




















Condition
Gloves Coating
Chlo/Lub on
Chlo/Lub on



Polymer
Monomer
Cymel 373
Carbodilite
Formed
Condition
donning side
patient side

















Sample
Base
Components
(%)
(%)
level
Chlorinated level
Static
Kinetic
Static
Kinetic





















Sample
Emulsion
75
HEMA
2

Not tacky,
Coating not flake
0.22
0.11
0.32
0.18


19

11
EHA


easy to strip
off






(Plate

11
MMA
5

Not tacky,
Coating not flake
0.17
0.06
0.20
0.09


Dipping)

3
MAA


easy to strip
off





















(without


8

Not tacky,
Minor coating
0.13
0.06
0.17
0.04


acid




easy to strip,
flake off






priming)



2
Not tacky,
Tacky. Coating not
0.64
0.29
0.52
0.13







easy to strip
flake off










5
Not tacky,
Tacky. Coating not
1.13
0.61
0.91
0.37







easy to strip
flake off










8
Not tacky,
Tacky. Coating not
0.73
0.28
1.15
0.44







easy to strip
flake off






















Sample
Emulsion
75
HEMA
5

Not tacky,
Coating flake off
0.33
0.16
0.17
0.16


19

11
EHA
(w/o acid)

easy to strip







(Mold

11
MMA
5

Not tacky,
Coating flake off
0.23
0.08
0.04
0.05


Dipping)

3
MAA
(with acid)

easy to strip



















Sample
Water
97
HEMA
2

Tacky
Not able to proceed with chlorination

















5

3
MA
5

Not tacky,
Coating not flake
0.83
0.37
Badly tacky
















(Mold




difficult to strip
off


after


Dipping)








chlorination














Sample
Emulsion
75
HEMA
2

Tacky
Not able to proceed with chlorination


















17

22
LM
5

Not tacky,
Coating not flake
0.29
0.20
0.32
0.32


(Molding

3
MAA


difficult to strip
off





















Dipping)


8

Not tacky,
Coating not flake
0.31
0.22
0.12
0.08





(w/o acid)

OK to strip
off









8

Not tacky,
Coating not flake


0.11
0.12





(with acid)

OK to strip
off













Physical properties were also obtained for Sample 19 as applied to a film using mold dipping and using 5% Cymel 373 (which is a water-soluble melamine-formaldehyde resin crosslinker that is available from Cytec Industries of Woodland Park, N.J.), as shown below in Tables 29 and 30.











TABLE 29








Chlo/Lub on Donning Side
Chlo/Lub on Patient Side











Process
Without Acid
With Acid
Without Acid
With Acid










Unaged














Tensile Strength
283
250
252
280


(kg/cm2)






Modulus 300%
17
14
15
16


(kg/cm2)






Modulus 500%
47
31
31
36


(kg/cm2)






U. Elongation (%)
845
924
806
845










Aged 70 C. @ 7 days














Tensile Strength
227
131
275
212


(kg/cm2)






Modulus 300%
10
7
12
8


(kg/cm2)






Modulus 500%
18
13
24
17


(kg/cm2)






U. Elongation (%)
1022
1002
924
1042
















TABLE 30







Sample 19











Reduced



Hardness
Modulus


Crosslinker
(GPa)
(GPa)












Polycup—2%
0.099
2.712


Carbodilite E02—2%
0.077
2.097


Carbodilite E02—5%
0.064
1.932


Carbodilite E02— 8%
0.081
2.954


Cymel 373—2%
0.074
2.133


Cymel 373—5%
0.080
2.349


Cymel 373—8%
0.075
2.199









Scanning electron microscope images and contact angle data were also obtained for Sample 19 (emulsion) applied to a glove on the donning side only by using mold dipping with 5% Cymel 373 as a crosslinker. In particular, FIG. 8A shows an image of the patient side of a glove without lubrication, without acid priming, and with low chlorine applied during chlorination, and FIG. 9A provides a graph of contact angle data glove. FIG. 8B provides an image of a glove with the same parameters except using acid priming, and FIG. 9B shows provides contact angle data for the glove of FIG. 8B. FIGS. 10A and 11A provide an image and contact angle data, respectively, of the donning side of the glove of FIGS. 8A and 9A after turning the glove but with high chorine applied to the donning side during chlorination. Similarly, FIGS. 10B and 11B provide, respectively an image and contact angle data, respectively, for the donning side of the glove of FIGS. 8B and 9B after turning the glove and applying high chorine to the donning side.


The foregoing contact angle data was collected by casting the film on a hard, nonporous surface and then placing a drop of water on the cast film. The water droplet's contact angle was then measured, which is the interior arc from the surface of the film to exterior surface of the droplet. Generally, a lower contact angle represents a greater wet-ability of the film.


