The invention relates to a hydrostatic radial piston motor, in particular a hydrostatic radial piston motor for actuating a differential cylinder.
Generic hydrostatic radial piston motors are used in many types of industrial applications. Generic hydrostatic radial piston motors are thus found in machines for spray and pressure casting processes, systems for forming processes, such as presses and rolling mills, as well as in the general construction of hydraulic power systems.
In a generic radial piston motor, the drive torque of the shaft is transmitted to a radial piston cylinder block mounted on a control stud. Pistons arranged radially in the radial piston cylinder block are supported on thrust rings via slide shoes in a thrust ring. The slide shoes can be hydrostatically relieved in a suitable manner. Piston and slide shoe are connected to one another via a joint and secured by a ring. The slide shoes are guided by two overlapping rings and pressed against the thrust ring during operation by centrifugal force and oil pressure. When the radial piston cylinder block rotates, the pistons, as a result of the eccentric position of the thrust ring, exert a stroke movement equal to two times the value of the eccentricity. The eccentricity can be changed by two setting pistons lying opposite one another in the pump housing. The oil flow is routed into and out of the housing and control stud via channels. It is controlled by means of suction and pressure windows in the control stud. The thrust ring position (flow rate) as well as the system pressure can thus be controlled by means of a control unit. If a differential cylinder is to be actuated by means of a hydrostatic radial piston motor, proportional or control valves are usually interposed. Differential cylinders comprise two working spaces, each with its own working connection, a first working connection leading to the working space on the piston-end and a second working connection leading to the working space on the rod-end of the differential cylinder. The volume flow of the hydraulic fluid supplied by the hydrostatic radial piston motor can be routed to the particular working connection and thereby to the particular working space via the valves.
It is possible to actuate a differential cylinder via a hydrostatic radial piston motor without interposing proportional or control valves by driving the different travel directions of the piston rods via two hydrostatic displacement units. The displacement units can be provided on a drive shaft, the drive shaft generally being connected to an electric motor which is typically operated at variable rotational speed and rotational direction. Alternatively, the rotational speed of the electric motor can be constant, and two displacement units having variable delivery volumes can be operated on the drive shaft. The disadvantage of this, however, is that it requires two displacement units and is thus expensive. Another disadvantage is that this type of unit is of large construction especially in the axial dimension and requires accordingly large installation space even if the two hydrostatic displacement units are provided on one drive shaft.
The object of the invention is to provide a device with which a differential cylinder can, with the aid of a single hydrostatic motor, be operated directly, in particular without proportional or control valves being interposed, the device being cost-efficient to produce and requiring only a small amount of installation space. The invention additionally seeks to provide a hydraulic actuator as a corresponding system.
This objective is achieved according to the invention by a hydrostatic motor having the features of the independent Claim 1. Advantageous refinements of the method are found in the subordinate claims 2 to 12. The objective is further achieved by a hydraulic actuator according to Claim 14. One advantageous embodiment of the hydraulic actuator is described in Claim 15.
According to the invention, the hydrostatic motor comprises a displacement unit in radial piston configuration, the displacement unit being actuated by a drive motor and the hydrostatic motor additionally featuring a housing in which a control stud is arranged, the hydrostatic motor comprising at least three hydraulic working connections. The first working connection can be connected to the working connection of the piston-end of a differential cylinder, while the second working connection can be connected to the rod-end of the differential cylinder. Finally, the third working connection can be connected to a tank. Owing to this arrangement, the differential cylinder can be directly operated with the aid of a single hydrostatic motor, it being possible to forgo interposing proportional or control valves. The device can be produced cost-efficiently and requires only a small amount of installation space. The drive motor can be an electric motor in particular.
One advantageous embodiment of the hydrostatic motor is characterized in that the control stud comprises a first work-side control window connected to a first working connection A, a second work-side control window connected to a second working connection B and a third control window connected to a third working connection T. The control stud features, in addition to the work-side, i.e. pressure-side control windows, suction side control windows. The control stud can feature reversing notches at all control windows.
It has proven to be especially advantageous if the second work-side control window has a smaller cross section than the first work-side control window. This arrangement allows the asymmetry of the effective piston areas of the differential cylinder to be balanced out.
In another advantageous embodiment, the third work-side control window likewise has a smaller cross section than the first work-side control window, thereby allowing only a portion of the hydraulic fluid conveyed out of or into the piston-side to be discharged into the tank or resuctioned from the same, respectively.
