Hydroxyalkyl substituted imidazoquinoline compounds and methods

Information

  • Patent Grant
  • 8158794
  • Patent Number
    8,158,794
  • Date Filed
    Wednesday, February 22, 2006
    18 years ago
  • Date Issued
    Tuesday, April 17, 2012
    12 years ago
Abstract
Certain imidazoquinolines with a hydroxymethyl or hydroxyethyl substituent at the 2-position, and an aryl or heteroaryl substituent at the 7-position, pharmaceutical compositions containing the compounds, intermediates, methods of making and methods of use of these compounds as immunomodulators, for preferentially inducing IFN-α biosynthesis in animals and in the treatment of diseases including viral and neoplastic diseases are disclosed.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a national stage filing under 35 U.S.C. §371 of PCT International application PCT/US2006/006042 designating the United States of America, and filed Feb. 22, 2006. This application claims the benefit under 35 U.S.C. §119 of U.S. provisional application Ser. No. 60/655,495, filed Feb. 23, 2005.


BACKGROUND

Certain compounds have been found to be useful as immune response modifiers (IRMs), rendering them useful in the treatment of a variety of disorders. However, there continues to be interest in and a need for compounds that have the ability to modulate the immune response, by induction of cytokine biosynthesis or other means.


SUMMARY

The present invention provides a new class of compounds which preferentially induce the biosynthesis of interferon (α) (IFN-α) in animals. Such compounds are of the following Formulas I, II, and III:




embedded image



wherein R1, R3, G1, G2, and n are as defined below.


It has now surprisingly been discovered that the amount of TNF-α induced by the 2-(hydroxyalkyl) substituted compounds of the invention is substantially less than the amount of TNF-α induced by closely related analogs having an alkyl or alkyl ether substituent at the 2-position and that the compounds of the invention still retain the ability to induce the biosynthesis of IFN-α. See, for example, FIGS. 1 and 2 below. The reduction in the amount of TNF-α induced is seen over a broad range of test concentrations. In some embodiments the amount of TNF-α induced by the compounds of the invention is at least two-fold less than the amount of TNF-α induced by analogs having an alkyl or alkyl ether substituent at the 2-position. In other embodiments the amount of TNF-α induced by the compounds of the invention is at least three-fold less than the amount of TNF-α induced by analogs having an alkyl or alkyl ether substituent at the 2-position. In still other embodiments the amount of TNF-α induced by the compounds of the invention is at least four-fold less than the amount of TNF-α induced by analogs having an alkyl or alkyl ether substituent at the 2-position.


As used herein “substantially less than the amount of TNF-α” means that there is at least a two-fold reduction in the maximal TNF-α response as determined using the test methods described herein.


The compounds or salts of Formulas I, II, and III are especially useful as immune response modifiers due to their ability to preferentially induce interferon-α, thus providing a benefit over compounds that also induce pro-inflammatory cytokines (e.g. TNF-α) or that induce pro-inflammatory cytokines at higher levels.


A compound is said to preferentially induce IFN-α if, when tested according to the test methods described herein, the effective minimum concentration for IFN-α induction is less than the effective minimum concentration for TNF-α induction. In some embodiments, the effective minimum concentration for IFN-α induction is at least 3-fold less than the effective minimum concentration for TNF-α induction. In some embodiments, the effective minimum concentration for IFN-αinduction is at least 6-fold less than the effective minimum concentration for TNF-α induction. In other embodiments, the effective minimum concentration for IFN-αinduction is at least 9-fold less than the effective minimum concentration for TNF-α induction. In some embodiments, when tested according to the test methods described herein, the amount TNF-α induced by compounds of the invention is at or below the background level of TNF-α in the test method.


The invention further provides pharmaceutical compositions containing an effective amount of a compound or salt of Formulas I, II, and/or III and methods of preferentially inducing the biosynthesis of IFN-α in an animal, and treating a viral infection or disease and/or treating a neoplastic disease in an animal by administering an effective amount of a compound or salt of Formulas I, II, and/or III or a pharmaceutical compositions containing an effective amount of a compound or salt of Formulas I, II, and/or III to the animal.


In addition, methods of synthesizing compounds of Formulas I, II, and III and intermediates useful in the synthesis of these compounds are provided.


As used herein, “a,” “an,” “the,” “at least one,” and “one or more” are used interchangeably.


The terms “comprises” and variations thereof do not have a limiting meaning where these terms appear in the description and claims.


The above summary of the present invention is not intended to describe each disclosed embodiment or every implementation of the present invention. The description that follows more particularly exemplifies illustrative embodiments. In several places throughout the description, guidance is provided through lists of examples, which examples can be used in various combinations. In each instance, the recited list serves only as a representative group and should not be interpreted as an exclusive list.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows the IFN-α dose response curves (corresponding to values shown in Table 3 below) for Example 8, Analog 1, Analog 2, and Analog 3.



FIG. 2 shows the TNF-α dose response curves (corresponding to values shown in Table 3 below) for Example 8, Analog 1, Analog 2, and Analog 3.





DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS OF THE INVENTION

The present invention provides compounds of the following Formulas I, II, and III:




embedded image



wherein R1, R3, G1, G2, and n are as defined below; and pharmaceutically acceptable salts thereof.


In one embodiment, the present invention provides a compound of the following Formula I:




embedded image



wherein:


n is 1 or 2;


R1 is selected from the group consisting of:

    • —R4,
    • —X—R4,
    • —X—Y—R4, and
    • —X—R5;


R3 is selected from the group consisting of:

    • —Z—Ar,
    • —Z—Ar′-Y—R4, and
    • —Z—Ar′-X—Y—R4;


Ar is selected from the group consisting of aryl and heteroaryl both of which can be unsubstituted or can be substituted by one or more substituents independently selected from the group consisting of alkyl, alkenyl, alkoxy, haloalkyl, haloalkoxy, halogen, nitro, hydroxy, hydroxyalkyl, mercapto, cyano, carboxy, formyl, amino, alkylamino, and dialkylamino;


Ar′ is selected from the group consisting of arylene and heteroarylene both of which can be unsubstituted or can be substituted by one or more substituents independently selected from the group consisting of alkyl, alkenyl, alkoxy, haloalkyl, haloalkoxy, halogen, nitro, hydroxy, hydroxyalkyl, mercapto, cyano, carboxy, formyl, amino, alkylamino, and dialkylamino;


X is alkylene optionally interrupted by one —O— group;


Y is selected from the group consisting of:

    • —O—,
    • —C(R6)—,
    • —C(R6)—N(R8)—,
    • —S(O)0-2—,
    • —N(R8)-Q-,




embedded image


Z is selected from the group consisting of a bond and alkylene;


R4 is selected from the group consisting of hydrogen, alkyl, alkenyl, aryl, arylalkylenyl, heteroaryl, heteroarylalkylenyl, and heterocyclyl, wherein the alkyl, alkenyl, aryl, arylalkylenyl, heteroaryl, heteroarylalkylenyl, and heterocyclyl groups can be unsubstituted or substituted by one or more substituents independently selected from the group consisting of alkyl, alkoxy, hydroxyalkyl, haloalkyl, haloalkoxy, halogen, nitro, hydroxy, mercapto, cyano, aryl, aryloxy, heteroaryl, heteroaryloxy, heterocyclyl, amino, alkylamino, dialkylamino, and, in the case of alkyl, alkenyl, and heterocyclyl, oxo;


R5 is selected from the group consisting of:




embedded image


R6 is selected from the group consisting of ═O and ═S;


R7 is C2-7 alkylene;


R8 is selected from the group consisting of hydrogen, alkyl, alkoxyalkylenyl, hydroxyalkylenyl, arylalkylenyl, and heteroarylalkylenyl;


R10 is C3-8 alkylene;


A is selected from the group consisting of —O—, —C(O)—, —CH2—, —S(O)0-2—, and —N(Q-R4)—;


Q is selected from the group consisting of a bond, —C(R6)—, —S(O)2, —C(R6)—N(R8)—, —S(O)2—N(R8)—, —C(R6)—O—, and —C(R6)—S—; and


a and b are independently integers from 1 to 6 with the proviso that a+b is ≦7;


or a pharmaceutically acceptable salt thereof.


In another embodiment, the present invention provides a compound of the following Formula II, which is a prodrug:




embedded image



wherein:


G1 is selected from the group consisting of:

    • —C(O)—R′,
    • α-aminoacyl,
    • α-aminoacyl-α-aminoacyl,
    • —C(O)—O—R′,
    • —C(O)—N(R″)R′,
    • —C(═NY′)—R′,
    • —CH(OH)—C(O)—OY′,
    • —CH(OC1-4 alkyl)Y0,
    • —CH2Y1, and
    • —CH(CH3)Y1;


R′ and R″ are independently selected from the group consisting of C1-10 alkyl, C3-7 cycloalkyl, phenyl, benzyl, and 2-phenylethyl, each of which may be unsubstituted or substituted by one or more substituents independently selected from the group consisting of halogen, hydroxy, nitro, cyano, carboxy, C1-6 alkyl, C1-4 alkoxy, aryl, heteroaryl, aryl-C1-4 alkylenyl, heteroaryl-C1-4 alkylenyl, halo-C1-4 alkylenyl, halo-C1-4 alkoxy, —O—C(O)—CH3, —C(O)—O—CH3, —C(O)—NH2, —O—CH2—C(O)—NH2, —NH2, and —S(O)2—NH2, with the proviso that R″ can also be hydrogen;


α-aminoacyl is an α-aminoacyl group derived from an α-amino acid selected from the group consisting of racemic, D-, and L-amino acids;


Y′ is selected from the group consisting of hydrogen, C1-6 alkyl, and benzyl;


Y0 is selected from the group consisting of C1-6 alkyl, carboxy-C1-6 alkylenyl, amino-C1-4 alkylenyl, mono-N—C1-6 alkylamino-C1-4 alkylenyl, and di-N,N—C1-16 alkylamino-C1-4 alkylenyl;