Scanning electron microscope images for Sample 17 (emulsion) applied to a glove using 8% Cymel 373 and a mold dipping process are shown in FIGS. 12A (showing the patient side using low chlorine, no lubrication, no glove turning, and without acid priming) and 12B (showing the patient side using low chlorine, no lubrication, without glove turning, and with acid priming), and FIG. 12C (showing the donning side using high chlorine, no lubrication, without glove turning, and without acid priming). Furthermore, images for Sample 17 applied to a glove using 5% Cymel 373 and a mold dipping process are shown in FIG. 13A (showing the patient side using low chlorine, no lubrication, no glove turning, and without acid priming) and FIG. 13B (showing the donning side using high chlorine, no lubrication, with glove turning, and without acid priming). Finally, images for Sample 5 (water-based) applied to a glove using 5% Cymel 373 and a mold dipping process are shown in FIG. 14 (showing the patient side using low chlorine, no lubrication, no glove turning, and without acid priming). These figures again show comparable, if not improved, performance of the emulsions disclosed herein, which provide a generally smooth application with minimal cracking, as compared with water-based coatings.


In some applications of coatings to articles, undesirable flaking of the coating may occur. In some embodiments, flaking may be decreased by including a “softer” monomer in the monomer feed and/or the pre-emulsion feed, wherein the softer monomer has a relatively lower glass transition temperature (“Tg”) than at least one other monomer present in the feed. For instance, a monomer feed may include one or more monomers having a relatively higher glass transition temperature (“Tg”) and one or more other monomers having a relatively lower Tg. By way of example, a monomer feed in some embodiments may comprise 2-hydroxyethyl methacrylate, which has a Tg in the range of about 50° C. to about 80° C., and the “softer” 4-hydroxybutyl acrylate, which has a Tg of about −30°. The inclusion of the “softer” monomer, such as 4-hydroxybutyl acrylate, may help reduce flaking in some coatings. In addition or alternatively, a pre-emulsion feed may include a monomer having a lower Tg than one or more other monomers in an effort to “soften” the coating and potentially reducing flaking. For instance, a pre-emulsion feed may include one or more monomers having a relatively higher glass transition temperature (“Tg”) and one or more other monomers having a relatively lower Tg. By way of example, a pre-emulsion feed in some embodiments may comprise 2-ethylhexyl acrylate, which has a Tg in the range of about −50° C. The inclusion of a “softer” monomer, such as 2-ethylhexyl acrylate, may help reduce flaking in some coatings. By way of further example, a pre-emulsion feed may include methyl methacrylate, which has a Tg in the range of about 100° C., and the “softer” monomer of 2-ethylhexylacrylate, which has a Tg in the range of about −50° C. to about −70° C. The ratios of such monomers can be adjusted to obtain a desired characteristic in a coating.


Additional testing, including flaking observation, was performed on latex films coated with Sample 19. The comparative testing was done using the aforementioned control, which is a solvent-based coating known to have suitable characteristics for glove coating applications. The additional testing was performed using the following procedures:

    • 1. The Sample 19 emulsion-based copolymer was diluted with deonized (“DI”) water to 3.5-4.0% of the total solids content (“TSC”).
    • 2. 3.5-4.0% of the crosslinker Cymel 373 was added to the Sample 19 emulsion based on dry weight of the crosslinker to the dry weight of the copolymer.
    • 3. The polymer solution was brought to a temperature of about 34° C.
    • 4. The polymer solution was coated on a latex film, the latex film being heated up to a temperature of about 40-45° C. prior to the coating process and after leaching.
    • 5. After coating, the mold upon which the film was applied was rotated in the oven to ensure even coating on the film.
    • 6. The coated film was then cured at 140° C. for 30 minutes.
    • 7. The coated film was then chlorinated on the donning and/or patient side to remove any powder with a chlorine strength of about 80 ppm.


Based upon the testing procedures above, the following results were obtained, wherein the degree of coating flaking was evaluated on a scale of 1 to 5 with 1 indicating the lowest flake and 5 indicating the highest flake:










TABLE 31








Sample












Sample 19
Sample 19
Sample 19
Control





Coating
4.0
4.0
3.5
4.0


TSC (%)






Cymel
4.0
3.5
3.5
NA


373 (%)












Coefficient of Friction (COF)
















Donning
Donning
Donning
Donning
Donning
Donning
Donning
Donning



Palm
Finger
Palm
Finger
Palm
Finger
Palm
Finger


























Sample
Static
Kinetic
Static
Kinetic
Static
Kinetic
Static
Kinetic
Static
Kinetic
Static
Kinetic
Static
Kinetic
Static
Kinetic