It has additionally proven to be advantageous if the third work-side control window is connected to a pressurized tank. The hydrostatic motor can thus be used in a closed hydraulic system in a simple manner.
To avoid undesired operating states during the extension and retraction of the piston rod of the differential cylinder, the ratio of the first and second work-side control window can be adjusted to match the area ratio of the effective areas of the piston of the piston-end and rod-end of the differential cylinder. The area ratio of the effective areas of the piston of piston-end and rod-end of the differential cylinder can be determined by configuring the control window in the control stud accordingly.
The area ratio of the effective areas of the piston between piston-end and rod-end of the differential cylinder corresponds to the ratio of the working space volume between the piston-end and rod-end of the differential cylinder. A volume flow balance can thereby be established at the displacement unit, in which the volume flow at the working connection to the piston-end working space of the differential cylinder equals the total of the volume flows to the rod-end working space of the differential cylinder and to the tank. At the same time, the volume flow into a working space of the differential cylinder equals the product of the piston rod speed of the differential cylinder and the particular effective piston area of the differential cylinder. The individual volume flows at the working connections of the displacement unit can thus be computed, wherein these volume flows equal those in the particular working spaces of the differential cylinder and the tank, respectively.
The volume flow at the working connection to the piston-end working space of the differential cylinder equals the rotational speed of the displacement unit multiplied by the volume geometrically determined in the displacement unit at the first work-side control window and thus the product of the rotational speed of the displacement unit multiplied by the square of the stroke piston diameter, the eccentricity, the number of pistons and ½π as a constant.
The volume flow at the working connection to the rod-end working space of the differential cylinder equals the rotational speed of the displacement unit multiplied by the volume geometrically determined in the displacement unit at the second work-side control window and thus the product of the rotational speed of the displacement unit multiplied by the square of the stroke piston diameter, the eccentricity, the number of pistons and ½π as a constant divided by the ratio of the effective piston areas of the differential cylinder, i.e. the product of the rotational speed of the displacement unit and the volume flow at the working connection to the piston-end working space of the differential cylinder divided by the ratio of the effective piston areas of the differential cylinder.
The volume flow at the working connection to the tank is equal to the rotational speed of the displacement unit multiplied by the volume of the piston-end working space of the differential cylinder and the difference between 1 and the reciprocal of the ratio of the effective piston areas of the differential cylinder.
Intake and outlet direction of the piston rod as well as the differential cylinder are controlled by the rotational direction of the motor. For example, the motor running counterclockwise corresponds to the piston rod extending, while the motor running clockwise corresponds to the retraction thereof.
It has additionally proven to be advantageous if the control stud is fixedly connected to the housing.
Furthermore, the housing likewise comprises in an additional advantageous embodiment three working connections which create the connection to the two working connections of the differential cylinder and to the tank.
In another advantageous embodiment, the second control window Port B is formed by two sub-control windows Port B1 and Port B2, the sub-control windows being connected to the working connection B and, the third control window, when viewed in the circumferential direction of the control stud, lying between sub-control windows Port B1 and Port B2. In an alternative embodiment, the third control window Port T is formed by two sub-control windows Port T1 and Port T2, the sub-control windows being connected to the working connection T and, when viewed in the circumferential direction of the control stud, the second control window Port B being between the sub-control windows Port T1 and Port T2.
In another advantageous embodiment, the hydrostatic motor comprises an additional hydraulic connection via which any occurring leakage oil can be transported away.
The hydrostatic motor can be a fixed displacement pump in which the displacement volume is constant. Alternatively, the hydrostatic motor can also have an adjustment device allowing adjustment of its displacement volume.
A hydraulic actuator according to the invention for actuating a differential cylinder comprises the differential cylinder itself, a tank and a hydrostatic motor according to the invention. The first working connection A of the hydrostatic motor is connected to the working connection of the piston-end of the differential cylinder, the second working connection B of the hydrostatic motor to the working connection of the rod-end of the differential cylinder, while the third working connection T of the hydrostatic motor is connected to the tank.
In an advantageous embodiment of the hydraulic actuator, the tank has a check valve via which it is connected to the first working connection A of the hydrostatic motor and/or the second working connection B of the hydrostatic motor.
Additional advantages, features and expedient refinements of the invention are contained in the subordinate claims and the following description of preferred exemplary embodiments on the basis of the drawings.
