The present disclosure relates generally to hydrostatic non-contact seals. More particularly, the disclosure relates to hydrostatic non-contact seals that includes an axially expanded seal base/outer ring.
Rotational equipment typically includes one or more seal assemblies for sealing gaps between rotors and stators. A typical seal assembly includes a contact seal with a seal element such as a knife edge seal that engages a seal land. The hydrostatic non-contact seal includes a full ring portion that connects beams and shoes together, in order to function properly as a full seal ring. The typical seal assembly also includes a carrier that radially houses the seal assembly. The seal assembly components are snapped and radially contained in the carrier. The carrier takes up valuable radial space.
It would be desirable to reduce the radial height and/or the weight of the seal.
The following presents a simplified summary in order to provide a basic understanding of some aspects of the disclosure. The summary is not an extensive overview of the disclosure. It is neither intended to identify key or critical elements of the disclosure nor to delineate the scope of the disclosure. The following summary merely presents some concepts of the disclosure in a simplified form as a prelude to the description below.
Aspects of the disclosure are directed to a non-contact seal assembly. The non-contact seal assembly includes a plurality of seal shoes arranged about a centerline in an annular array, the seal shoes includes a first seal shoe extending axially along the centerline between a first shoe end and a second shoe end. The non-contact seal assembly may further include a seal base circumscribing the annular array of the seal shoe. The seal base may comprise first, second and third inner radial seal base surfaces where the third inner radial seal base surface is axially between the first and second inner radial seal base surfaces and is radially proximate the centerline with respect to the radially distal first and second inner radial seal base surfaces. The non-contact seal assembly may include a plurality of spring elements, each of the spring elements radially distal from and connecting to a respective one of the seal shoes and radially proximate the third inner radial seal base surface.
The non-contact seal assembly may comprise a first ring structure configured and arranged to at least one of position, support or mount to a secondary seal device axially separated from the seal base and radially adjacent to the first seal shoe at a proximate end and at a radially distal end is adjacent to and engaged with the first inner radial seal base surface. The secondary seal device support ring may be radially adjacent to and engaged with the first inner radial seal base surface, and the secondary seal device support ring may be radially proximate to the first inner radial seal base surface.
The non-contact seal assembly may further comprise a second ring structure that is adjacent to and engaged with the second first inner radial seal base surface, where the second ring structure ring is radially proximate to the second inner radial seal base surface.
The seal assembly may comprise nickel alloy.
The seal assembly may comprise one of cobalt alloy or aluminum
The first seal shoe may extend circumferentially, at the first shoe end, between a first shoe side and a second shoe side for a seal shoe length.
The seal shoes may collectively form a substantially annular end surface at the second shoe end.
According to another aspect of the present disclosure, a non-contact seal assembly may include a plurality of seal shoes arranged about a centerline in an annular array, the seal shoes including a first seal shoe extending axially along the centerline between a first shoe end and a second shoe end. The non-contact seal assembly may further include a seal base circumscribing the annular array of the seal shoes. The non-contact seal assembly may include a plurality of spring elements, each of the spring elements radially between and connecting a respective one of the seal shoes with the seal base. The seal base may comprise first, second and third inner radial seal base surfaces where the third inner radial seal base surface is axially between the first and second inner radial seal base surfaces and is radially proximate the centerline with respect to the radially distal first and second inner radial seal base surfaces. Each of the spring elements may be radially distal from the third inner radial seal base surface.
The non-contact seal assembly may further comprise a secondary seal device support ring radially adjacent to and engaged with the first inner radial seal base surface, where the secondary seal device support ring is radially proximate to the first inner radial seal base surface.
The non-contact seal assembly may further comprise a first ring structure configured and arranged to at least one of position, support or mount to a secondary seal device axially separated from the seal base and radially adjacent to the first seal shoe at a proximate end and at a radially distal end is adjacent to and engaged with the first inner radial seal base surface.
The seal base may be connected to a stator structure that is substantially cylindrical and extends circumferentially around and faces towards the centerline.
The seal assembly may comprise nickel alloy.