Average
0.04
0.04
0.08
0.09
0.04
0.06
0.08
0.09
0.08
0.08
0.04
0.05
0.02
0.03
0.03
0.07


Std Dev
0.01
0.01
0.07
0.09
0.01
0.01
0.00
0.01
0.08
0.07
0.04
0.04
0.01
0.02
0.00
0.01










Physical Properties of Chlorinated Gloves (Unaged)











Tensile
280
281
273
267


Strength



























(kg/cm2)



























Stress
17
15
15
17


300%



























(kg/cm2)



























Stress
49
38
37
46


500%



























(kg/cm2)



























Ultimate
845
885
845
845























Elongation


















%























Powder Content











Powder
Not tested
1.22
1.56
0.60


Content



























(mg/film)























Observations











Coating
Fair
Fair
Good
Excellent


Evenness






*Degree
4
4
3
1























of Coating


















Flaking









Upon review of the samples tested above, reduced flaking and an improved coating evenness were observed with a coating having a lower total solids content/concentration and decreased Cymel content. In addition, increasing the temperatures of the coating and the film and rotating the mold under a constant temperature were also observed to improve coating evenness and to reduce flaking. FIG. 15A shows a scanning electron microscope image of a film coated with Sample 19 having a total solids content of 3.5% and 3.5% Cymel, and FIG. 15B shows a scanning electron microscope image of a film coated with Sample 19 having a total solids content of 4% and 3.5% Cymel. FIG. 15C shows a scanning electron microscope image of a film coated with the control sample. Each of these images is of the patient side of the film, and the testing employed low chlorination, no lubrication, and no turning process during the coating process.


The following Table shows the results of additional experiments performed on polymeric emulsions containing HEMA/EHA/MMA/MAA (75/11/11/3), for Samples H-J, but using a glove that is pretreated prior to coating with the emulsion. In these examples, the pretreatment comprised an acid priming step comprising either an HCl priming step or an aluminum sulphate priming step where the glove was dipped into the respective solution prior to coating with the polymer emulsion and dried. The additional testing was performed using the following procedures:

    • 1. The Sample 19 emulsion-based copolymer was diluted with deonized (“DI”) water to 3.5-4.0% of the total solids content (“TSC”).
    • 2. About 3.5% of the crosslinker Cymel 373 was added to the Sample 19 emulsion based on dry weight of the crosslinker to the dry weight of the copolymer.
    • 3. The polymer solution was chilled and maintained at about 34° C.
    • 4. Prior to the application of the polymer coating, the latex film, i.e., glove sample, was either dipped in an HCl acid priming solution or in an AluminiumSulphate solution or none at all, as indicated in the Table below, and dried in the oven at 100° C. to 150° C. for 1 to 2 minutes. Sample H was pretreated with aluminum sulphate, Sample I was pretreated with an HCl priming solution and Sample J was not pretreated.
    • 5. The polymer solution was then coated onto the latex film using a dipping process, the latex film being heated up to a temperature of about 40° C.-45° C. prior to the coating process.
    • 6. After coating, the mold upon which the film was applied was rotated in the oven to ensure even coating on the film.
    • 7. The coated film was then cured at 140° C. for 30 minutes.
    • 8. The coated film was then chlorinated on the donning and/or patient side to remove any powder with a chlorine strength of about 80 ppm.
    • 9. The gloves were then tested as indicated in the table below. The aged samples were aged using a heat accelerated aging process, as specified in ASTM D-412 method, in which the aged gloves were placed in an oven for 7 days at about 70° C. The unaged samples were tested without performing such a heat treatment aging process.


The following test results were obtained, as indicated below in Table 32.














TABLE 32









Coating Type
H
I
J







Type of
Aluminum
HCl
None



Pretreatment
Sulphate





Concentration of
3
4.5
N/A



Pretreatment (%)
















Physical Properties of Sterile Gloves (Unaged)
















Tensile Strength
289
250
283



(kg/cm2)






Stress 300%
11
14
17



(kg/cm2)






Stress 500%
25
31
47



(kg/cm2)






Ultimate
924
924
845



Elongation %













Physical Properties of Sterile Gloves (Aged)
















Tensile Strength
287
131
227



(kg/cm2)






Stress 300%
12
7
10



(kg/cm2)






Stress 500%
29
13
18



(kg/cm2)






Ultimate
943
1002
1022



Elongation %










From the above results in Table 32, both Samples H and I exhibited satisfactory results for unaged gloves, with Sample H (aluminum sulphate pretreated glove) exhibiting slightly better tensile strength results. However, the gloves treated with aluminum sulphate, Sample H, maintained better tensile strength values upon aging than the acid priming treated gloves (Sample I) and than the sample that was not pretreated (Sample J). According to the ASTM D-412 standard, the aged tensile strength requirement for a glove is at least 185 kg/cm2. Thus, the aged gloves pretreated with HCl were below this value. The aged glove pretreated with aluminum sulphate (Sample H) generally exhibited better values overall having higher tensile strength values and stress values.


