The invention relates to a hydrostatic displacement unit for the stepless adjustment of the displacement volume of a hydraulic machine.
Hydraulic machines with variable displacement volume or swallowing capacity comprise a hydrostatic displacement unit which, for instance, sets the angle position of a swash plate or bent axis. This displacement unit comprises two essential elements for adjusting and controlling the displacement volume of the hydraulic machine. That is firstly the control unit, which converts incoming mechanical, pneumatical, hydraulical or electrical control signals into adequate control volume flow rates for the second essential element, the servo displacement unit, which engages with a displacement element of the hydraulic machine. The control unit and the servo displacement unit are connected to each other via fluid conducting control lines, which supply, respectively discharge the volume flow rates necessary for the servo displacement unit. In order to set a certain displacement volume of the hydraulic machine against actions of internal spring forces and external operational forces, the control volume flow rates have to be supplied under adequate pressure. Such a displacement unit for hydraulic machines is disclosed, for instance, in DE 10 2004 033 376 B3.
The control signals for the control unit are converted by actuators, preferably in axial force actions on the control spool. The signals can be of various manners, for instance, mechanically, hydraulic-mechanically and as well as electrically. For the conversion of electric signals solenoids or switching magnets serves as actuators. Often the control unit is of a mechanical design with movable parts, which, for instance, are implemented as control valves comprising a control cylinder and a control spool designed to move longitudinally. The control spool usually is moved by actuators engaging with the same in axial direction. Naturally, friction is acting during the movement of these parts, which leads to a mechanical Hysteresis. Such a Hysteresis shows among others that equal control signals on the control unit causes different control volume flow rates, respectively different control pressures, depending on whether the control signal is set with an increasing signal ramp or with a decreasing signal ramp. This is due to the fact that the motion of the parts of the control unit show different directions according to the increasing or the decreasing control signal ramp. Because of this, the friction forces act in different directions and, mostly, also with different strengths.
In general, hysteresis are not wanted as these influence in a hard controllable manner the control volume flow rate to be adjusted by the control unit according to given control signals, such that no unique value can be associated to one single control signal for the displacement of a hydraulic machine, as it depends on the control ramp with which the control signal was set, respectively out of which position the control spool was displaced in the control cylinder.
For example, in control units with electric actuation of the actuator, the hysteresis of actual actuator force, respectively of the actuator position can be a counteracted in that the electrical control signal is superimposed by an oscillation signal. This leads to a vibration of the movable parts of the actuator and therewith to a permanent high frequent reversal of the friction forces, which, for instance, are superimposed to the steady direction of forces resulting from the control signal ramp. Herewith the influence of the static friction on the actuator itself as well as on the actuated parts of the control unit, respectively on the control spool, is minimized, however, eventually, inaccuracies occur in the control of the control volume flow rates and, hence, of the displacement volume of the hydraulic machine if the control spool is to be displaced with pulsing force. When applying electric control signals, dither or pulses width modulated (PWM) signals are used, whose amplitude and frequency have to be adjusted to the requirements of a concrete design of the displacement unit. Pulse width modulated signals show the disadvantages vantages that their amplitudes depend on the height of the electrical signals and, hence, are not optimal in each and every control state. Dither signals are capable to hold the amplitudes in a broad but finally also limited band in a constant and optimal manner independent from the height of the electrical signal. However, not every amplitude, which, eventually, is optimal for minimizing the Hysteresis, is also suitable for the electronic control. Furthermore, it is difficult to apply a Hysteresis-reducing oscillation signal, if the activation is non-electric, respectively hydromechanic or pneumatic-mechanic.
In JPS62218676 (A) means for the reduction of hysteresis at a control spool are described, with which pulsations in the hydraulic fluid are acting directly on a front face of a control spool via an amplifying chamber arranged externally of a control unit and without interposition of a further actuator, whose pressure serves as control signal for the control unit. The pulsations or pressure fluctuations are created in the amplifying chamber by means of a mass oscillating on a spring. This system is sophisticated as the amplifying chamber needs its own charge pump, and, furthermore, this results in increasing space requirements for the additional assembly groups.