Y1 is selected from the group consisting of mono-N—C1-6 alkylamino, di-N,N—C1-6 alkylamino, morpholin-4-yl, piperidin-1-yl, pyrrolidin-1-yl, and 4-C1-4 alkylpiperazin-1-yl;


n is 1 or 2;


R1 is selected from the group consisting of:

    • —R4,
    • —X—R4,
    • —X—Y—R4, and
    • —X—R5;


R3 is selected from the group consisting of:

    • —Z—Ar,
    • —Z—Ar′-Y—R4, and
    • —Z—Ar′-X—Y—R4;


Ar is selected from the group consisting of aryl and heteroaryl both of which can be unsubstituted or can be substituted by one or more substituents independently selected from the group consisting of alkyl, alkenyl, alkoxy, haloalkyl, haloalkoxy, halogen, nitro, hydroxy, hydroxyalkyl, mercapto, cyano, carboxy, formyl, amino, alkylamino, and dialkylamino;


Ar′ is selected from the group consisting of arylene and heteroarylene both of which can be unsubstituted or can be substituted by one or more substituents independently selected from the group consisting of alkyl, alkenyl, alkoxy, haloalkyl, haloalkoxy, halogen, nitro, hydroxy, hydroxyalkyl, mercapto, cyano, carboxy, formyl, amino, alkylamino, and dialkylamino;


X is alkylene optionally interrupted by one —O— group;


Y is selected from the group consisting of:

    • —O—,
    • —C(R6)—,
    • —C(R6)—N(R8)—,
    • —S(O)0-2—,
    • —N(R8)-Q-,




embedded image


Z is selected from the group consisting of a bond and alkylene;


R4 is selected from the group consisting of hydrogen, alkyl, alkenyl, aryl, arylalkylenyl, heteroaryl, heteroarylalkylenyl, and heterocyclyl, wherein the alkyl, alkenyl, aryl, arylalkylenyl, heteroaryl, heteroarylalkylenyl, and heterocyclyl groups can be unsubstituted or substituted by one or more substituents independently selected from the group consisting of alkyl, alkoxy, hydroxyalkyl, haloalkyl, haloalkoxy, halogen, nitro, hydroxy, mercapto, cyano, aryl, aryloxy, heteroaryl, heteroaryloxy, heterocyclyl, amino, alkylamino, dialkylamino, and, in the case of alkyl, alkenyl, and heterocyclyl, oxo;


R5 is selected from the group consisting of:




embedded image


R6 is selected from the group consisting of ═O and ═S;


R7 is C2-7 alkylene;


R8 is selected from the group consisting of hydrogen, alkyl, alkoxyalkylenyl, hydroxyalkylenyl, arylalkylenyl, and heteroarylalkylenyl;


R10 is C3-8 alkylene;


A is selected from the group consisting of —O—, —C(O)—, —CH2—, —S(O)0-2—, and —N(Q-R4)—;


Q is selected from the group consisting of a bond, —C(R6)—, —S(O)2, —C(R6)—N(R8)—, —S(O)2—N(R8)—, —C(R6)—O—, and —C(R6)—S—; and


a and b are independently integers from 1 to 6 with the proviso that a+b is ≦7;


or a pharmaceutically acceptable salt thereof.


In another embodiment, the present invention provides a compound of the following Formula III, which is a prodrug:




embedded image



wherein:


G2 is selected from the group consisting of:

    • —X2—C(O)—R′,
    • α-aminoacyl,
    • α-aminoacyl-α-aminoacyl,
    • —X2—C(O)—O—R′, and
    • —C(O)—N(R″)R′;


X2 is selected from the group consisting of a bond; —CH2—O—; —CH(CH3)—O—; —C(CH3)2—O—; and, in the case of —X2—C(O)—O—R′, —CH2—NH—;


R′ and R″ are independently selected from the group consisting of C1-10 alkyl, C3-7 cycloalkyl, phenyl, benzyl, and 2-phenylethyl, each of which may be unsubstituted or substituted by one or more substituents independently selected from the group consisting of halogen, hydroxy, nitro, cyano, carboxy, C1-6 alkyl, C1-4 alkoxy, aryl, heteroaryl, aryl-C1-4 alkylenyl, heteroaryl-C1-4 alkylenyl, halo-C1-4 alkylenyl, halo-C1-4 alkoxy, —O—C(O)—CH3, —C(O)—O—CH3, —C(O)—NH2, —O—CH2—C(O)—NH2, —NH2, and —S(O)2—NH2, with the proviso that R″ can also be hydrogen;


α-aminoacyl is an α-aminoacyl group derived from an α-amino acid selected from the group consisting of racemic, D-, and L-amino acids;


n is 1 or 2;


R1 is selected from the group consisting of:

    • —R4,
    • —X—R4,
    • —X—Y—R4, and
    • —X—R5;


R3 is selected from the group consisting of:

    • —Z—Ar,
    • —Z—Ar′-Y—R4, and
    • —Z—Ar′-X—Y—R4;


Ar is selected from the group consisting of aryl and heteroaryl both of which can be unsubstituted or can be substituted by one or more substituents independently selected from the group consisting of alkyl, alkenyl, alkoxy, haloalkyl, haloalkoxy, halogen, nitro, hydroxy, hydroxyalkyl, mercapto, cyano, carboxy, formyl, amino, alkylamino, and dialkylamino;


Ar′ is selected from the group consisting of arylene and heteroarylene both of which can be unsubstituted or can be substituted by one or more substituents independently selected from the group consisting of alkyl, alkenyl, alkoxy, haloalkyl, haloalkoxy, halogen, nitro, hydroxy, hydroxyalkyl, mercapto, cyano, carboxy, formyl, amino, alkylamino, and dialkylamino;


X is alkylene optionally interrupted by one —O— group;


Y is selected from the group consisting of:

    • —O—,
    • —C(R6)—,
    • —C(R6)—N(R8)—,
    • —S(O)0-2—,
    • —N(R8)-Q-,




embedded image


Z is selected from the group consisting of a bond and alkylene;


R4 is selected from the group consisting of hydrogen, alkyl, alkenyl, aryl, arylalkylenyl, heteroaryl, heteroarylalkylenyl, and heterocyclyl, wherein the alkyl, alkenyl, aryl, arylalkylenyl, heteroaryl, heteroarylalkylenyl, and heterocyclyl groups can be unsubstituted or substituted by one or more substituents independently selected from the group consisting of alkyl, alkoxy, hydroxyalkyl, haloalkyl, haloalkoxy, halogen, nitro, hydroxy, mercapto, cyano, aryl, aryloxy, heteroaryl, heteroaryloxy, heterocyclyl, amino, alkylamino, dialkylamino, and, in the case of alkyl, alkenyl, and heterocyclyl, oxo;


R5 is selected from the group consisting of:




embedded image


R6 is selected from the group consisting of ═O and ═S;


R7 is C2-7 alkylene;


R8 is selected from the group consisting of hydrogen, alkyl, alkoxyalkylenyl, hydroxyalkylenyl, arylalkylenyl, and heteroarylalkylenyl;


R10 is C3-8 alkylene;


A is selected from the group consisting of —O—, —C(O)—, —CH2—, —S(O)0-2—, and —N(Q-R4)—;


Q is selected from the group consisting of a bond, —C(R6)—, —S(O)2, —C(R6)—N(R8)—, —S(O)2—N(R8)—, —C(R6)—O—, and —C(R6)—S—; and


a and b are independently integers from 1 to 6 with the proviso that a+b is ≦7;


or a pharmaceutically acceptable salt thereof.


As used herein, the terms “alkyl”, “alkenyl”, “alkynyl” and the prefix “alk-” are inclusive of both straight chain and branched chain groups and of cyclic groups, e.g., cycloalkyl and cycloalkenyl. Unless otherwise specified, these groups contain from 1 to 20 carbon atoms, with alkenyl groups containing from 2 to 20 carbon atoms, and alkynyl groups containing from 2 to 20 carbon atoms. In some embodiments, these groups have a total of up to 10 carbon atoms, up to 8 carbon atoms, up to 6 carbon atoms, or up to 4 carbon atoms. Cyclic groups can be monocyclic or polycyclic and preferably have from 3 to 10 ring carbon atoms. Exemplary cyclic groups include cyclopropyl, cyclopropylmethyl, cyclobutyl, cyclobutylmethyl, cyclopentyl, cyclopentylmethyl, cyclohexyl, cyclohexylmethyl, adamantyl, and substituted and unsubstituted bornyl, norbornyl, and norbornenyl.


Unless otherwise specified, “alkylene”, “alkenylene”, and “alkynylene” are the divalent forms of the “alkyl”, “alkenyl”, and “alkynyl” groups defined above. The terms, “alkylenyl”, “alkenylenyl”, and “alkynylenyl” are use when “alkylene”, “alkenylene”, and “alkynylene”, respectively, are substituted. For example, an arylalkylenyl group comprises an alkylene moiety to which an aryl group is attached.


The term “haloalkyl” is inclusive of groups that are substituted by one or more halogen atoms, including perfluorinated groups. This is also true of other groups that include the prefix “halo-.” Examples of suitable haloalkyl groups are chloromethyl, trifluoromethyl, and the like.


The term “aryl” as used herein includes carbocyclic aromatic rings or ring systems. Examples of aryl groups include phenyl, naphthyl, biphenyl, fluorenyl and indenyl.


Unless otherwise indicated, the term “heteroatom” refers to the atoms O, S, or N.


The term “heteroaryl” includes aromatic rings or ring systems that contain at least one ring heteroatom (e.g., O, S, N). In some embodiments, the term “heteroaryl” includes a ring or ring system that contains 2-12 carbon atoms, 1-3 rings, 1-4 heteroatoms, and O, S, and N as the heteroatoms. Exemplary heteroaryl groups include furyl, thienyl, pyridyl, quinolinyl, isoquinolinyl, indolyl, isoindolyl, triazolyl, pyrrolyl, tetrazolyl, imidazolyl, pyrazolyl, oxazolyl, thiazolyl, benzofuranyl, benzothiophenyl, carbazolyl, benzoxazolyl, pyrimidinyl, benzimidazolyl, quinoxalinyl, benzothiazolyl, naphthyridinyl, isoxazolyl, isothiazolyl, purinyl, quinazolinyl, pyrazinyl, 1-oxidopyridyl, pyridazinyl, triazinyl, tetrazinyl, oxadiazolyl, thiadiazolyl, and so on.