In Table 33 below, additional experiments were performed on Sample 19, with the gloves pretreated prior to coating with the emulsion in an aluminum sulphate priming step. These samples are designated as Samples K-L. The additional testing was performed using the following procedures:

    • 1. The emulsion-based copolymer samples were diluted with deonized (“DI”) water to about 3.5% of the total solids content (“TSC”). Both Samples K and L contain a HEMA/EHA/MMA/MAA concentration of 75/11/11/3, however, the difference between these two samples is how the emulsion-based copolymer coatings were stabilized. Sample K utilized KOH to stabilize the coating, while Sample 0 utilized ammonium hydroxide to stabilize the coating.
    • 2. About 3.5% of the crosslinker Cymel 373 was added to each of Samples K-L based on dry weight of the crosslinker to the dry weight of the copolymer.
    • 3. The polymer solution was chilled and maintained at about 34° C.
    • 4. Prior to the application of the polymer coating, the latex film, i.e., glove sample, was dipped in an AluminiumSulphate solution, as indicated in the Table below, and dried in the oven at 100° C. to 150° C. for 1 to 2 minutes.
    • 5. The polymer solution was then coated onto the latex film, the latex film being heated up to a temperature of about 40° C.-45° C. prior to the coating process.
    • 6. After coating, the mold upon which the film was applied was rotated in the oven to ensure even coating on the film.
    • 7. The coated film was then cured at 140° C. for 30 minutes.
    • 8. The coated film was then chlorinated on the donning and/or patient side to remove any powder with a chlorine strength of about 80 ppm.











TABLE 33







Coating
Sample K
Sample L





HEMA
75
75


EHA
11
11


MMA
11
11


MAA
3
3


Coating TSC (%)
3.5
3.5


Cymel 373 (%)
3.5
3.5


Priming Agent
AluminiumSulphate
AluminiumSulphate


Primer conc (%)
1.5
1.5










Physical Properties of Sterile Gloves(Unaged)












Tensile Strength
289
296


(kg/cm2)




Stress 300 % ( kg/cm2)
11
11


Stress 500 % ( kg/cm2)
25
30


Ultimate Elongation %
924
884










Physical Properties of Sterile Gloves(Aged)












Tensile Strength
287
290


(kg/cm2)




Stress 300% ( kg/cm2)
12
13


Stress 500% ( kg/cm2)
29
25


Ultimate Elongation %
943
924


Powder content
1.82
1.90


(mg/glove)




Observations




Coating sedimentation
No
No


Internal tacky during
Slightly
Yes


processing




Dry donning
Fair
Fair









Overall, both Samples K and L had similar results, both having favorable results for both the aged and unaged gloves, but with fair donnability. The one difference being observed during processing, where Sample K had slight tackiness observed whereas Sample L had a greater amount of tackiness observed.


The composition and process disclosed herein can further include articles that have been coated with a polymeric emulsion of the type described herein and methods for making such articles. In some instances, such articles include natural rubber, synthetic rubber, or latex, such as, without limitation, surgical gloves, physician examining gloves, industrial gloves, prophylactics, catheters, balloons, tubing, sheeting, other elastomeric articles, and similar articles. As indicated above, rubber or latex gloves may require the ability of donning, i.e., the ability to slide a glove on and off the surface of the skin, with minimal friction. As such, a flexible, non-tacky glove coating applied to the interior of a glove may be useful to allow donning, wet or dry, of the glove with minimal blocking and without undue friction or clinging. The foregoing examples indicate the suitability of the emulsions disclosed herein for these purposes.


In addition, as demonstrated by the test results presented herein, certain emulsions disclosed herein provide reduced static and kinetic dry coefficients of friction as compared with water soluble coatings. Such reduced coefficients of friction are desirable in many applications, such as for surgical and examination gloves that require donning capabilities. In addition, the emulsion examples shown herein provide reduced tackiness and/or stickiness, particularly as compared with water-based coatings. Reduced tackiness and stickiness are also desirable features for glove applications. For reference, tackiness may be used to reference the adherence of an article to itself or an identical article, whereas stickiness may be used to reference the adherence of an article to other material. These features offered by embodiments disclosed herein may beneficially alleviate the need for using powder or other lubricating materials with the gloves.