The invention is based on the object to provide a hydrostatic displacement unit initially mentioned, with which the mechanical caused hysteresis of the displacement unit, in particular of a control unit arranged in the displacement unit, can be reduced in a simple, however reliable and robust manner, without influencing therewith the height of the control signal in whatsoever manner. A further object of the invention is to provide the possibility to retrofit displacement units of already existing hydraulic machines in a simple manner, without changing the complete displacement unit in doing so.
The solution of this object is given such that the displacement unit comprises a vibration unit, in particular an oscillation exciter, which by means of excitation forces generates oscillations in the vibration unit. Thereby the excitation forces are preferably independent from the actuator force, respectively the control signal. As the oscillation exciter is arranged directly at the control spool or at its mechanical feedback unit, these oscillations are transmittable as impulses to the control spool. For this purpose the vibration unit/the oscillation exciter is attached directly to the control spool, for example, such that oscillations created in the vibration unit are transmittable mechanically, hydraulically, hydraulically-mechanically or as well pneumatically to the control spool and/or to the actuator.
By means of the oscillations/impulses, in particular in longitudinal direction of the excited control spool, the same receives a permanently motion reversal preferably, with small amplitude and, further preferably, with high frequency. This permanent motion reversal is superimposed to the relatively slow motion of the control spool due to the control ramp. Under high frequency it is to be understood in this case that the oscillation motion of the control spool caused by the vibration unit runs quicker as the motion which is caused by the actuator forces acting on the control spool, and with which a displacement of the hydraulic machine is obtained by means of conversion of the control signal, respectively the control signal pressure. Further preferably the time constant (period) of the oscillation is shorter as the displacement time of the control spool which is to be excited. Hence, to the uniform displacement of the control spool in the control cylinder a kind of oscillation/vibration is superimposed. This vibration leads to lower the static friction forces of the control spool by means of the permanent motion reversal, whereby, at the same time, reducing the Hysteresis effects.
A preferred embodiment of the inventive displacement unit can be consist in that the excitation forces are created by electrical, magnetical, electromagnetical, pneumatical or hydraulic forces. For instance, the exciting forces can be created by a mass body excitable to oscillation, which can be made fully or partially of magnetic material and, further exemplarily, is excited to longitudinal oscillations in that alternative current is applied to inductive coils arranged thereon. Alternatively, such longitudinal oscillation of a mass body can be produced as well by electro-friction or electro-mechanically in the manner of a (house door) bell.
A further preferred embodiment of the inventive displacement unit consists in a hydraulic mechanic generation of the excitation forces. For this purpose the vibration unit comprises preferably a spring as well as a mass body arranged in a cavity of the control spool and movable in longitudinal direction of the spool. The mass body can be excited to oscillations, for instance, by means of a hydraulic fluid flow acting on the same. The mass body transmits these oscillations mechanically and/or hydraulically to the control spool, for instance, by means of the spring, which is force-locked to the respective control spool. Alternatively, the exciting forces can be transmitted also by hydraulic fluid, which, for instance, acts on the front faces of the oscillating mass body. The hydraulic fluid is incompressible and hence suitable for the transmission of forces, for example from a front face of the mass body to an opposite cross wall in the cavity of the control spool.
The frequency of the oscillation results, as commonly known, for instance, from the mass of the mass body and the spring coefficient. A damping of the oscillation due to friction forces, in particular due to the viscosity of the hydraulic fluid covering the oscillating mass body leads to a shifting of the resonance frequency in direction to lower values and to a broadening of the resonance curve such that, in practice, the frequency of the oscillation will be below the calculated frequency for the damping-free, idealistic case. Due to the damping of the oscillation a constant energy supply is necessary additionally, in order to maintain the oscillation. Thereby, via the size of the partial flow, respectively the pressure in the hydraulic fluid, which is supplied to the vibration unit, the height of the oscillation frequency and the amplitude, which is generated by the vibration unit can be influenced.