The drawings show:
The first control window Port A is connected to the piston-end RA of the differential cylinder 140, while the second control window Port B is connected to the rod-end RB of the differential cylinder 140. The third control window Port T is connected to a tank 160. Owing to this arrangement, the differential cylinder 140 can be driven directly with the aid of a single hydrostatic motor 100 without proportional or control valves having to be interposed.
The second control window Port B has a smaller cross section than the first control window Port A. The ratio between the first control window Port A and the second control window Port B thus equals the ratio of effective piston areas in the piston-end working space RA and in the rod-end working space RB of the differential cylinder 140. This arrangement allows the asymmetry of the effective piston areas of the differential cylinder to be balanced out.
The third control window Port T likewise has a smaller cross section than the first control window Port A, thereby allowing only a portion of the hydraulic fluid conveyed out of or into the piston-side to be discharged into the tank or resiphoned from the same.
The control stud features, in addition to the work-side, i.e. pressure-side control windows, suction side control windows. The control stud can feature reversing notches at all control windows.
The area ratio φ of the effective areas ARA and ARB of the piston from piston-end RA and rod-end RB of the differential cylinder 140 is determined by a kidney-shaped design of the control windows Port A, Port B, Port T in the control stud 120.
The area ratio φ of the effective areas ARA, ARB of the piston between piston-end RA and rod-end RB of the differential cylinder 140 correspond to the ratio of the working space volume VA, VB between the piston-end RA and rod-end RB of the differential cylinder 140: φ=ARA/ARB=VA/VB. A volume flow balance can thereby be established at the displacement unit 110, in which the volume flow QA at the working connection A to the piston-end working space RA of the differential cylinder 140 equals the total of the volume flows QB, QT to the rod-end working space RB of the differential cylinder 140 and to the pressurized tank 160. At the same time, the volume flow QRA, QRB into a working space RA, RB the differential cylinder 140 equals the product of the piston rod speed v of the differential cylinder 140 and the particular effective piston area ARA, ARB of the differential cylinder 140: QA=QB+QT=v*ARA=v*ARB+QT. The individual volume flows QA, QB, QT at the working connections A, B, T of the radial piston pump 110 can thus be computed, where these volume flows QA, QB, QT equal those into the particular working spaces RA, RB of the differential cylinder and into the tank 160, respectively.
The volume flow QA at the working connection A to the piston-end working space RA of the differential cylinder 140 equals the rotational speed of the radial piston pump 110 multiplied by the volume VA geometrically determined in the displacement unit at the first work-side control window Port A and thus the product of the rotational speed n of the radial piston pump 110 multiplied by the square of the stroke piston diameter D, the eccentricity e, the number of pistons z and ½π as a constant:
Q
A
=n*V
A
=n*π/2*D2e*z.
The volume flow QB at the working connection B to the rod-end working space RB of the differential cylinder 140 equals the rotational speed n of the radial piston pump 110 multiplied by the volume VB geometrically determined in the displacement unit at the second work-side control window Port B and, thus, the product of the rotational speed n of the radial piston pump 110 multiplied by the square of the stroke piston diameter D, the eccentricity e, the number z of pistons and ½π as a constant divided by the ratio of the effective piston areas ARA, ARB of the differential cylinder 140, i.e. the product of the rotational speed n of the radial piston pump 110 and the volume flow QRA at the working connection 143 to the piston-end working space RA of the differential cylinder 140 divided by the ratio φ of the effective piston areas ARA, ARB of the differential cylinder 140:
Q
B
=n*V
B
=n*π/2*D2*e*z/φ=n*VA/φ
The volume flow QT at the working connection T to the tank 160 is equal to the rotational speed n of the radial piston pump 110 multiplied by the volume VA of the piston-end working space RA of the differential cylinder 140 and the difference between 1 and the reciprocal of the ratio φ of the effective piston areas ARA, ARB of the differential cylinder 140:
QT=n*VA*(1−1/φ)
In the example illustrated in
From a manufacturing point of view, area ratios φ ranging from 1.4:1 to 3.5:1 have proven to be advantageous.
The embodiments shown here represent only examples of the present invention, and are therefore not to be understood as limiting. Alternative embodiments considered by the person skilled in the art are similarly encompassed by the protective scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
14161072.5 | Mar 2014 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2015/055461 | 3/16/2015 | WO | 00 |