By way of further examples, and without limitation, the emulsion coating prepared in accordance with the methods disclosed herein may be suitable for the preparation of, and use, as elastomeric films, pressure sensitive adhesives, coatings, hydrogels, and compositions for topical applications to the skin such as, creams, lotions, ointments, gels, aerosols, sprays, cosmetic compositions, deodorants, and insect repellants. Such uses may include medical elastomeric films, bandages, tapes, wound care dressings, surgical drapes, ostomy site dressings, as a carrier for transdermal drug delivery systems, and as a carrier for mucus membrane drug delivery systems.


One of ordinary skill in the art will readily appreciate that the emulsion coatings disclosed herein can be applied to articles by any conventional method or process. These application methods may include, for example, dipping, die coating, roll coating, reverse roll coating, gravure coating, reverse gravure coating, offset gravure coating, Mayer rod or wire wound rod coating, spraying, brushing, and the like. The polymers and copolymers disclosed herein may be heated or cooled to facilitate the coating process and to alter the depth or penetration into the substrate.


These and other modifications and variations may be practiced by those of ordinary skill in the art without departing from the spirit and scope of the composition and process disclosed herein, which is more particularly set forth in the appended claims. In addition, it should be understood that aspects of the various embodiments may be interchanged in whole or in part. Furthermore, those of ordinary skill in the art will appreciate that the foregoing description is by way of example only, and it is not intended to limit the disclosure herein as further described in such appended claims. Therefore, the spirit and scope of the appended claims should not be limited to the exemplary description of the versions contained herein.