The term “heterocyclyl” includes non-aromatic rings or ring systems that contain at least one ring heteroatom (e.g., O, S, N) and includes all of the fully saturated and partially unsaturated derivatives of the above mentioned heteroaryl groups. In some embodiments, the term “heterocyclyl” includes a ring or ring system that contains 2-12 carbon atoms, 1-3 rings, 1-4 heteroatoms, and O, S, and N as the heteroatoms. Exemplary heterocyclyl groups include pyrrolidinyl, tetrahydrofuranyl, morpholinyl, thiomorpholinyl, 1,1-dioxothiomorpholinyl, piperidinyl, piperazinyl, thiazolidinyl, imidazolidinyl, isothiazolidinyl, tetrahydropyranyl, quinuclidinyl, homopiperidinyl (azepanyl), 1,4-oxazepanyl, homopiperazinyl (diazepanyl), 1,3-dioxolanyl, aziridinyl, azetidinyl, dihydroisoquinolin-(1H)-yl, octahydroisoquinoline-(1H)-yl, dihydroquinolin-(2H)-yl, octahydroquinolin-(2H)-yl, dihydro-1H-imidazolyl, 3-azabicyclo[3.2.2]non-3-yl, and the like.


The term “heterocyclyl” includes bicyclic and tricyclic heterocyclic ring Systems. Such ring systems include fused and/or bridged rings and spiro rings. Fused rings can include, in addition to a saturated or partially saturated ring, an aromatic ring, for example, a benzene ring. Spiro rings include two rings joined by one spiro atom and three rings joined by two spiro atoms.


When “heterocyclyl” contains a nitrogen atom, the point of attachment of the heterocyclyl group may be the nitrogen atom.


The terms “arylene”, “heteroarylene”, and “heterocyclylene” are the divalent forms of the “aryl”, “heteroaryl”, and “heterocyclyl” groups defined above. The terms, “arylenyl”, “heteroarylenyl”, and “heterocyclylenyl” are used when “arylene,” “heteroarylene,” and “heterocyclylene”, respectively, are substituted. For example, an alkylarylenyl group comprises an arylene moiety to which an alkyl group is attached.


When a group (or substituent or variable) is present more than once in any Formula described herein, each group (or substituent or variable) is independently selected, whether explicitly stated or not. For example, for the formula —N(R8)—C(O)—N(R8)— each R8 group is independently selected. In another example, when R1 and R3 each contain an R4 group then each R4 group is independently selected. In a further example, when two Y groups are present and each Y group contains one or more R8 groups, then each Y group and each R8 group is independently selected.


The invention is inclusive of the compounds described herein in any of their pharmaceutically acceptable forms, including isomers (e.g., diastereomers and enantiomers), salts, solvates, polymorphs, and the like. In particular, if a compound is optically active, the invention specifically includes each of the compound's enantiomers as well as racemic mixtures of the enantiomers. It should be understood that the term “compound” includes any or all of such forms, whether explicitly stated or not (although at times, “salts” are explicitly stated).


The term “prodrug” means a compound that can be transformed in vivo to yield an immune response modifying compound including any of the salt, solvated, polymorphic, or isomeric forms described above. The prodrug, itself, may be an immune response modifying compound including any of the salt, solvated, polymorphic, or isomeric forms described above. The transformation may occur by various mechanisms, such as through a chemical (e.g., solvolysis or hydrolysis, for example, in the blood) or enzymatic biotransformation. A discussion of the use of prodrugs is provided by T. Higuchi and W. Stella, “Pro-drugs as Novel Delivery Systems,” Vol. 14 of the A. C. S. Symposium Series, and in Bioreversible Carriers in Drug Design, ed. Edward B. Roche, American Pharmaceutical Association and Pergamon Press, 1987.


For any of the compounds presented herein, each one of the following variables (e.g., Y, X, Z, R1, R3, Q, G1, G2, n, and so on) in any of its embodiments can be combined with any one or more of the other variables in any of their embodiments and associated with any one of the formulas described herein, as would be understood by one of skill in the art. Each of the resulting combinations of variables is an embodiment of the present invention.


For certain embodiments of Formula I, II, or III, n is 1.


For certain embodiments of Formula I, II, or III, n is 2.


For certain embodiments of Formula I, II, or III, including any one of the above embodiments, R1 is selected from the group consisting of alkyl, aminoalkyl, dihydroxyalkyl, haloalkyl, and hydroxyalkyl. For certain of these embodiments, R1 is selected from the group consisting of methyl, ethyl, n-propyl, n-butyl, 2-methylpropyl, 2-amino-2-methylpropyl, 3-amino-2,2-dimethylpropyl, 2,3-dihydroxypropyl, 2-fluoro-2-methylpropyl, and 2-hydroxy-2-methylpropyl. Alternatively, for certain of these embodiments, R1 is selected from the group consisting of (1-hydroxycyclobutyl)methyl, (1-hydroxycyclopentyl)methyl, and (1-hydroxycyclohexyl)methyl.


For certain embodiments of Formula I, II, or III, including any one of the above embodiments, R1 is heterocyclylalkylenyl wherein heterocyclyl is unsubstituted or substituted by one or more substituents independently selected from the group consisting of C1-4 alkyl, hydroxy, and oxo, except where R1 as defined does not include this definition. For certain of these embodiments, R1 is other than 3-(2-oxopyrrolidin-1-yl)propyl when R3 is phenyl or pyridin-4-yl. For certain of these embodiments, heterocyclyl is selected from the group consisting of 1,3-dioxolanyl, tetrahydropyranyl, tetrahydrofuranyl, pyrrolidinyl, piperidinyl, and morpholinyl, and alkylenyl is C1-4 alkylenyl. For certain of these embodiments, heterocyclyl is selected from the group consisting of 1,3-dioxolanyl, tetrahydropyranyl, tetrahydrofuranyl, piperidinyl, and morpholinyl, and alkylenyl is C1-4 alkylenyl. For certain of these embodiments, as well as any one of the above embodiments, R1 is selected from the group consisting of tetrahydro-2H-pyran-4-ylmethyl and (2,2-dimethyl-1,3-dioxolan-4-yl)methyl, except where R1 as defined does not include this definition. Alternatively, for certain of these embodiments, R1 is (4-hydroxytetrahydro-2H-pyran-4-yl)methyl.


For certain embodiments of Formula I, II, or III, R1 is other than 3-(2-oxopyrrolidin-1-yl)propyl when R3 is phenyl or pyridin-4-yl.


For certain embodiments of Formula I, II, or III, including any one of the above embodiments, R1 is —X—Y—R4, except where R1 as defined does not include this definition, wherein X is C1-6 alkylene which may be interrupted by one —O— group; Y is selected from the group consisting of —N(R8)—C(O)—, —N(R8)—S(O)2—, —N(R8)—C(O)—N(R8)—, and —S(O)2— wherein R8 is selected from hydrogen and methyl; and R4 is selected from the group consisting of C1-6 alkyl, isoquinolinyl, N-methylimidazolyl, pyridinyl, quinolinyl, phenyl, and phenyl substituted by a substituent selected from the group consisting of chloro, cyano, fluoro, hydroxy, and methyl. For certain of these embodiments, as well as any one of the above embodiments, R1 is selected from the group consisting of 2-[(cyclopropylcarbonyl)amino]ethyl, 4-[(cyclopropylcarbonyl)amino]butyl, 2-[(cyclohexylcarbonyl)amino]-2-methylpropyl, 2-{[(1-methylethyl)carbonyl]amino}ethyl, 4-{[(1-methylethyl)carbonyl]amino}butyl, 2-methyl-2-{[(1-methylethyl)carbonyl]amino}propyl, 2-[(methylsulfonyl)amino]ethyl, 4-[(methylsulfonyl)amino]butyl, 2-methyl-2-[(methylsulfonyl)amino]propyl, 2-methyl-2-({[(1-methylethyl)amino]carbonyl}amino)propyl, 2-methyl-2-[2-(methylsulfonyl)ethoxy]propyl, and 2,2-dimethyl-3-(methylsulfonyl)propyl, except where R1 as defined does not include this definition. Alternatively, for certain of these embodiments, R1 is selected from the group consisting of 4-(propylaminocarbonylamino)butyl, 4-(propylcarbonylamino)butyl, 4-(cyclopentylaminocarbonylamino)butyl, and 4-(cyclopentylcarbonylamino)butyl.


For certain embodiments of Formula I, II, or III, including any one of the above embodiments, R1 is —X—Y—R4, except where R1 as defined does not include this definition, wherein X is C1-6 alkylene which may be interrupted by an —O— group; Y is selected from the group consisting of —N(R8)—C(O)—, —N(R8)—S(O)2—, —N(R8)—C(O)—N(R8)—, —N(R8)—S(O)2—N(R8)—, —S(O)2—, and




embedded image



wherein Q is —C(O)—, —C(O)—NH—, or S(O)2—, R10 is pentylene, R8 is hydrogen or methyl; and R4 is selected from the group consisting of C1-6 alkyl, hydroxyC1-6 alkyl, isoquinolinyl, N-methylimidazolyl, pyridinyl, quinolinyl, benzyl, 1-phenylethyl, phenyl, and phenyl substituted by a substituent selected from the group consisting of chloro, cyano, fluoro, hydroxy, and methyl. For certain of these embodiments, X is C1-6 alkylene, Y is selected from the group consisting of —N(R8)—C(O)—, —N(R8)—S(O)2—, and —N(R8)—C(O)—N(R8)—, and R4 is selected from the group consisting of C1-4 alkyl, hydroxyC1-4 alkyl, pyridinyl, benzyl, 1-phenylethyl, phenyl, and phenyl substituted by a substituent selected from the group consisting of chloro, cyano, fluoro, hydroxy, and methyl. Alternatively, for certain of these embodiments, X is C1-6 alkylene, Y is




embedded image



wherein Q is —C(O)—, —C(O)—NH—, or S(O)2—, and R10 is pentylene, and R4 is C1-4 alkyl. For certain of these embodiments where Y is




embedded image



X is methylene. Alternatively, for certain of these embodiments, Y is —NH—S(O)2—N(R8)—, R8 is methyl, and R4 is C1-4 allyl. For certain of these embodiments where Y is —NH—S(O)2—N(R8)—, X is C2-6 alkylene.