The seal assembly may comprise one of cobalt alloy or aluminum
The first seal shoe may extend circumferentially, at the first shoe end, between a first shoe side and a second shoe side for a seal shoe length.
According to another aspect of the present disclosure, an assembly for rotational equipment with an axial centerline is provided. The assembly may comprise a stator structure and a rotor structure. The assembly may comprise a seal assembly configured to substantially seal an annular gap between the stator structure and the rotor structure, the seal assembly comprising a hydrostatic non-contact seal device including a plurality of seal shoes, a seal base and a plurality of spring elements. The seal shoes may be arranged about a centerline in an annular array, the seal shoes sealingly engaging the rotor structure and including a first seal shoe extending axially along the centerline between a first shoe end and a second shoe end. The assembly may comprise a plurality of spring elements, each of the spring elements radially between and connecting a respective one of the seal shoes with the seal base. The seal base may comprise first, second and third inner radial seal base surfaces where the third inner radial seal base surface is axially between the first and second inner radial seal base surfaces and is radially proximate the centerline with respect to the radially distal first and second inner radial seal base surfaces. Each of the spring elements may be radially distal from the third inner radial seal base surface.
The assembly may further comprise a secondary seal device support ring radially adjacent to and engaged with the first inner radial seal base surface, where the secondary seal device support ring is radially proximate to the first inner radial seal base surface.
The assembly may further comprise a first ring structure configured and arranged to at least one of position, support or mount to a secondary seal device axially separated from the seal base and radially adjacent to the first seal shoe at a proximate end and at a radially distal end is adjacent to and engaged with the first inner radial seal base surface.
The seal base may be radially adjacent to and connected to the stator structure.
The present disclosure is illustrated by way of example and not limited in the accompanying figures in which like reference numerals indicate similar elements. The drawing figures are not necessarily drawn to scale unless specifically indicated otherwise.
It is noted that various connections are set forth between elements in the following description and in the drawings (the contents of which are incorporated in this specification by way of reference). It is noted that these connections are general and, unless specified otherwise, may be direct or indirect and that this specification is not intended to be limiting in this respect. A coupling between two or more entities may refer to a direct connection or an indirect connection. An indirect connection may incorporate one or more intervening entities or a space/gap between the entities that are being coupled to one another.
Aspects of the disclosure may be applied in connection with a gas turbine engine.
The assembly 20 includes a stator structure 24, a rotor structure 26 and a seal assembly 28. This seal assembly 28 is mounted with the stator structure 24, and configured to substantially seal an annular gap 30 between the stator structure 24 and the rotor structure 26 as described below in further detail.
The stator structure 24 has an inner radial stator structure surface 34. This stator structure surface 34 may be substantially cylindrical, and extends circumferentially around and faces towards the axial centerline 22. The surface 34 at least partially forms a bore in the stator structure 24. This bore is sized to receive the seal assembly 28, which may be fixedly attached to a seal base/outer ring 52 by, for example, a press fit connection between the seal assembly 28 and the inner radial stator structure surface 34.
The rotor structure 26 includes a seal land 36. This seal land 36 may be a discrete, unitary annular body. Alternatively, the seal land 36 may be configured with another component/portion of the rotor structure 26. The seal land 36 has an outer radial seal land surface 38. This seal land surface 38 may be substantially cylindrical, and extends circumferentially around and faces away from the axial centerline 22.
The seal assembly 28 includes a primary seal device 40 and one or more secondary seal devices 42; e.g., 1, 2, 3 or more secondary seal devices 42. The seal assembly 28 also includes one or more additional components for positioning, supporting and/or mounting one or more of the seal devices 40 and 42 with the stator structure 24. The seal assembly 28 of
The primary seal device 40 may be configured as an annular non-contact seal device and, more particularly, a hydrostatic non-contact seal device. An example of such a hydrostatic non-contact seal device is a Hydrostatic Adaptive Low Leakage (HALO™) seal; however, the primary seal device 40 of the present disclosure is not limited to the foregoing exemplary hydrostatic non-contact seal device.