Claims
  • 1. A method for the preparation of a copolymer emulsion comprising: combining at least one water soluble monomer and at least one water insoluble monomer to form a monomer mixture, wherein the monomer mixture comprises, as measured as the weight percentage of the total monomer mixture weight, at least 50% water soluble monomer and at least 10% water insoluble monomer, and copolymerizing the monomer mixture to form a copolymer emulsion.
  • 2. The method of claim 1 wherein the water soluble monomer comprises from about 50% to about 97% of the total monomer weight.
  • 3. The method of claim 1 wherein the water soluble monomer comprises at least 60% of the total monomer weight.
  • 4. The method of claim 1 wherein the water soluble monomer comprises at least 75% of the total monomer weight.
  • 5. The method of claim 1 wherein the water insoluble monomer comprises at least 15% of the total monomer weight.
  • 6. The method of claim 1 wherein the water insoluble monomer comprises at least 25% of the total monomer weight.
  • 7. The method of claim 1 wherein the water soluble monomer is selected from the group consisting of 2-hydroxyethyl methacrylate and 4-hydroxybutyl acrylate.
  • 8. (canceled)
  • 9. The method of claim 7 wherein the water soluble monomer comprises 2-hydroxyethyl methacrylate.
  • 10. The method of claim 9 wherein the water soluble monomer comprises 2-hydroxyethyl methacrylate having a purity level of about 97%.
  • 11. The method of claim 1 wherein the water insoluble monomer comprises one or more water insoluble monomers selected from the group consisting of methyl acrylate, ethyl acrylate, butyl acrylate, propyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, lauryl methacrylate, 2-ethylhexyl methacrylate, trifluoroethyl methacrylate, isooctyl acrylate, isodecyl acrylate, dimethylaminoethyl methacrylate.
  • 12. The method of claim 1 wherein the water insoluble monomer comprises a mixture of at least two or more insoluble monomers selected from the group consisting of methyl acrylate, ethyl acrylate, butyl acrylate, propyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, lauryl methacrylate, 2-ethylhexyl methacrylate, trifluoroethyl methacrylate, isooctyl acrylate, isodecyl acrylate, dimethylaminoethyl methacrylate.
  • 13. The method of claim 11 wherein the water insoluble monomer comprises 2-ethylhexyl acrylate.
  • 14. The method of claim 9 wherein the water insoluble monomer comprises 2-ethylhexyl acrylate.
  • 15. The method of claim 11 wherein the water insoluble monomer comprises 2-ethyl hexyl acrylate and 2-ethylhexyl methacrylate.
  • 16. The method of claim 11 wherein the water insoluble monomer comprises 2-ethylhexyl acrylate and lauryl methacrylate.
  • 17. The method of claim 11 wherein the water insoluble monomer comprises 2-ethyl hexyl acrylate and methyl methacrylate.
  • 18. The method of claim 11 wherein the water insoluble monomer consists of 2-ethylhexyl acrylate.
  • 19. The method of claim 1 wherein the method further includes adding methacrylic acid to the monomer mixture.
  • 20. The method of claim 19 wherein the methacrylic acid is about 1% to 5% of the total weight of monomers used in the method.
  • 21. The method of claim 19 wherein the methacrylic acid is about 3% of the total weight of monomers used in the method.
  • 22. The method of claim 1 wherein the method further comprises introducing a crosslinker into the copolymer emulsion.
  • 23. The method of claim 22 wherein the crosslinker is selected from the group consisting of formaldehydes, melamine formaldehydes, metal salts, aziridines, isocyanates, dichromates.
  • 24. The method of claim 22 wherein the crosslinker comprises a polyfunctional aziridine liquid.
  • 25. The method of claim 22 wherein the crosslinker comprises a carbodiimide compound.
  • 26. The method of claim 22 wherein the crosslinker comprises a melamine formaldehyde.
  • 27. The method of claim 22 wherein the crosslinker comprises a polyamide-epichlorohydrin-type resin.
  • 28. The method of claim 1 wherein the method further comprises introducing an activator to the monomer mixture.
  • 29. The method of claim 1 further comprising introducing a surfactant to the monomer mixture.
  • 30. The method of claim 29 wherein the surfactant is sodium lauryl ether sulfate.
  • 31. The method of claim 1 further comprising introducing an initiator to the monomer mixture.
  • 32. The method of claim 31 wherein the initiator is selected from the group consisting of ammonium persulfate, potassium persulfate, sodium persulfate, hydrogen peroxide, tert-butyl hydroperoxide, azo compounds, sodium persulfate with sodium metabisulfite, hydrogen peroxide with ferrous ion, sulfite ion, bisulfite ion or ascorbic acid, hydroperoxides with sulfoxylates, and tert-butyl hydroperoxide with sodium formaldehyde sulfoxylate.
  • 33. The method of claim 32 wherein the initiator is tert-butyl hydroperoxide.
  • 34. The method of claim 1 wherein the method further comprises introducing a stabilizer during to the monomer mixture.
  • 35. The method of claim 34 wherein the stabilizer is polyvinyl alcohol.
  • 36. The method of claim 1 further comprising introducing a surfactant, an initiator, and a stabilizer to the monomer mixture.
  • 37. The method of claim 36 wherein the surfactant, initiator, and stabilizer are introduced into the monomer mixture by first combining the surfactant, initiator, and stabilizer with the water insoluble monomer.
  • 38. The method of claim 1 wherein the monomer mixture is maintained at a temperature between about 50° C. and about 60° C.
  • 39. The method of claim 1 wherein the temperature of the monomer mixture is maintained at a temperature of about 55° C.
  • 40. The method of claim 1 wherein the monomer mixture is maintained at a pH at or above about 6.0.
  • 41. The method of claim 1 wherein the monomer mixture is maintained at a pH between about 6.0 and about 7.0