For certain embodiments of Formula I, II, or III, including any one of the above embodiments, R1 is —X—R5, except where R1 as defined does not include this definition, wherein X is C1-6 alkylene, and R5 is




embedded image



For certain of these embodiments, R5 is




embedded image



wherein R8 is hydrogen, A is —O—, —CH2—, or —N(Q-R4)—, and a and b are each 2. For certain of these embodiments, Q-R4 is methyl. Alternatively, for certain of these embodiments, R5 is




embedded image



For certain of these embodiments, as well as any one of the above embodiments, R1 is selected from the group consisting of 4-(1,1-dioxidoisothiazolidin-2-yl)butyl, 4-[(4-morpholinecarbonyl)amino]butyl, and 2-[(4-morpholinecarbonyl)amino]ethyl, except where R1 as defined does not include this definition.


For certain embodiments of Formula I, II, or III, including any one of the above embodiments, R1 is —X—R5, except where R1 as defined does not include this definition, wherein X is C1-4 alkylene, and R5 is




embedded image



wherein R6 is ═O, R7 is propylene, R10 is pentylene, A is —O—, and a and b are each 2. For certain of these embodiments, R1 is other than 3-(2-oxopyrrolidin-1-yl)propyl when R3 is phenyl or pyridin-4-yl.


For certain embodiments of Formula I, II, or III, including any one of the above embodiments, Z is a bond.


For certain embodiments of Formula I, II, or III, including any one of the above embodiments, R3 is phenyl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, or quinolin-3-yl any of which may be unsubstituted or substituted by one or more substituents selected from the group consisting of alkyl, alkoxy, halogen, hydroxy, and hydroxyalkyl. For certain of these embodiments, when phenyl is substituted by alkyl, alkyl is at the 3-position of the phenyl group. For certain of these embodiments, R3 is selected from the group consisting of pyridin-3-yl, pyridin-4-yl, 6-fluoropyridin-3-yl, 5-(hydroxymethyl)pyridin-3-yl, 2-ethoxyphenyl, and quinolin-3-yl.


For certain embodiments of Formula I, II, or III, including any one of the above embodiments, R3 is thien-3-yl, phenyl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, or quinolin-3-yl any of which may be unsubstituted or substituted by one or more substituents selected from the group consisting of alkyl, alkoxy, halogen, cyano, hydroxy, and hydroxyalkyl, except where R3 as defined does not include this definition. For certain of these embodiments, when phenyl is substituted by alkyl, alkyl is at the 3-position of the phenyl group.


For certain embodiments of Formula I, II, or III, including any one of the above embodiments, R3 is -Ar′-Y—R4, except where R3 as defined does not include this definition, wherein Ar′ is phenylene, Y is selected from the group consisting of —C(O)—, —C(O)—N(R8)—, —N(R8)—C(O)—, —N(R8)—S(O)2—, and —N(R8)—C(O)—N(R8)— wherein R8 is selected from hydrogen and methyl; and R4 is selected from the group consisting of C1-6 alkyl, morpholin-4-yl, phenyl, and phenyl substituted by a substituent selected from the group consisting of alkyl, alkoxy, halogen, hydroxy, and hydroxyalkyl.


For certain embodiments of Formula I, II, or III, including any one of the above embodiments, except where R3 as defined does not include this definition, R3 is -Ar′-Y—R4, wherein Ar′ is phenylene, Y is selected from the group consisting of —C(O)—, —C(O)—N(R8)—, —N(R8)—C(O)—, —N(R8)—S(O)2—, and —N(R8)—C(O)—N(R8)— wherein R8 is selected from hydrogen and methyl; and R4 is selected from the group consisting of C1-6 alkyl, phenyl, and phenyl substituted by a substituent selected from the group consisting of alkyl, alkoxy, halogen, hydroxy, and hydroxyalkyl; with the proviso that when Y is —C(O)—N(R8)— or —N(R8)—C(O)—N(R8)— then R4 can also be hydrogen; and with the further proviso that when Y is —C(O)— or —N(R8)—C(O)— then R4 can also be morpholin-4-yl, piperidin-1-yl, or pyrrolidin-1-yl. For certain of these embodiments, Y is —C(O)—NH—, and R4 is hydrogen or C1-4 alkyl. For certain of these embodiments, R4 is hydrogen. Alternatively, for certain of these embodiments, Y is —NH—C(O)—, and R4 is C1-4 alkyl. Alternatively, for certain of these embodiments, Y is —C(O)—, and R4 is morpholin-4-yl, piperidin-1-yl, or pyrrolidin-1-yl. For certain of these embodiments, R3 is 3-(methylsulfonylamino)phenyl, 3-(pyrrolidin-1-ylcarbonyl)phenyl, or 3-(morpholin-4-ylcarbonyl)phenyl.


For certain embodiments, for example, embodiments of Formula I, the present invention provides a compound selected from the group consisting of 2-hydroxymethyl-1-(2-methylpropyl)-7-phenyl-1H-imidazo[4,5-c]quinolin-4-amine, 2-(2-hydroxyethyl)-1-(2-methylpropyl)-7-phenyl-1H-imidazo[4,5-c]quinolin-4-amine, 1-(4-amino-2-hydroxymethyl-7-phenyl-1H-imidazo[4,5-c]quinolin-1-yl)-2-methylpropan-2-ol, and 1-[4-amino-2-(2-hydroxyethyl)-7-phenyl-1H-imidazo[4,5-c]quinolin-1-yl]-2-methylpropan-2-ol, or a pharmaceutically acceptable salt thereof.


For certain embodiments, for example, embodiments of Formula I, the present invention provides a compound selected from the group consisting of N-[4-(4-amino-2-hydroxymethyl-7-phenyl-1H-imidazo[4,5-c]quinolin-1-yl)butyl]methanesulfonamide and N-{4-[4-amino-2-(2-hydroxyethyl)-7-phenyl-1H-imidazo[4,5-c]quinolin-1-yl]butyl]}methanesulfonamide, or a pharmaceutically acceptable salt thereof.


For certain embodiments, for example, embodiments of Formula I, the present invention provides a compound selected from the group consisting of 2-hydroxymethyl-1-(2-methylpropyl)-7-(pyridin-3-yl)-1H-imidazo[4,5-c]quinolin-4-amine, 2-(2-hydroxyethyl)-1-(2-methylpropyl)-7-(pyridin-3-yl)-1H-imidazo[4,5-c]quinolin-4-amine, 1-[4-amino-2-hydroxymethyl-7-(pyridin-3-yl)-1H-imidazo[4,5-c]quinolin-1-yl]-2-methylpropan-2-ol, and 1-[4-amino-2-(2-hydroxyethyl)-7-(pyridin-3-yl)-1H-imidazo[4,5-c]quinolin-1-yl]-2-methylpropan-2-ol, or a pharmaceutically acceptable salt thereof.


For certain embodiments, for example, embodiments of Formula I, the present invention provides a compound selected from the group consisting of N-{4-[4-amino-2-hydroxymethyl-7-(pyridin-3-yl)-1H-imidazo[4,5-c]quinolin-1-yl]butyl]}methanesulfonamide and N-{4-[4-amino-2-(2-hydroxyethyl)-7-(pyridin-3-yl)-1H-imidazo[4,5-c]quinolin-1-yl]butyl]}methanesulfonamide, or a pharmaceutically acceptable salt thereof.


For certain embodiments, the present invention provides a pharmaceutical composition comprising a therapeutically effective amount of a compound or salt of Formula I, II, III, or of any one of the above embodiments and a pharmaceutically acceptable carrier.


For certain embodiments, the present invention provides a method of preferentially inducing the biosynthesis of IFN-α in an animal comprising administering an effective amount of a compound or salt of Formula I, II, III, or of any one of the above embodiments or the above pharmaceutical composition to the animal.


For certain embodiments, the present invention provides a method of treating a viral disease in an animal in need thereof comprising administering a therapeutically effective amount of a compound or salt of Formula I, II, III, or of any one of the above embodiments or the above pharmaceutical composition to the animal. For certain of these embodiments, the method includes preferentially inducing the biosynthesis of IFN-α. For certain embodiments, the present invention provides a method of treating a neoplastic disease in an animal in need thereof comprising administering a therapeutically effective amount of a compound or salt of Formula I, II, III, or of any one of the above embodiments or the above pharmaceutical composition to the animal. For certain of these embodiments, the method includes preferentially inducing the biosynthesis of IFN-α.


For certain embodiments of the above methods, the compound or salt or pharmaceutical composition is administered systemically.


For certain embodiments, R1 is selected from the group consisting of —R4, —X—R4, —X—Y—R4, and —X—R5.


For certain embodiments, R1 is —R4.


For certain embodiments, R1 is selected from the group consisting of alkyl, aminoalkyl, dihydroxyalkyl, haloalkyl, and hydroxyalkyl.


For certain embodiments, R1 is selected from the group consisting of methyl, ethyl, n-propyl, n-butyl, 2-methylpropyl, 2-amino-2-methylpropyl, 3-amino-2,2-dimethylpropyl, 2,3-dihydroxypropyl, 2-fluoro-2-methylpropyl, and 2-hydroxy-2-methylpropyl.


For certain embodiments, R1 is selected from the group consisting of (1-hydroxycyclobutyl)methyl, (1-hydroxycyclopentyl)methyl, and (1-hydroxycyclohexyl)methyl.


For certain embodiments, R1 is heterocyclylalkylenyl wherein heterocyclyl is unsubstituted or substituted by one or more substituents independently selected from the group consisting of C1-4 alkyl, hydroxy, and oxo. For certain of these embodiments, R1 is other than 3-(2-oxopyrrolidin-1-yl)propyl when R3 is phenyl or pyridin-4-yl.


