1. Technical Field
The presently disclosed subject matter relates to a cutting tool, and more specifically, to a hydrophobic cutting tool having high hydrophobicity maintaining performance of a surface thereof and a method for manufacturing the same. In particular, the disclosed subject matter relates to a CMP (Chemical Mechanical Polishing) conditioner, i.e., cutting tool used in a CMP pad conditioning process and suitable for reducing accumulation of slurry thereon.
2. Description of Related Art
A cutting tool is a tool that cuts a work piece using abrasives, i.e., cutting particles. Cutting may include grinding such as a cylinder grinding, an inner surface grinding, or a plane grinding to grind a part of a work piece. For instance, grinding may include all kinds of machining works capable of being performed using abrasives such as diamond particles.
In general, a cutting tool comprises a substrate and an abrasive layer formed on a surface of the substrate, and has a structure wherein a plurality of abrasives is bonded to the surface of the abrasive layer. The bonding of the abrasives is performed by various methods including electrodeposition, sintering, and brazing. The abrasives include diamond, CBN (cubic boron nitride), alumina, and silicon carbide particles.
In a machining work using a cutting tool, a phenomenon that a surface of an abrasive holding layer is contaminated occurs, and the surface is more and more contaminated as the working time increases. Generally, that phenomenon occurs particularly in machining with cutting solutions including abrasive particles. During conditioning the CMP pad with CMP conditioner, slurry particles and residues are accumulated on the surface of the CMP conditioner, thus causing a serious contamination problem on that surface.
As well known, a CMP pad is used in global planarization of a semiconductor wafer, and a CMP conditioner is a type of cutting tool for improving performance and life span of the CMP pad by removing clogging of micro pores formed in a surface of the CMP pad.
The surface contamination of an abrasive layer of a CMP conditioner due to slurry deteriorates the efficiency of the CMP conditioning process. The deteriorated efficiency of the CMP conditioning process causes a wafer to be scratched during polishing of the wafer using a CMP pad, and lowers the production efficiency by increasing the number of particles on the wafer after the polishing.
One reason for contaminating a CMP conditioner is that a surface of an abrasive layer changes to hydrophilic as CMP pad conditioning time increases. More specifically, the CMP conditioner is easily contaminated as CMP pad conditioning time increases since the surface of the abrasive layer of the CMP conditioner changes to hydrophilic. A hydrophilic surface on the abrasive layer of the CMP conditioner cannot reject water containing slurry as the CMP pad conditioning process proceeds. Such a problem is not limited to the CMP conditioner alone but may occur in cutting tools of wide meaning comprising abrasives which are used in cutting including cutting, grinding or polishing.
The disclosed subject matter solves the aforementioned problems by providing a cutting tool, wherein deterioration of cutting performance due to agglomeration of an abrasive layer surface and contamination of the abrasive layer surface is greatly suppressed by improving hydrophobicity maintaining performance of an abrasive layer, and a manufacturing method of the cutting tool.
According to one embodiment of the disclosed subject matter, there is provided a method of manufacturing a cutting tool, which comprises the steps of forming an abrasive layer on a substrate, the abrasive layer having abrasives bonded to a surface thereof; and coating the surface of the abrasive layer with a hydrophobic material film.
In a preferred embodiment, the hydrophobic material film may be a self assembled molecular monolayer in which a tail group of molecules is hydrophobic. The coating step with the hydrophobic material film is preferably performed using a deposition process. At this time, a precursor used in the deposition process has molecules of which a tail group may be hydrophobic, preferably, a CF (fluorocarbon) group or CHF (fluorohydrocarbon) group. As the precursor, FOTS (fluorooctyltrichlorosilane), DDMS (dichlorodimethylsilane), FDA (perfluorodecanoic acid), FDTS (perfluorodecyltrichlorosilane), and OTS (octadecyltrichlorosilane) may be used. In addition, the deposition process using the precursor may include a V-SAM (vapor-SAM) process, an L-SAM (liquid-SAM) process, and a bulk polymerization process using plasma.