  • 42. The method of claim 1 wherein the method is conducted by concurrently combining the soluble monomer and the insoluble monomer.
  • 43. A method for the preparation of a copolymer emulsion comprising: concurrently combining a monomer feed and a pre-emulsion feed to form an emulsion, wherein the monomer feed comprises at least 50% by weight water soluble monomer based on the total monomer weight of the monomer feed and the pre-emulsion feed, and the pre-emulsion feed comprises at least 10% by weight water insoluble monomer based on the total monomer weight of the monomer feed and the pre-emulsion feed.
  • 44. The method of claim 43 wherein the monomer feed further comprises deionized water and the pre-emulsion feed further comprises deionized water, a surfactant, and a stabilizer.
  • 45. The method of claim 44 wherein the surfactant is sodium lauryl ether sulfate and the stabilizer is polyvinyl alcohol.
  • 46. The method of claim 43 wherein the water soluble monomer of the monomer feed comprises 2-hyroxyexthyl methacrylate.
  • 47. The method of claim 43 wherein the water soluble monomer of the monomer feed consists of 2-hyroxyexthyl methacrylate.
  • 48. The method of claim 45 wherein the water soluble monomer of the monomer feed consists of 2-hyroxyexthyl methacrylate.
  • 49. The method of claim 43 wherein the water insoluble monomer of the pre-emulsion feed comprises methyl acrylate, ethyl acrylate, butyl acrylate, propyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, lauryl methacrylate, 2-ethylhexyl methacrylate, trifluoroethyl methacrylate, isooctyl acrylate, isodecyl acrylate, or dimethylaminoethyl methacrylate.
  • 50. The method of claim 43 wherein the water insoluble monomer of the pre-emulsion feed comprises 2-ethylhexyl acrylate.
  • 51. The method of claim 48 wherein the water insoluble monomer of the pre-emulsion feed comprises 2-ethylhexyl acrylate.
  • 52. The method of claim 48 wherein the pre-emulsion feed comprises 2-ethylhexyl acrylate and methacrylic acid.
  • 53. The method of claim 52 wherein the methacrylic acid is about 3% of the total weight of monomers used in the method.
  • 54. The method of claim 43 wherein the method comprises the further steps of: introducing into a reactor and agitating an initial charge comprising a stabilizer, a surfactant, an initiator, and deionized water;maintaining contents in the reactor at a temperature of about 55° C. and a pH above about 6.0;introducing about 6% of the monomer feed and about 6% of the pre-emulsion feed into the reactor and maintaining the temperature and pH in the reactor for about ten minutes;introducing an activator feed into the reactor at a rate such that the contents of the activator feed will be exhausted concurrently with or after the exhaustion of the monomer feed and the pre-emulsion feed, wherein the activator feed comprises deionzied water and sodium hydroxymethanesulfinate;introducing the monomer feed and the pre-emulsion feed into the reactor at a constant rate over a span of about 4.5 hours; andafter the monomer feed, pre-emulsion feed, and activator feed have been fully introduced into the reactor, introducing a feed into the reactor comprising a second initiator and maintaining the temperature and pH in the reactor for about one hour to form complete polymerization.
  • 55. The method of claim 54 wherein the monomer feed comprises 2-hyroxyexthyl methacrylate, the surfactant is sodium lauryl ether sulfate, the stabilizer is polyvinyl alcohol, and the initiator is tert-butyl hydroxide.
  • 56. The method of claim 55 wherein the initiator further comprises biocide.
  • 57. The method of claim 55 wherein the pre-emulsion feed comprises the pre-emulsion feed comprises 2-ethylhexyl acrylate and methacrylic acid.
  • 58. The method of claim 55 wherein the pre-emulsion feed comprises the pre-emulsion feed comprises 2-ethylhexyl methacrylate and methacrylic acid.
  • 59. The method of claim 55 wherein the pre-emulsion feed comprises 2-ethylhexyl acrylate, methacrylic acid, and methyl methacrylate.
  • 60. The method of claim 55 further comprising the step of adding a crosslinker to the emulsion.
  • 61. The method of claim 60 wherein the crosslinker is selected from the group consisting of a polyfunctional aziridineliquid, a carbodiimide compound, a titanium acetylacetonate, a polyamide-epichlorohydrin-type resin, and a melamine-formaldehye resin.
  • 62. A method for the preparation of a copolymer emulsion comprising: concurrently combining a monomer feed and a pre-emulsion feed to form an emulsion, wherein the monomer feed comprises at least 50% by weight water soluble monomer based on the total monomer weight of the monomer feed and the pre-emulsion feed, and the pre-emulsion feed comprises at least 10% by weight water insoluble monomer based on the total monomer weight of the monomer feed and the pre-emulsion feed, wherein the method further comprises the following steps:introducing into a reactor and agitating an initial charge comprising a stabilizer, a surfactant, an initiator, and deionized water;maintaining the reactor contents at a temperature of about 55° C. and a pH above about 6.0;introducing about 6% of the monomer feed and about 6% of the pre-emulsion feed into the reactor and maintaining the temperature and pH in the reactor for about ten minutes;introducing an activator feed into the reactor at a rate such that the contents of the activator feed will be exhausted concurrently with or after the exhaustion of the monomer feed and the pre-emulsion feed, wherein the activator feed comprises deionized water and sodium hydroxymethanesulfinate;introducing the monomer feed and the pre-emulsion feed into the reactor at a constant rate over a span of about 4.5 hours;after the monomer feed, pre-emulsion feed, and activator feed have been fully introduced into the reactor, introducing a feed into the reactor comprising a second initiator and maintaining the temperature and pH in the reactor for about one hour to complete polymerization.