With the preferred integration of a vibration unit into the control spool, a simple and effective possibility is provided to reduce the existing hysteresis when adjusting the displacement volume of already existing hydraulic machines, wherein only the existing control spool has to be interchanged with an inventive control spool.
A further simple and effective possibility to retrofit already existing displacement units to an inventive displacement unit, one can think about to attach the vibration unit to a position feedback unit, for example. Ideally, the oscillation exciter can transmit the oscillation to the element of the position feedback unit which engages mechanically with the control spool.
In general, one single vibration unit respectively oscillation exciter which is connected directly to the control spool is sufficient in order to excite the control spool to oscillations and, hence, to lower effectively the hysteresis with regard to the position in the control cylinder. This is valid in particular with one part-control spools and also if the vibration unit is supplied by charge pressure. With oscillation exciters being excited by the control signal pressure, it is necessary—in particular with two-side displaceable control spools—to provide at each control spool side an oscillation exciter, as always only one side of the control spool is pressurized by control signal pressure and as only to one side of the control spool a control signal pressure is provided for pressurizing the servo displacement unit. If a control unit comprises more than one control spool, for each actuable control spool a vibration unit is to be provided.
Further preferred, the vibration unit is designed such that the oscillations are self-excited. This means that except of applying a control signal or a connection to an energy source in form of a provided charge pressure for the control unit, no further arrangements are necessary to activate the oscillation, since this can be self-created. It shall be understood that energy losses of the oscillating mass body have to be compensated, and which are given due to friction and by the damping effect of the hydraulic fluid flushing around. As energy source serves, for example, a partial flow rate of the hydraulic fluid under charge pressure branched-off of the hydraulic fluid channels for the control signal or from the hydraulic fluid supply of the displacement unit, or, for example, from another pressure conducting line of the displacement unit or of the hydraulic machine, in general. For example, these fluid channel leads from an area under charge pressure to an area under low pressure. Hydraulic fluid under pressure serves for the creation and sustainment of the excitation forces, wherein for this purpose, for example, the oscillating mass body opens or closes fluid channels arranged in the control spool. Analogously, the inventive vibration unit can be realized instead of hydraulically also pneumatically.
The displacement unit according to the invention is provided for the reduction of friction and the hysteresis effects related therewith and can be designed for an adjustment of the flow direction of the hydraulic working fluid in the hydraulic machine in the two directions, whereby the control unit can show only one or also two vibration units.
The invention is explained in more detail in the following with the help of embodiments which are depicted in the Figures. It is shown in:
According to the invention the control spools 3 are operatively connected mechanically with an oscillation exciter as vibration unit 8. This vibration unit 8 is provided for bringing the control spools 3 in longitudinal oscillations, i.e. in oscillations parallel to its direction of movement within the control cylinders 4. Hereby, the hysteresis in the responding behavior of the control unit 2 is eliminated nearly completely, at least reduced significantly. The vibration unit 8 is configured exemplarily as a resonance oscillator having a mass body 16 and a spring 17, which are arranged in a cavity 15, and which are mounted movable in the longitudinal direction of the control spool 3 (see
It shall be understood that instead of the vibration unit 8 shown in
With the description of the following Figures all reference numerals for indicating the same constructive features are remained. Here, it is to be annotated for ensuring clarity single parts or elements are indicated with only one reference numeral even though if they are shown several times. In
From the longitudinal channel 18 two cross bores 19 and 19a are branched off, which leads to an outer side of mass body 16. The chamber 36 can be connected via the cross bores 19 and 19a as well as via longitudinal bore 18 with lines 34 and 35 hydraulically, wherein the line 34 comes from the charge pump 31 and the line 35 leads to tank 50. The lines 34 and 35 are arranged spaced from each other in the chamber such that by the displacement of the mass body 16 in cavity 15 always only one of both lines 34, 35 overlaps with one of the cross bores 19, 19a.