For certain embodiments, R1 is heterocyclylalkylenyl wherein heterocyclyl is selected from the group consisting of 1,3-dioxolanyl, tetrahydropyranyl, tetrahydrofuranyl, pyrrolidinyl, piperidinyl, and morpholinyl, and alkylenyl is C1-4 alkylenyl.


For certain embodiments, R1 is selected from the group consisting of tetrahydro-2H-pyran-4-ylmethyl and (2,2-dimethyl-1,3-dioxolan-4-yl)methyl.


For certain embodiments, R1 is (4-hydroxytetrahydro-2H-pyran-4-yl)methyl.


For certain embodiments, R1 is —X—Y—R4.


For certain embodiments, R1 is —X—Y—R4 wherein X is C1-6 alkylene which may be interrupted by one —O— group; Y is selected from the group consisting of —N(R8)—C(O)—, —N(R8)—S(O)2—, —N(R8)—C(O)—N(R8)—, and —S(O)2— wherein R8 is selected from hydrogen and methyl; and R4 is selected from the group consisting of C1-6 alkyl, isoquinolinyl, N-methylimidazolyl, pyridinyl, quinolinyl, phenyl, and phenyl substituted by a substituent selected from the group consisting of chloro, cyano, fluoro, hydroxy, and methyl.


For certain embodiments, R1 is selected from the group consisting of 2-[(cyclopropylcarbonyl)amino]ethyl, 4-[(cyclopropylcarbonyl)amino]butyl, 2-[(cyclohexylcarbonyl)amino]-2-methylpropyl, 2-{[(1-methylethyl)carbonyl]amino}ethyl, 4-{[(1-methylethyl)carbonyl]amino}butyl, 2-methyl-2-{[(1-methylethyl)carbonyl]amino}propyl, 2-[(methylsulfonyl)amino]ethyl, 4-[(methylsulfonyl)amino]butyl, 2-methyl-2-[(methylsulfonyl)amino]propyl, 2-methyl-2-({[(1-methylethyl)amino]carbonyl}amino)propyl, 2-methyl-2-[2-(methylsulfonyl)ethoxy]propyl, and 2,2-dimethyl-3-(methylsulfonyl)propyl.


For certain embodiments, R1 is —X—Y—R4 wherein X is C1-6 alkylene which may be interrupted by an —O— group; Y is selected from the group consisting of —N(R8)—C(O)—, —N(R8)—S(O)2—, —N(R8)—C(O)—N(R8)—, —N(R8)—S(O)2—N(R8)—, —S(O)2—, and




embedded image



wherein Q is —C(O)—, —C(O)—NH—, or S(O)2—, R10 is pentylene, R8 is hydrogen or methyl; and R4 is selected from the group consisting of C1-6 alkyl, hydroxyC1-6 alkyl, isoquinolinyl, N-methylimidazolyl, pyridinyl, quinolinyl, benzyl, 1-phenylethyl, phenyl, and phenyl substituted by a substituent selected from the group consisting of chloro, cyano, fluoro, hydroxy, and methyl.


For certain embodiments, R1 is —X—Y—R4 wherein X is C1-4 alkylene; Y is




embedded image



and R4 is C1-4 alkyl. For certain of these embodiments, R10 is pentylene, and Q is selected from the group consisting of —S(O)2—, —C(O)—, and —C(O)—NH—.


For certain embodiments, R1 is —X—Y—R4 wherein Y is —NH—S(O)2—N(R8)—, R8 is methyl, and R4 is C1-4 alkyl.


For certain embodiments, R1 is —X—R5.


For certain embodiments, R1 is —X—R5 wherein X is C1-6 alkylene, and R5 is




embedded image


For certain embodiments, R1 is —X—R5 wherein X is C1-6 alkylene, and R5 is




embedded image



wherein R8 is hydrogen, A is —O—, —CH2—, or —N(Q-R4)—, and a and b are each 2.


For certain embodiments, R1 is —X—R5 wherein X is C1-6 alkylene, R5 is




embedded image



and R7 is propylene.


For certain embodiments, R1 is —X—R5, wherein X is C1-4 alkylene, and R5 is




embedded image



wherein R6 is ═O, R7 is propylene, R10 is pentylene, A is —O—, and a and b are each 2. For certain of these embodiments, R1 is other than 3-(2-oxopyrrolidin-1-yl)propyl when R3 is phenyl or pyridin-4-yl.


For certain embodiments, R1 is selected from the group consisting of 4-(1,1-dioxidoisothiazolidin-2-yl)butyl, 4-[(4-morpholinecarbonyl)amino]butyl, and 2-[(4-morpholinecarbonyl)amino]ethyl.


For certain embodiments, R3 is selected from the group consisting of —Z—Ar, —Z—Ar′-Y—R4, and —Z—Ar′-X—Y—R4.


For certain embodiments, R3 is —Z—Ar.


For certain embodiments, R3 is thien-3-yl, phenyl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, or quinolin-3-yl any of which may be unsubstituted or substituted by one or more substituents selected from the group consisting of alkyl, alkoxy, halogen, cyano, hydroxy, and hydroxyalkyl. For certain of these embodiments, when phenyl is substituted by alkyl, alkyl is at the 3-position of the phenyl group.


For certain embodiments, R3 is phenyl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, or quinolin-3-yl any of which may be unsubstituted or substituted by one or more substituents selected from the group consisting of alkyl, alkoxy, halogen, hydroxy, and hydroxyalkyl. For certain of these embodiments, when phenyl is substituted by alkyl, alkyl is at the 3-position of the phenyl group.


For certain embodiments, R3 is selected from the group consisting of pyridin-3-yl, pyridin-4-yl, 6-fluoropyridin-3-yl, 5-(hydroxymethyl)pyridin-3-yl, 2-ethoxyphenyl, and quinolin-3-yl.


For certain embodiments, R3 is -Ar′-Y—R4.


For certain embodiments, R3 is -Ar′-Y—R4 wherein Ar′ is phenylene, Y is selected from the group consisting of —C(O)—, —C(O)—N(R8)—, —N(R8)—C(O)—, —N(R8)—S(O)2—, and —N(R8)—C(O)—N(R8)— wherein R8 is selected from hydrogen and methyl; and R4 is selected from the group consisting of C1-6 alkyl, phenyl, morpholin-4-yl, and phenyl substituted by a substituent selected from the group consisting of alkyl, alkoxy, halogen, hydroxy, and hydroxyalkyl.


For certain embodiments, R3 is -Ar′-Y—R4, wherein Ar′ is phenylene, Y is selected from the group consisting of —C(O)—, —C(O)—N(R8)—, —N(R8)—C(O)—, —N(R8)—S(O)2—, and —N(R8)—C(O)—N(R8)— wherein R8 is selected from hydrogen and methyl; and R4 is selected from the group consisting of C1-6 alkyl, phenyl, and phenyl substituted by a substituent selected from the group consisting of alkyl, alkoxy, halogen, hydroxy, and hydroxyalkyl; with the proviso that when Y is —C(O)—N(R8)— or —N(R8)—C(O)—N(R8)— then R4 can also be hydrogen; and with the further proviso that when Y is —C(O)— or —N(R8)—C(O)— then R4 can also be morpholin-4-yl, piperidin-1-yl, or pyrrolidin-1-yl.


For certain embodiments, R3 is -Ar′-Y—R4, wherein Ar′ is phenylene, Y is —C(O)—NH—, and R4 is hydrogen or C1-4 alkyl.


For certain embodiments, R3 is -Ar′-Y—R4, wherein Ar′ is phenylene, Y is —NH—C(O)—, and R4 is C1-4 alkyl.


For certain embodiments, R3 is -Ar′-Y—R4, wherein Ar′ is phenylene, Y is —C(O)—, and R4 is morpholin-4-yl, piperidin-1-yl, or pyrrolidin-1-yl.


For certain embodiments, R3 is 3-(methylsulfonylamino)phenyl, 3-(pyrrolidin-1-ylcarbonyl)phenyl, or 3-(morpholin-4-ylcarbonyl)phenyl.


For certain embodiments, R3 is -Ar′-X—Y—R4 wherein Ar′ is phenylene, X is C1-4 alkylene, Y is selected from the group consisting of —N(R8)—C(O)—, —N(R8)—S(O)2—, and —N(R8)—C(O)—N(R8)— wherein R8 is selected from hydrogen and methyl; and R4 is selected from the group consisting of C1-6 alkyl, phenyl, and phenyl substituted by a substituent selected from the group consisting of alkyl, alkoxy, halogen, hydroxy, and hydroxyalkyl.


For certain embodiments, R4 is selected from the group consisting of hydrogen, alkyl, alkenyl, aryl, arylalkylenyl, heteroaryl, heteroarylalkylenyl, and heterocyclyl, wherein the alkyl, alkenyl, aryl, arylalkylenyl, heteroaryl, heteroarylalkylenyl, and heterocyclyl groups can be unsubstituted or substituted by one or more substituents independently selected from the group consisting of alkyl, alkoxy, hydroxyalkyl, haloalkyl, haloalkoxy, halogen, nitro, hydroxy, mercapto, cyano, aryl, aryloxy, heteroaryl, heteroaryloxy, heterocyclyl, amino, alkylamino, dialkylamino, and, in the case of alkyl, alkenyl, and heterocyclyl, oxo.


For certain embodiments, R4 is selected from the group consisting of C1-6 alkyl, hydroxyC1-6 alkyl, isoquinolinyl, N-methylimidazolyl, pyridinyl, quinolinyl, benzyl, 1-phenylethyl, phenyl, and phenyl substituted by a substituent selected from the group consisting of chloro, cyano, fluoro, hydroxy, and methyl.


For certain embodiments, R4 is selected from the group consisting of C1-6 alkyl, isoquinolinyl, N-methylimidazolyl, pyridinyl, quinolinyl, phenyl, and phenyl substituted by a substituent selected from the group consisting of chloro, cyano, fluoro, hydroxy, and methyl.