  • 63. The method of claim 62 wherein the monomer feed comprises 2-hyroxyexthyl methacrylate, the surfactant is sodium lauryl ether sulfate, the stabilizer is polyvinyl alcohol, and the initiator is tert-butyl hydroxide, and the pre-emulsion feed comprises 2-ethylhexyl acrylate and methacrylic acid.
  • 64. The method of claim 62 wherein the monomer feed comprises 2-hyroxyexthyl methacrylate, the surfactant is sodium lauryl ether sulfate, the stabilizer is polyvinyl alcohol, the initiator is tert-butyl hydroxide, and the pre-emulsion feed comprises 2-ethylhexyl acrylate, methacrylic acid, and methyl methacrylate.
  • 65. The method of claim 63 or 64 further comprising the step of adding a crosslinker to the emulsion, wherein the crosslinker is selected from the group consisting of a polyfunctional aziridine liquid, a carbodiimide compound, and a polyamide-epichlorohydrin-type resin.
  • 66. The method of claim 62 further comprising the step of adding a crosslinker to the emulsion, wherein the crosslinker comprises a melamine-formaldehye resin.
  • 67. A method for the preparation of a copolymer emulsion comprising: concurrently combining a monomer feed and a pre-emulsion feed to form an emulsion, wherein the monomer feed comprises about 75% by weight water soluble monomer based on the total monomer weight of the monomer feed and the pre-emulsion feed, and the pre-emulsion feed comprises at least about 3% by weight water insoluble monomer based on the total monomer weight of the monomer feed and the pre-emulsion feed.
  • 68. The method of claim 67 wherein the water soluble monomer is 2-hydroxyethyl methacrylate.
  • 69. The method of claim 67 or 68 wherein the pre-emulsion feed comprises 2-ethylhexyl acrylate, methacrylic acid, and methyl methacrylate.
  • 70. The method of claim 69 wherein the pre-emulsion feed comprises between about 9% to about 19% by weight 2-ethylhexyl acrylate, between about 1.5% to about 6% by weight methacrylic acid, and between about 3% to about 12% by weight methyl methacrylate, wherein said percentages are based on the total monomer weight of the monomer feed and the pre-emulsion feed.
  • 71. The method of claim 67 wherein 2-hydroxyethyl methacrylate comprises about 75% of the total monomer weight, 2-ethylhexyl acrylate comprises about 14% of the total monomer weight, methyl methacrylate comprises about 8% of the total monomer weight, and methacrylic acid comprises about 3% of the total monomer weight, wherein the total monomer weight indicates the total monomer weight of the monomer feed and the pre-emulsion feed.
  • 72. The method of claim 67 wherein 2-hydroxyethyl methacrylate comprises about 75% of the total monomer weight, 2-ethylhexyl acrylate comprises about 19% of the total monomer weight, methyl methacrylate comprises about 3% of the total monomer weight, and methacrylic acid comprises about 3% of the total monomer weight, wherein the total monomer weight indicates the total monomer weight of the monomer feed and the pre-emulsion feed.
  • 73. The method of claim 67 wherein 2-hydroxyethyl methacrylate comprises about 75% of the total monomer weight, 2-ethylhexyl acrylate comprises about 11.75% of the total monomer weight, methyl methacrylate comprises about 11.75% of the total monomer weight, and methacrylic acid comprises about 1.5% of the total monomer weight, wherein the total monomer weight indicates the total monomer weight of the monomer feed and the pre-emulsion feed.
  • 74. The method of claim 67 wherein 2-hydroxyethyl methacrylate comprises about 75% of the total monomer weight, 2-ethylhexyl acrylate comprises about 10.3% of the total monomer weight, methyl methacrylate comprises about 10.3% of the total monomer weight, and methacrylic acid comprises about 4.5% of the total monomer weight, wherein the total monomer weight indicates the total monomer weight of the monomer feed and the pre-emulsion feed.
  • 75. The method of claim 41 wherein 2-hydroxyethyl methacrylate comprises about 75% of the total monomer weight, 2-ethylhexyl acrylate comprises about 9.5% of the total monomer weight, methyl methacrylate comprises about 9.5% of the total monomer weight, and methacrylic acid comprises about 6% of the total monomer weight, wherein the total monomer weight indicates the total monomer weight of the monomer feed and the pre-emulsion feed.
  • 76. The method of any one of claims 67-75 wherein the method comprises the further steps of: introducing into a reactor and agitating an initial charge comprising a stabilizer, a surfactant, an initiator, and deionized water and heating to a temperature of about 55° C.;introducing a portion of the monomer feed and a portion of the pre-emulsion feed into the reactor allowing the temperature to equilibrate to about 55° C.;introducing an activator feed into the reactor at a gradual rate such that the contents of the activator feed will be exhausted approximately concurrently with or after the exhaustion of the monomer feed and the pre-emulsion feed, wherein the activator feed comprises deionzied water and sodium hydroxymethanesulfinate;introducing the monomer feed and the pre-emulsion feed into the reactor at a constant rate over a span of about 4.5 hours; andupon introduction of the activator feed, heating for about 30 minutes;after the monomer feed, pre-emulsion feed, and activator feed have been fully introduced into the reactor, introducing a feed into the reactor comprising a second initiator and maintaining the temperature and for about one hour to form complete polymerization;cooling the temperature and adding one or more biocides.
CROSS-REFERENCE TO RELATED APPLICATION

The present application claims the benefit of U.S. Provisional Application No. 61/896,733 filed Oct. 29, 2013, which is incorporated herein by reference in its entirety.

Provisional Applications (1)
Number Date Country
61896733 Oct 2013 US