The step of forming an abrasive layer may be performed using an Ni electrodeposition process or a brazing process. The cutting tool is preferably a CMP conditioner. However, the cutting tool is not limited thereto, but may be a cutting tool having a hydrophobic material film formed on a surface of the abrasive layer.
According to another embodiment, there is provided a cutting tool, which comprises a substrate; an abrasive layer formed on the substrate, the abrasive layer having abrasives bonded to a surface thereof; and a hydrophobic material film formed on the surface of the abrasive layer.
Preferably, the hydrophobic material film is a self assembled molecular monolayer in which a tail group of molecules is hydrophobic. More preferably, the self assembled molecular monolayer is formed by using a CF (fluorocarbon) group or CHF (fluorohydrocarbon) group as a precursor.
According to the disclosed subject matter, accumulation of contaminants generated on an abrasive layer and performance deterioration of a cutting tool due to the accumulation of the contaminants are suppressed by a hydrophobic material film formed on a surface of the abrasive layer of the cutting tool. Particularly, contaminants on a CMP conditioner, that is a cutting tool used together with slurry in conditioning a CMP pad, may be effectively suppressed. Thus, it is possible to reduce defects such as scratches or particles generated on a processing surface of the wafer in a wafer polishing process using a CMP pad that is subjected to the CMP conditioning process.
Hereinafter, a CMP conditioner, as an example of a cutting tool according to the present invention, will be described. The following embodiments are provided only for illustrative purposes so that those skilled in the art can fully understand the spirit of the disclosed subject matter. Therefore, the disclosed subject matter is not limited to the following embodiments but may be implemented in other forms. In the drawings, the widths, lengths, thicknesses and the like of elements may be exaggerated for convenience of illustration. Like reference numerals indicate like elements throughout the specification and drawings.
As illustrated from an enlarged view of
The hydrophobic material layer 30 is a coating film, which may be formed by a deposition process or other processes, and covers both the electrodeposition material and abrasives 21. At this time, since the hydrophobic material layer 30 is a thin film with a thickness smaller than a protruding height of the abrasives 21, the performance of the CMP conditioner 1 is not deteriorated although the hydrophobic material layer 30 is formed on the abrasives 21.
Although an extremely small portion of the hydrophobic material layer 30 formed on the abrasives 21 may be eliminated if using the CMP conditioner 1 in conditioning of a CMP pad, another large portion of the surface of the abrasive layer 20, such as a surface of an electrodeposition material holding the abrasives 21, can be always maintained at its position unless the abrasives 21 are removed or worn out.
The hydrophobic material layer 30 is preferably formed as a self assembled molecular monolayer in which a tail group of molecules is hydrophobic. Hereinafter, one embodiment of the disclosed subject matter, in which a hydrophobic self assembled molecular monolayer is formed on the surface of the abrasive layer, will be described.
A technique of forming a self assembled molecular monolayer (also referred to as self assembled monolayer), which is included in a nano technology, is a technique for changing surface properties of an arbitrary material by a nano-based micro thin film. The self assembled molecular monolayer comprises a head group reacting with a surface of an arbitrary material, a body for determining a length of the arbitrary material, and a tail group for determining the surface properties of the arbitrary material. When the tail group is hydrophobic, the surface properties of the self assembled molecular monolayer become hydrophobic.
A process for vaporizing a material and depositing the vaporized material on a surface of an abrasive layer 20 of a CMP conditioner 1 is used in the present embodiment, and one exemplification of the process will be described in the following Embodiment 1.
A hydrophobic material film including a self assembled molecular monolayer is deposited on a surface of an abrasive layer of the CMP conditioner by charging a CMP conditioner, on which a hydrophobic material film was not formed, into a process chamber. At this time, trichlorosilane with formula C8H4Cl3F13Si is used as a precursor for the hydrophobic material film. The deposition conditions were, preferably: a vacuum degree of 10 to 21 torr; a process temperature of 150° C.; and a reaction time of 10 minutes.