For certain embodiments, R4 is selected from the group consisting of C1-6 alkyl, morpholin-4-yl, phenyl, and phenyl substituted by a substituent selected from the group consisting of alkyl, alkoxy, halogen, hydroxy, and hydroxyalkyl.


For certain embodiments, R4 is selected from the group consisting of C1-6 alkyl, phenyl, and phenyl substituted by a substituent selected from the group consisting of alkyl, alkoxy, halogen, hydroxy, and hydroxyalkyl.


For certain embodiments, R4 is morpholin-4-yl, piperidin-1-yl, or pyrrolidin-1-yl.


For certain embodiments, R4 is C1-6 alkyl.


For certain embodiments, R4 is hydrogen or C1-4 alkyl.


For certain embodiments, R4 is C1-4 alkyl.


For certain embodiments, R4 is hydrogen.


For certain embodiments, R5 is selected from the group consisting of:




embedded image



For certain of these embodiments, —X—R5 is other than 3-(2-oxopyrrolidin-1-yl)propyl when R3 is phenyl or pyridin-4-yl.


For certain embodiments, R5 is




embedded image


For certain embodiments, R5 is




embedded image



wherein R8 is hydrogen, A is —O—, —CH2—, or —N(Q-R4)—, and a and b are each 2.


For certain embodiments, R5 is




embedded image



and R7 is propylene.


For certain embodiments, R5 is




embedded image



wherein R6 is ═O, R7 is propylene, R10 is pentylene, A is —O—, and a and b are each 2.


For certain embodiments, R6 is selected from the group consisting of ═O and ═S.


For certain embodiments, R6 is ═O.


For certain embodiments, R6 is ═S.


For certain embodiments, R7 is C2-7 alkylene.


For certain embodiments, R7 is C2-4 alkylene.


For certain embodiments, R8 is selected from the group consisting of hydrogen, alkyl, alkoxyalkylenyl, hydroxyalkylenyl, arylalkylenyl, and heteroarylalkylenyl.


For certain embodiments, R8 is selected from the group consisting of hydrogen, C1-4 alkyl, and C1-4 alkoxyC1-4 alkylenyl.


For certain embodiments, R8 is hydrogen or C1-4 alkyl.


For certain embodiments, R8 is selected from hydrogen and methyl


For certain embodiments, R8 is methyl.


For certain embodiments, R8 is hydrogen.


For certain embodiments, R10 is C3-8 alkylene.


For certain embodiments, R10 is C4-6 alkylene.


For certain embodiments, R10 is pentylene.


For certain embodiments, A is selected from the group consisting of —O—, —C(O)—, —CH2—, —S(O)0-2—, and —N(Q-R4)—.


For certain embodiments, A is —O—, —CH2—, —S—, or —S(O)2—.


For certain embodiments, A is —O—, —CH2—, or —N(Q-R4)—.


For certain embodiments, A is —O— or —S(O)2—.


For certain embodiments, A is —O—.


For certain embodiments, A is —CH2—.


For certain embodiments, A is —N(Q-R4)—.


For certain embodiments, A is —N(CH3)—.


For certain embodiments, Ar is selected from the group consisting of aryl and heteroaryl both of which can be unsubstituted or can be substituted by one or more substituents independently selected from the group consisting of alkyl, alkenyl, alkoxy, haloalkyl, haloalkoxy, halogen, nitro, hydroxy, hydroxyalkyl, mercapto, cyano, carboxy, formyl, amino, alkylamino, and dialkylamino.


For certain embodiments, Ar is aryl.


For certain embodiments, Ar is phenyl.


For certain embodiments, Ar is phenyl which may be unsubstituted or substituted by one or more substituents selected from the group consisting of alkyl, alkoxy, halogen, hydroxy, and hydroxyalkyl. For certain of these embodiments, alkyl is at the 3-position of the phenyl group.


For certain embodiments, Ar is heteroaryl.


For certain embodiments, Ar is pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, or quinolin-3-yl any of which may be unsubstituted or substituted by one substituent selected from the group consisting of alkyl, alkoxy, halogen, hydroxy, and hydroxyalkyl.


For certain embodiments, Ar′ is selected from the group consisting of arylene and heteroarylene both of which can be unsubstituted or can be substituted by one or more substituents independently selected from the group consisting of alkyl, alkenyl, alkoxy, haloalkyl, haloalkoxy, halogen, nitro, hydroxy, hydroxyalkyl, mercapto, cyano, carboxy, formyl, amino, alkylamino, and dialkylamino.


For certain embodiments, Ar′ is phenylene.


For certain embodiments, Ar′ is pyridnylene.


For certain embodiments, including any one of the above embodiments of Formula II, G1 is selected from the group consisting of —C(O)—R′, α-aminoacyl, α-aminoacyl-α-aminoacyl, —C(O)—O—R′, —C(O)—N(R″)R′, —C(═NY′)—R′, —CH(OH)—C(O)—OY′, —CH(OC1-4 alkyl)Y0, —CH2Y1, and —CH(CH3)Y1; R′ and R″ are independently selected from the group consisting of C1-10 alkyl, C3-7 cycloalkyl, phenyl, benzyl, and 2-phenylethyl, each of which may be unsubstituted or substituted by one or more substituents independently selected from the group consisting of halogen, hydroxy, nitro, cyano, carboxy, C1-6 alkyl, C1-4 alkoxy, aryl, heteroaryl, aryl-C1-4 alkylenyl, heteroaryl-C1-4 alkylenyl, halo-C1-4 alkylenyl, halo-C1-4 alkoxy, —O—C(O)—CH3, —C(O)—O—CH3, —C(O)—NH2, —O—CH2—C(O)—NH2, —NH2, and —S(O)2—NH2, with the proviso that R″ can also be hydrogen; α-aminoacyl is an α-aminoacyl group derived from an α-amino acid selected from the group consisting of racemic, D-, and L-amino acids; Y′ is selected from the group consisting of hydrogen, C1-6 alkyl, and benzyl; Y0 is selected from the group consisting of C1-6 alkyl, carboxy-C1-6 alkylenyl, amino-C1-4 alkylenyl, mono-N—C1-6 alkylamino-C1-4 alkylenyl, and di-N,N—C1-6 alkylamino-C1-4 alkylenyl; and Y1 is selected from the group consisting of mono-N—C1-6 alkylamino, di-N,N—C1-6 alkylamino, morpholin-4-yl, piperidin-1-yl, pyrrolidin-1-yl, and 4-C1-4 alkylpiperazin-1-yl.


For certain embodiments, including any one of the above embodiments of Formula II, G1 is selected from the group consisting of —C(O)—R′, α-aminoacyl, and —C(O)—O—R′. For certain of these embodiments, R′ contains one to ten carbon atoms. For certain of these embodiments, α-aminoacyl is an α-C2-11 aminoacyl group derived from an α-amino acid selected from the group consisting of racemic, D-, and L-amino acids containing a total of at least 2 carbon atoms and a total of up to 11 carbon atoms, and may also include one or more heteroatoms selected from the group consisting of O, S, and N.


For certain embodiments, including any one of the above embodiments of Formula III, G2 is selected from the group consisting of —X2—C(O)—R′, α-aminoacyl, α-aminoacyl-α-aminoacyl, —X2—C(O)—O—R′, and —C(O)—N(R″)R′. For certain of these embodiments, X2 is selected from the group consisting of a bond; —CH2—O—; —CH(CH3)—O—; —C(CH3)2—O—; and, in the case of —X2—C(O)—O—R′, —CH2—NH—; R′ and R″ are independently selected from the group consisting of C1-10 alkyl, C3-7 cycloalkyl, phenyl, benzyl, and 2-phenylethyl, each of which may be unsubstituted or substituted by one or more substituents independently selected from the group consisting of halogen, hydroxy, nitro, cyano, carboxy, C1-6 alkyl, C1-4 alkoxy, aryl, heteroaryl, aryl-C1-4 alkylenyl, heteroaryl-C1-4 alkylenyl, halo-C1-4 alkylenyl, halo-C1-4 alkoxy, —O—C(O)—CH3, —C(O)—O—CH3, —C(O)—NH2, —O—CH2—C(O)—NH2, —NH2, and —S(O)2—NH2, with the proviso that R″ can also be hydrogen; and α-aminoacyl is an α-aminoacyl group derived from an α-amino acid selected from the group consisting of racemic, D-, and L-amino acids.


For certain embodiments, including any one of the above embodiments of Formula III, G2 is selected from the group consisting of —C(O)—R′ and α-aminoacyl, wherein R′ is C1-6 alkyl or phenyl which is unsubstituted or substituted by one or more substituents independently selected from the group consisting of halogen, hydroxy, nitro, cyano, carboxy, C1-6 alkyl, C1-4 alkoxy, aryl, heteroaryl, aryl-C1-4 alkylenyl, heteroaryl-C1-4 alkylenyl, halo-C1-4 alkylenyl, halo-C1-4 alkoxy, —O—C(O)—CH3, —C(O)—O—CH3, —C(O)—NH2, —O—CH2—C(O)—NH2, —NH2, and —S(O)2—NH2.


For certain embodiments, including any one of the above embodiments of Formula III G2 is selected from the group consisting of α-amino-C2-5 alkanoyl, C2-6 alkanoyl, C1-6 alkoxycarbonyl, and C1-6 alkylcarbamoyl.


For certain embodiments, including any one of the above embodiments which include an α-aminoacyl group, α-aminoacyl is an α-aminoacyl group derived from a naturally occurring α-amino acid selected from the group consisting of racemic, D-, and L-amino acids.


For certain embodiments, including any one of the above embodiments which include an α-aminoacyl group, α-aminoacyl is an α-aminoacyl group derived from an α-amino acid found in proteins, wherein the amino acid is selected from the group consisting of racemic, D-, and L-amino acids.


For certain embodiments, the hydrogen atom of the hydroxy group of Formula II (including any one of its embodiments) is replaced by G2, wherein G2 is defined as in any one of the above embodiments of G2.