The way of function of vibration unit 8 is as follows: In the actual state shown in
The kind of vibration unit 8 described above is self-excited as the pressure fluid supplied via line 34 leads to the motion of mass body 16 to the right. Thereby its motions are powered until a stationary state is reached, which is sustained by the interplay of supply and discharge of pressure fluid to and from chamber 36.
In
At the front faces of the control spool 3, which is shown in
In another preferred embodiment of the invention the vibration unit 8 is arranged in control spool 3. The vibration unit 8 comprises a spring 17 and a mass body 16 arranged in a cavity 15 of control spool 3. The mass body 16, the spring 17 and the control spool 3 are force-locked connected to each other and, hence, form a construction which is capable to oscillate. The mass body 16 is guided slidably in cavity 15 such that it can oscillate freely apart from the damping caused by the hydraulic fluid surrounding it. Further details of the exemplarily described control spool 3 with integrated vibration unit 8 are shown in
In a cavity 15 of the control spool 3 an inventive vibration unit 8 is arranged which, for instance, consists of a mass body 16 and a spring 17. A discharge bore 14 in the control spool 3 leads out of cavity 15 to a discharge outlet 24 under tank pressure, for instance. A cavity 15 is closed on the opposite side with a cross wall 22. The mass body 16 comprises a longitudinal channel 18, which crosses the same in direction of the longitudinal axis 13 of control spool 3. From longitudinal channel 18 a continuing cross bore 19 branches off which enters in a supply bore 21 in control spool 3. This supply bore 21 formed in the wall of cavity 15 of control spool 3 leads to the area of the fluid channel 7 respectively to a ring groove 10 communicating with the same. Thereby, the supply bore 21 is arranged such that it can be aligned at least partially or time partially with ring channel 23 and cross bore 19 in the mass body 16, this is determined in each case by the actual position of the mass body 16 in the cavity 15. The discharge bore 14, the longitudinal channel 18 with cross bore 19 and the supply bore 21 form altogether a fluid channel, which leads from the supply fluid channel 7 via the ring groove 10 to the low pressure channel 24.
The way of operation of the integrated vibration unit 8 shown exemplarily, is as follows: The hydraulic fluid under charge pressure coming from the supply channel 7 acts via the supply bore 21 in control spool 3 and via the cross bore 19 in mass body 16 onto the front face 26 of mass body 16 in cavity 15, and causes a displacement of mass body 16 against the force of spring 17 such that the overlap between the cross bore 19 and the supply bore 21 diminishes. Via the longitudinal channel 18 in mass body 16 and the discharge bore 14 in control spool 3, the pressure in chamber 36 can be relieved, whereby the hydraulic force on the mass body 16 decreases. If the hydraulic force on mass body 16 have been lowered to a value lower as the spring force of spring 17, the spring 17 moves the mass body 16 again in direction to the distal end of control spool 3. Hereby the overlap of cross bore 19 with supply bore 21 increases until the mass body 16 abuts at the cross wall 22, for example. Subsequently, the pressure in chamber 36 increases again and the mass body 16 is displaced again in direction to spring 17 if the hydraulic force on its front face 26 is high enough. This again causes the closure of the passage from supply bore 21 to cross bore 19 whereupon the pressure in cavity 15 decreases and the spring 17 moves the mass body 16 again towards the cross wall 22. This procedure is repeated periodically, which leads to the sustainment of the generated oscillation. Hereby, losses due to friction and damping due to the viscosity of the hydraulic fluid as well as due to the forces acting on the control spool 3 are compensated such that the oscillations are running in general with constant amplitude, once they have started. This procedure shows as well that the oscillation of the mass body 16 is self-excited.