The primary seal device 40 includes a plurality of seal shoes 54, a plurality of spring elements 56 and the seal base/outer ring 52. The seal base/outer ring 52 includes first, second and third inner seal base surfaces 33, 35, 37, respectively, where the third inner seal base surface 37 is axially between the first and second inner seal base surfaces 33, 35. In addition, the third inner seal base surface 37 is radially proximate the axial centerline 22 with respect to the radially more distal first and second inner seal base surfaces 33, 35. The seal land surface 38 is disposed to face towards and is axially aligned with the seal base surfaces 33, 35, 37. The seal shoes 54 are configured as arcuate bodies arranged circumferentially about the axial centerline 22 in an annular array. This annular array of the seal shoes 54 extends circumferentially around the axial centerline 22, thereby forming an inner bore at an inner radial side 62 of the primary seal device 40. The inner bore is sized to receive the seal land 36, where the rotor structure 26 projects axially through (or into) the inner bore formed by the seal shoes 54.
Referring again to
Each of the seal shoes 54 may include an arcuate end surface 74 generally at (e.g., on, adjacent or proximate) the second shoe end 72. In the array these arcuate end surfaces 74 collectively form a generally annular (but circumferentially segmented) end surface 76 configured for sealing engagement with the secondary seal devices 42. The seal shoes 54 of the present disclosure, however, are not limited to the foregoing exemplary configuration.
Each of the seal shoes 54 includes one or more arcuate protrusions 78, which collectively form one or more (e.g., a plurality) of axially spaced generally annular (e.g., circumferentially segmented) ribs 80 at the inner radial side 62. Distal inner radial ends 82 of one or more of these ribs 80 are configured to be arranged in close proximity with (but not touch) and thereby sealingly engage the seal land surface 38 in a non-contact manner, where the rotor structure 26 project axially through (or into) the inner bore foil led by the seal shoes 54. The ribs 80 therefore are configured, generally speaking, as non-contact knife edge seal elements.
Referring now to
During operation of the primary seal device 40, the pressure in the upstream and downstream cavities apply a fluid delta pressure to the seal shoes 54 causing the each seal shoe 54 to respectively move radially relative to the seal land surface 38. The fluid velocity may increase as a gap between the seal shoe 54 and seal land surface 38 increases, thus reducing pressure in the gap and drawing the seal shoe 54 radially inwardly toward the seal land surface 38. As the gap closes, the velocity may decrease and the pressure may increase within the gap, thus, forcing the seal shoe 54 radially outwardly from the seal land surface 38. The respective spring element 56 may deflect and move with the seal shoe 54 to create a primary seal of the gap between the seal land surface 38 and ribs 80 within predetermined design tolerances.
Referring again to
Each of the secondary seal devices 42 may be configured as a ring seal element such as, but not limited to, a split ring. Alternatively, one or more of the secondary seal devices 42 may be configured as a full hoop body ring, an annular brush seal or any other suitable ring-type seal.
As described above, the assembly 20 of the present disclosure may be configured with various different types and configurations of rotational equipment.
The secondary seal devices 42 of
The first ring structure 44 may include a secondary seal device support ring 100 and a retention ring 102. The support ring 100 is configured with an annular full hoop body, which extends circumferentially around the axially centerline 22. The support ring 100 includes the annular surface 98, and is disposed axially adjacent and engaged with the seal base 52. The first support ring is radially adjacent to and engaged with the first inner radial seal base surface 33. The secondary seal device support ring 100 is also radially adjacent to and engaged with the first inner radial seal base surface 33. In addition, portions of the secondary seal device support ring 100 are also axially adjacent to the seal base 52 and a retention ring 102. The second ring structure 48 is radially adjacent to and engaged with the second inner radial seal base surface 35.