For certain embodiments, Q is selected from the group consisting of a bond, —C(R6)—, —S(O)2, —C(R6)—N(R8)—, —S(O)2—N(R8)—, —C(R6)—O—, and —C(R6)—S—.


For certain embodiments, Q is selected from the group consisting of a bond, —C(R6)—, —S(O)2—, and —C(R6)—N(R8)—.


For certain embodiments, Q is selected from the group consisting of —C(O)—, —S(O)2—, and —C(O)—N(R8)—. In certain of these embodiments, R8 is hydrogen or methyl.


For certain embodiments, Q is selected from the group consisting of —S(O)2—, —C(O)—, and —C(O)—NH—.


For certain embodiments, Q is —C(O)—.


For certain embodiments, Q is —S(O)2—.


For certain embodiments, Q is —C(R6)—N(R8)—.


For certain embodiments, Q is —C(O)—N(R8)— wherein R8 is hydrogen or methyl.


For certain embodiments, X is alkylene which can be optionally interrupted or terminated by arylene and optionally interrupted by one —O— group.


For certain embodiments, X is C1-6 alkylene which may be interrupted by one —O— group.


For certain embodiments, X is C1-6 alkylene.


For certain embodiments, X is C2-6 alkylene.


For certain embodiments, X is C1-4 alkylene.


For certain embodiments, X is methylene.


For certain embodiments, X is ethylene.


For certain embodiments, X is butylene.


For certain embodiments, Y is selected from the group consisting of —O—, —C(R6)—, —C(R6)—N(R8)—, —S(O)0-2—, —N(R8)-Q-,




embedded image


For certain embodiments, Y is selected from the group consisting of —N(R8)—C(O)—, —N(R8)—S(O)2—, —N(R8)—C(O)—N(R8)—, —N(R8)—S(O)2—N(R8)—, —S(O)2—, and




embedded image



In certain of these embodiments, Q is —C(O)—, —C(O)—NH—, or S(O)2—, R10 is pentylene, and R8 is hydrogen or methyl.


For certain embodiments, Y is selected from the group consisting of —N(R8)—C(O)—, —N(R8)—S(O)2—, —N(R8)—C(O)—N(R8)—, and —S(O)2—. In certain of these embodiments, R8 is selected from hydrogen and methyl.


For certain embodiments, Y is selected from the group consisting of —C(O)—, —C(O)—N(R8)—, —N(R8)—C(O)—, —N(R8)—S(O)2—, and —N(R8)—C(O)—N(R8)— wherein R8 is selected from hydrogen and methyl.


For certain embodiments, Y is selected from the group consisting of —N(R8)—C(O)—, —N(R8)—S(O)2—, and —N(R8)—C(O)—N(R8)— wherein R8 is selected from hydrogen and methyl.


For certain embodiments, Y is selected from the group consisting of —C(O)—, —N(R8)—C(O)—, —N(R8)—S(O)2—, and —N(R8)—C(O)—N(R8)—. In certain of these embodiments, R8 is selected from hydrogen and methyl.


For certain embodiments, Y is




embedded image



For certain of these embodiments, R10 is pentylene, and Q is selected from the group consisting of —S(O)2—, —C(O)—, and —C(O)—NH—.


For certain embodiments, Y is —NH—S(O)2—N(R8)—. In certain of these embodiments, R8 is methyl.


For certain embodiments, Z is a bond.


For certain embodiments, Z is alkylene.


For certain embodiments, a and b are independently integers from 1 to 6 with the proviso that a+b is ≦7.


For certain embodiments, a and b are each independently 1 to 3.


For certain embodiments, a and b are each 2.


For certain embodiments, a is 1, 2, or 3, and b is 2.


For certain embodiments, n is 1 or 2.


For certain embodiments, n is 1.


For certain embodiments, n is 2.


Preparation of the Compounds


Compounds of the invention may be synthesized by synthetic routes that include processes analogous to those well known in the chemical arts, particularly in light of the description contained herein. The starting materials are generally available from commercial sources such as Aldrich Chemicals (Milwaukee, Wis., USA) or are readily prepared using methods well known to those skilled in the art (e.g., prepared by methods generally described in Louis F. Fieser and Mary Fieser, Reagents for Organic Synthesis, v. 1-19, Wiley, New York, (1967-1999 ed.); Alan R. Katritsky, Otto Meth-Cohn, Charles W. Rees, Comprehensive Organic Functional Group Transformations, v. 1-6, Pergamon Press, Oxford, England, (1995); Barry M. Trost and Ian Fleming, Comprehensive Organic Synthesis, v. 1-8, Pergamon Press, Oxford, England, (1991); or Beilsteins Handbuch der organischen Chemie, 4, Aufl. Ed. Springer-Verlag, Berlin, Germany, including supplements (also available via the Beilstein online database)).


For illustrative purposes, the reaction schemes depicted below provide potential routes for synthesizing the compounds of the present invention as well as key intermediates. For more detailed description of the individual reaction steps, see the EXAMPLES section below. Those skilled in the art will appreciate that other synthetic routes may be used to synthesize the compounds of the invention. Although specific starting materials and reagents are depicted in the reaction schemes and discussed below, other starting materials and reagents can be easily substituted to provide a variety of derivatives and/or reaction conditions. In addition, many of the compounds prepared by the methods described below can be further modified in light of this disclosure using conventional methods well known to those skilled in the art.


In the preparation of compounds of the invention it may sometimes be necessary to protect a particular functionality while reacting other functional groups on an intermediate. The need for such protection will vary depending on the nature of the particular functional group and the conditions of the reaction step. Suitable amino protecting groups include acetyl, trifluoroacetyl, tert-butoxycarbonyl (Boc), benzyloxycarbonyl, and 9-fluorenylmethoxycarbonyl (Fmoc). Suitable hydroxy protecting groups include acetyl and silyl groups such as the tert-butyl dimethylsilyl group. For a general description of protecting groups and their use, see T. W. Greene and P. G. M. Wuts, Protective Groups in Organic Synthesis, John Wiley & Sons, New York, USA, 1991.


Conventional methods and techniques of separation and purification can be used to isolate compounds of the invention, as well as various intermediates related thereto. Such techniques may include, for example, all types of chromatography (high performance liquid chromatography (HPLC), column chromatography using common absorbents such as silica gel, and thin layer chromatography), recrystallization, and differential (i.e., liquid-liquid) extraction techniques.


In some embodiments, compounds of the invention can be prepared according to Reaction Scheme I, wherein R1, R3, and n are as defined above and alkyl is methyl or ethyl.


In Reaction Scheme I an ether substituted 1H-imidazo[4,5-c]quinolin-4-amine of Formula X is cleaved to provide a hydroxyalkyl substituted 1H-imidazo[4,5-c]quinolin-4-amine of Formula I. The reaction is conveniently carried out by adding a solution of boron tribromide in a suitable solvent such as dichloromethane to a solution or suspension of a compound of Formula X in a suitable solvent such as dichloromethane at ambient or at a sub-ambient temperature, for example, at 0° C. The product or pharmaceutically acceptable salt thereof can be isolated using conventional methods.


Numerous compounds of Formula X are known; others can be prepared using known synthetic methods. See United States Patent Application Publication No. 2004/0147543 and the references cited therein.




embedded image


In some embodiments, compounds of the invention can also be prepared according to Reaction Scheme II, wherein R1, R3, and n are as defined above and alkyl is methyl or ethyl.


In step (1) of Reaction Scheme II, a 7-bromo 1H-imidazo[4,5-c]quinolin-4-amine of Formula XI is converted to a 1H-imidazo[4,5-c]quinolin-4-amine of Formula X. The reaction can be carried out using known palladium catalyzed coupling reactions such as Suzki coupling, Stille coupling, Sonogashira coupling, and the Heck reaction using the methods described in United States Patent Application Publication No. 2004/0147543.


Numerous compounds of Formula XI are known; others can be prepared using known synthetic methods. See United States Patent Application Publication No. 2004/0147543 and the references cited therein.


In step (2) of Reaction Scheme II, an ether substituted 1H-imidazo[4,5-c]quinolin-4-amine of Formula X is cleaved to provide a hydroxyalkyl substituted 1H-imidazo[4,5-c]quinolin-4-amine of Formula I using the method described in Reaction Scheme I.




embedded image


In some embodiments, compounds of the invention can also be prepared according to Reaction Scheme III, wherein R3, R4, Q, X, and n are as defined above and alkyl is methyl or ethyl.


In step (1) of Reaction Scheme III, the amino group on the —X—NH2 substituent of a 1H-imidazo[4,5-c]quinolin-4-amine of Formula XII is further elaborated using conventional methods to provide 1H-imidazo[4,5-c]quinolin-4-amine of Formula XIII. For example, a compound of Formula XII can react with an acid chloride of Formula R4C(O)Cl to provide a compound of Formula XIII in which -Q-R4 is —C(O)—R4. In addition, a compound of Formula XII can react with sulfonyl chloride of Formula R4S(O)2Cl or a sulfonic anhydride of Formula (R4S(O)2)2O to provide a compound of Formula XIII in which -Q-R4 is —S(O)2—R4. Numerous acid chlorides of Formula R4C(O)Cl, sulfonyl chlorides of Formula R4S(O)2Cl, and sulfonic anhydrides of Formula (R4S(O)2)2O are commercially available; others can be readily prepared using known synthetic methods. The reaction is conveniently carried out by adding the acid chloride of Formula R4C(O)Cl, sulfonyl chloride of Formula R4S(O)2Cl, or sulfonic anhydride of Formula (R4S(O)2)2O to a solution of the compound of Formula XII in a suitable solvent such as chloroform, dichloromethane, or 1-methyl-2-pyrrolidinone. Optionally a base such as triethylamine, pyridine, or N,N-diisopropylethylamine, or a combination thereof can be added. The reaction can be carried out at room temperature or initially at a sub-ambient temperature such as 0° C. and then warming to room temperature. Ureas of Formula XIII, where -Q-R4 is —C(R6)—NH—R4 and R6 is ═O can be prepared by reacting a compound of Formula XII with isocyanates of Formula R4N═C═O, Numerous isocyanates of Formula R4N═C═O are commercially available; others can be readily prepared using known synthetic methods. The reaction can be conveniently carried out by adding the isocyanate of Formula R4N═C═O to a solution of a compound of Formula XII in a suitable solvent such as dichloromethane or chloroform. Optionally a base such as triethylamine can be added. The reaction can be carried out at room temperature or initially at a sub-ambient temperature such as 0° C. and then warming to room temperature.