Determining whether the hydrophobic material film is formed or not is confirmed through a contamination degree varying test and a hydrophobic (or hydrophilic) test during processing of the CMP conditioner.
A process for conditioning an actual CMP pad is performed using the CMP conditioner that was subjected to the process of Embodiment 1, and the contamination degree of the CMP conditioner is inspected at time intervals of 30 minutes during the process.
The CMP conditioning process is performed using distilled water at a slurry flow rate of preferably 200 ml/min, a rotational speed of 50 rpm of the CMP pad and conditioner and an applied pressure of 8.5 psi thereof. The foregoing conditions are conditions in which the applied pressure and the slurry flow rate was increased as compared with the actual CMP conditioning process in order to confirm the change in a contamination degree of the CMP pad for a short time. For reference, a contamination degree varying test performed under the same conditions as the CMP conditions at the actual working field is also described in Embodiment 5, which is described later.
As illustrated in
A CMP pad conditioning process is performed using a CMP conditioner that is not subjected to the process described in Embodiment 1, i.e., a CMP conditioner on which a hydrophobic material film was not formed. The contamination degree of the CMP conditioner according to Embodiment 3 is inspected at time intervals of 30 minutes during the process. Test conditions, except the CMP conditioner used in the test, are identical to those of Embodiment 2. The CMP conditioning process performed, as in Example 2, using distilled water at a preferred slurry flow rate of 200 ml/min, rotational speed of 50 rpm of the CMP pad and conditioner and applied pressure of 8.5 psi thereof.
Comparing
On the contrary, it can be seen that a water drop cannot be found on the CMP conditioner not coated with the hydrophobic material film as shown in
A CMP pad conditioning process is performed for 20 hours under the same conditions as the actual labor site using a CMP conditioner according to Embodiment 1. The contamination degree of the CMP conditioner is inspected while performing the process. As compared with Embodiment 2, the CMP conditioning process is performed at greatly reduced slurry flow rate and pressure applied to the CMP pad.
The CMP conditioning process is performed using preferably distilled water at a slurry flow rate of 60 ml/min, a rotational speed of 65 rpm of the CMP pad and conditioner, and an applied pressure of 0.63 psi thereof. The foregoing conditions are conditions in which the applied pressure was increased as compared with the actual CMP conditioning process in order to confirm the change in a contamination degree of the CMP pad for a short time.
It can be seen from the images in
A process for conditioning an actual CMP pad is performed for 20 hours using a CMP conditioner that was not subjected to the process described in Embodiment 1, i.e., a CMP conditioner on which a hydrophobic material film is not formed. Test conditions are similar to those described in Embodiment 5.
Although a coating method of a hydrophobic material film using FOTS (fluorooctyltrichlorosilane) as a precursor has been described above, DDMS (dichlorodimethylsilane), FDA (perfluorodecanoic acid), FDTS (perfluorodecyltrichlorosilane), and OTS (octadecyltrichlorosilane) may be used as the precursor. Furthermore, the deposition process using the precursor may include a V-SAM (vapor-SAM) process, an L-SAM (liquid-SAM) process, and a bulk polymerization process using plasma.
The various embodiments described above can be combined to provide further embodiments. All of the U.S. patents, U.S. patent application publications, U.S. patent application, foreign patents, foreign patent application and non-patent publications referred to in this specification and/or listed in the Application Data Sheet are incorporated herein by reference, in their entirety. Aspects of the embodiments can be modified, if necessary to employ concepts of the various patents, application and publications to provide yet further embodiments.
These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
10-2007-0140889 | Dec 2007 | KR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/KR2008/002794 | 5/19/2008 | WO | 00 | 10/26/2010 |