The retention ring 102 is configured with an annular full hoop body, which extends circumferentially around the axially centerline 22. The retention ring 102 is disposed axially adjacent and engaged with the support ring 100 and engaged with the first inner seal base surface 33, thereby capturing the stack of the secondary seal devices 42 within an annular channel formed between the rings 100 and 102. The stack of the secondary seal devices 42, may also or alternatively be attached to one of the rings 100 and 102 by, for example, a press fit connection and/or otherwise. Notably, the first ring structure 44 and radially engages the first inner seal base surface, and the second ring structure 48 radially engages the second inner seal base surface 35. This allows the assembly 20 to be formed without the need for a dedicated and separable carrier, thus reducing height H 29 and part count of the seal assembly 20
Referring to
The engine sections 114-117 are arranged sequentially along the centerline 108 within an engine housing 118, a portion or component of which may include or be connected to the stator structure 24. This housing 118 includes an inner case 120 (e.g., a core case) and an outer case 122 (e.g., a fan case). The inner case 120 may house one or more of the engine sections; e.g., an engine core. The outer case 122 may house at least the fan section 114.
Each of the engine sections 114, 115A, 115B, 117A and 117B includes a respective rotor 124-128. Each of these rotors 124-128 includes a plurality of rotor blades arranged circumferentially around and connected to one or more respective rotor disks. The rotor blades, for example, may be formed integral with or mechanically fastened, welded, brazed, adhered and/or otherwise attached to the respective rotor disk(s).
The fan rotor 124 is connected to a gear train 130, for example, through a fan shaft 132. The gear train 130 and the LPC rotor 125 are connected to and driven by the LPT rotor 128 through a low speed shaft 133. The HPC rotor 126 is connected to and driven by the HPT rotor 127 through a high speed shaft 134. The shafts 132-134 are rotatably supported by a plurality of bearings 136; e.g., rolling element and/or thrust bearings. Each of these bearings 136 is connected to the engine housing 118 by at least one stationary structure such as, for example, an annular support strut.
During operation, air enters the turbine engine 106 through the airflow inlet 110. This air is directed through the fan section 114 and into a core gas path 138 and a bypass gas path 140. The core gas path 138 flows sequentially through the engine sections 115-117. The bypass gas path 140 flows away from the fan section 114 through a bypass duct, which circumscribes and bypasses the engine core. The air within the core gas path 138 may be referred to as “core air”. The air within the bypass gas path 140 may be referred to as “bypass air”.
The core air is compressed by the compressor rotors 125 and 126 and directed into a combustion chamber 142 of a combustor in the combustor section 116. Fuel is injected into the combustion chamber 142 and mixed with the compressed core air to provide a fuel-air mixture. This fuel air mixture is ignited and combustion products thereof flow through and sequentially cause the turbine rotors 127 and 128 to rotate. The rotation of the turbine rotors 127 and 128 respectively drive rotation of the compressor rotors 126 and 125 and, thus, compression of the air received from a core airflow inlet. The rotation of the turbine rotor 128 also drives rotation of the fan rotor 124, which propels bypass air through and out of the bypass gas path 140. The propulsion of the bypass air may account for a majority of thrust generated by the turbine engine 106, e.g., more than seventy-five percent (75%) of engine thrust. The turbine engine 106 of the present disclosure, however, is not limited to the foregoing exemplary thrust ratio.
The assembly 20 may be included in various aircraft and industrial turbine engines other than the one described above as well as in other types of rotational equipment; e.g., wind turbines, water turbines, rotary engines, etc. The assembly 20, for example, may be included in a geared turbine engine where a gear train connects one or more shafts to one or more rotors in a fan section, a compressor section and/or any other engine section. Alternatively, the assembly 20 may be included in a turbine engine configured without a gear train. The assembly 20 may be included in a geared or non-geared turbine engine configured with a single spool, with two spools (e.g., see
While various embodiments of the present invention have been disclosed, it will be apparent to those of ordinary skill in the art that many more embodiments and implementations are possible within the scope of the invention. For example, the embodiments of the present invention as described herein include several aspects and embodiments that include particular features. Although these features may be described individually, it is within the scope of the embodiments of the present invention that some or all of these features may be combined with any one of the aspects and remain within the scope of the invention. Accordingly, the present invention is not to be restricted except in light of the attached claims and their equivalents.
This invention was made with government support under Contract No. FA8626-16-C-2139 awarded by the United States Air Force. The government may have certain rights in the invention.