The oscillating mass body 16 is connected via the spring 17 with the control spool 3 in a force-locked manner. The oscillation forces of the mass body 16 are transmitted via the cross wall 22 or the bottom surface 37 of cavity 15 onto the control spool 3 such that the same oscillates also in the tact of the high frequent oscillation of mass body 16. This oscillation superimposes the slower motion of the control spool 3, which acts under the influence of the control forces effected by the actuators 5. These oscillations of the control spool leads to a reduction of the fiction forces, for instance, with the control cylinder wall, as hereby at least the initial friction is eliminated, and hence, the sought reduction of the hysteresis is achieved. For the person with skills in the relevant art it can be seen that hydraulic forces which cause in the above given embodiment an oscillation of the mass body can be, correspondingly, in an analogous way also electric, mechanic, pneumatic or magnetical forces. Here, the working principal of a house door bell driven by means of a relay serves as a figurative example.
The vibration unit 8 is arranged in a longitudinal bore 51 of control spool 3. The vibration unit 8 comprises a plunger 52 on which a bushing 53 is guided movable longitudinally. The bushing 53, however slidable, abuts sealed with its end regions 67 at the inner wall of longitudinal bore 51. The displacement range of bushing 53 is limited with regard to plunger 52 by stoppers, for example, in form of wire rings 54 which are arranged in the end regions of plunger 52.
From bottom 52 of longitudinal bore 51 a channel 56 leads via a dynamic pressure orifice 57 to the discharge outlet 58, which conducts hydraulic fluid to the not shown tank 50 of the hydraulic machine 27. At the opening of the channel 56 in bottom 55 of the longitudinal bore 51, a seat 59 is formed which, in interaction with the plunger 52, closes the channel 56; this is shown in
The outer walls of bushing 53 comprise a region 68 in the section between the two end regions 67 having a smaller diameter. In the proximity of the end regions 67, cross bores 69 are formed in bushing 53, from which oil supply orifices 70 lead to cavities 71 which are formed on both sides of bushing 53 in the longitudinal bore 51. A cross bore 72 in control spool 3 connects with region 68 with ring groove 10 arranged in the control cylinder 4, for feeding hydraulic fluid under charge pressure such that pressure fluid supplied via the fluid channel 7 can reach the cavity 71 via the oil supply orifice 70.
In
The working principle of the vibration unit 8 according to this embodiment is as follows: In the state shown in
This alternating opening and closing of the channels 56 and 61 leading to tank 50 caused by the motion of bushing 53 and taking along plunger 52 results in a periodical inversion of the direction of the motion. Hereby, the abutment of the plunger on the respective seat 59 or 36 exerts an impulse on the control spool 3, which, hence, is excited to a forced vibration. The oscillation is self-excited as the displacement of the plunger 52 and the bushing 53 can be excited by feeding pressure fluid to supply channel 7. The frequency of the generated oscillation can be set by the dimensioning of the single components of the vibration unit 8. Hereby, the height of the charge pressure, the mass of the plunger and the bushing, and its dimensioning as well as their cross sections and lengths of the participating channels and orifices as well as the viscosity of the hydraulic fluid are influencing variables.
In the state of the vibration unit 8 shown in
This motion state is shown in
In the state of oscillation shown in
The state shown in
The self-excitation of the oscillation and the determination of its frequency is done in the same way as with the embodiments described before.
While the present disclosure has been illustrated and described with respect to a particular embodiment thereof, it should be appreciated by those of ordinary skill in the art that various modifications to this disclosure may be made without departing from the spirit and scope of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
102015218578.8 | Sep 2015 | DE | national |
Applicant hereby claims foreign priority benefits under U.S.C. §119 from German Patent Application No. 102015218578.8 filed on Sep. 28, 2015, the content of which is incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
20170089362 A1 | Mar 2017 | US |