In step (2) of Reaction Scheme III, an ether substituted 1H-imidazo[4,5-c]quinolin-4-amine of Formula XIII is cleaved to provide a hydroxyalkyl substituted 1H-imidazo[4,5-c]quinolin-4-amine of Formula XIV, which is a subgenus of Formula I, using the method described in Reaction Scheme I.




embedded image


In some embodiments, compounds of the invention can be prepared according to Reaction Scheme IV, wherein R1, R3, G1, and n are as defined above. Compounds of Formula I can be prepared according to the methods described above. The amino group of a compound of Formula I can be converted by conventional methods to a functional group such as an amide, carbamate, urea, amidine, or another hydrolyzable group. A compound of this type can be made by the replacement of a hydrogen atom in an amino group with a group such as —C(O)—R′, α-aminoacyl, α-aminoacyl-α-aminoacyl, —C(O)—O—R′, —C(O)—N(R″)R′, —C(═NY′)—R′, —CH(OH)—C(O)—OY′, —CH(OC1-4 alkyl)Y0, —CH2Y1, and —CH(CH3)Y1; wherein R′ and R″ are independently selected from the group consisting of C1-10 alkyl, C3-7 cycloalkyl, phenyl, benzyl, and 2-phenylethyl, each of which may be unsubstituted or substituted by one or more substituents independently selected from the group consisting of halogen, hydroxy, nitro, cyano, carboxy, C1-6 alkyl, C1-4 alkoxy, aryl, heteroaryl, aryl-C1-4 alkylenyl, heteroaryl-C1-4 alkylenyl, halo-C1-4 alkylenyl, halo-C1-4 alkoxy, —O—C(O)—CH3, —C(O)—O—CH3, —C(O)—NH2, —O—CH2—C(O)—NH2, —NH2, and —S(O)2—NH2, with the proviso that R″ can also be hydrogen; each α-aminoacyl is an α-aminoacyl group derived from an α-amino acid selected from the group consisting of racemic, D-, and L-amino acids; Y′ is selected from the group consisting of hydrogen, C1-6 alkyl, and benzyl; Y0 is selected from the group consisting of C1-6 alkyl, carboxy-C1-6 alkylenyl, amino-C1-4 alkylenyl, mono-N—C1-6 alkylamino-C1-4 alkylenyl, and di-N,N—C1-6 alkylamino-C1-4 alkylenyl; and Y1 is selected from the group consisting of mono-N—C1-6 alkylamino, di-N,N—C1-6 alkylamino, morpholin-4-yl, piperidin-1-yl, pyrrolidin-1-yl, and 4-C1-4 alkylpiperazin-1-yl. Particularly useful compounds of Formula II are amides derived from carboxylic acids containing one to ten carbon atoms, amides derived from amino acids, and carbamates containing one to ten carbon atoms. The reaction can be carried out, for example, by combining a compound of Formula I with a chloroformate or acid chloride, such as ethyl chloroformate or acetyl chloride, in the presence of a base such as triethylamine in a suitable solvent such as dichloromethane at ambient temperature.


Alternatively, the hydroxy group on a compound of Formula I can be protected using a suitable silyl group such as tert-butyl dimethylsilyl using conventional methods. The G1 group may then be installed using conventional methods followed by the removal of the hydroxy protecting group under acidic conditions to provide a compound of Formula II.




embedded image


In some embodiments, compounds of the invention can be prepared according to Reaction Scheme V, wherein R1, R3, G2, and n are as defined above. Compounds of Formula I can be prepared according to the methods described above. The hydrogen atom of the alcohol group of a compound of Formula I can be replaced using conventional methods with a group such as X2—C(O)—R′, α-aminoacyl, -aminoacyl-α-aminoacyl, —X2—C(O)—O—R′, and —C(O)—N(R″)R′; wherein X2 is selected from the group consisting of a bond; —CH2—O—; —CH(CH3)—O—; —C(CH3)2—O—; and, in the case of —X2—C(O)—O—R′, —CH2—NH—; R′ and R″ are independently selected from the group consisting of C1-10 alkyl, C3-7 cycloalkyl, phenyl, benzyl, and 2-phenylethyl, each of which may be unsubstituted or substituted by one or more substituents independently selected from the group consisting of halogen, hydroxy, nitro, cyano, carboxy, C1-6 alkyl, C1-4 alkoxy, aryl, heteroaryl, aryl-C1-4 alkylenyl, heteroaryl-C1-4 alkylenyl, halo-C1-4 alkylenyl, halo-C1-4 alkoxy, —O—C(O)—CH3, —C(O)—O—CH3, —C(O)—NH2, —O—CH2—C(O)—NH2, —NH2, and —S(O)2—NH2, with the proviso that R″ can also be hydrogen; and each α-aminoacyl is an α-aminoacyl group derived from an α-amino acid selected from the group consisting of racemic, D-, and L-amino acids. Particularly useful compounds of Formula III are esters made from carboxylic acids containing one to six carbon atoms, unsubstituted or substituted benzoic acid esters, or esters made from naturally occurring amino acids. For example, the reaction can be carried out by treating a compound of Formula I with a carboxylic acid or amino acid under Mitsunobu reaction conditions by adding triphenylphosphine and a carboxylic acid to a solution or suspension of a compound of Formula I in a suitable solvent such as tetrahydrofuran and then slowly adding diisopropyl azodicarboxylate. The reaction can be run at a sub-ambient temperature such as 0° C.




embedded image


In some embodiments, compounds of the invention can also be prepared using the synthetic methods described in the EXAMPLES below.


Pharmaceutical Compositions and Biological Activity


Pharmaceutical compositions of the invention contain a therapeutically effective amount of a compound or salt described above in combination with a pharmaceutically acceptable carrier.


The terms “a therapeutically effective amount” and “effective amount” mean an amount of the compound or salt sufficient to induce a therapeutic or prophylactic effect, such as cytokine induction, immunomodulation, antitumor activity, and/or antiviral activity. Cytokine induction can include preferentially inducing the biosynthesis of IFN-α. The exact amount of compound or salt used in a pharmaceutical composition of the invention will vary according to factors known to those of skill in the art, such as the physical and chemical nature of the compound or salt, the nature of the carrier, and the intended dosing regimen.


In some embodiments, the compositions of the invention will contain sufficient active ingredient or prodrug to provide a dose of about 100 nanograms per kilogram (ng/kg) to about 50 milligrams per kilogram (mg/kg), preferably about 10 micrograms per kilogram (μg/kg) to about 5 mg/kg, of the compound or salt to the subject.


In other embodiments, the compositions of the invention will contain sufficient active ingredient or prodrug to provide a dose of, for example, from about 0.01 mg/m2 to about 5.0 mg/m2, computed according to the Dubois method, in which the body surface area of a subject (m2) is computed using the subject's body weight: m2=(wt kg0.425×height cm0.725)×0.007184, although in some embodiments the methods may be performed by administering a compound or salt or composition in a dose outside this range. In some of these embodiments, the method includes administering sufficient compound to provide a dose of from about 0.1 mg/m2 to about 2.0 mg/m2 to the subject, for example, a dose of from about 0.4 mg/m2 to about 1.2 mg/m2.


A variety of dosage forms may be used, such as tablets, lozenges, capsules, parenteral formulations (e.g., intravenous formulations), syrups, creams, ointments, aerosol formulations, transdermal patches, transmucosal patches and the like. These dosage forms can be prepared with conventional pharmaceutically acceptable carriers and additives using conventional methods, which generally include the step of bringing the active ingredient into association with the carrier.


The compounds or salts of the invention can be administered as the single therapeutic agent in the treatment regimen, or the compounds or salts described herein may be administered in combination with one another or with other active agents, including additional immune response modifiers, antivirals, antibiotics, antibodies, proteins, peptides, oligonucleotides, etc.


Compounds or salts of the invention have been shown to induce the production of certain cytokines in experiments performed according to the tests set forth below. These results indicate that the compounds or salts are useful for modulating the immune response in a number of different ways, rendering them useful in the treatment of a variety of disorders. The compounds or salts of the invention are especially useful as immune response modifiers due to their ability to preferentially induce interferon-α, thus providing a benefit over compounds that also induce pro-inflammatory cytokines (e.g. TNF-α) or that induce pro-inflammatory cytokines at higher levels. While interferon-α and pro-inflammatory cytokines are beneficial in treating certain conditions, interferon-α preferentially induced is believed to be better tolerated by patients, because the significantly lower levels of pro-inflammatory cytokines can result in fewer or less severe adverse side effects experienced by patients. For example, if a subject is treated for a disease (e.g., hepatitis C, metastatic cancer) with a compound that induces significant levels of pro-inflammatory cytokines, while treating the disease, the compound may also cause side effects, such as severe and/or widespread inflammation, tissue destruction, or emesis, that render the subject unable or unwilling to receive the treatment. Alternatively, if a subject is treated with a compound that preferentially induces interferon-α then the compound may treat the disease with less risk of adverse side effects from pro-inflammatory cytokines such as TNF-α. Therefore, by maintaining the ability to treat a condition and reducing adverse side effects, compounds that preferentially induce IFN-α provide an advantage over compounds that would also induce pro-inflammatory cytokines, such as TNF-α, at higher levels.


The ability of the compounds or salts of the invention to preferentially induce the biosynthesis of IFN-α may be particularly advantageous when administered systemically, since adverse side effects, including for example widespread inflammation, may be reduced or even eliminated. Compounds of the invention may be administered systemically in a number of ways, including but not limited to oral and intravenous administration.


Cytokines whose biosynthesis may be induced by compounds or salts of the invention include IFN-α, IP-10, MCP-1, and a variety of other cytokines. In some instances, cytokines such as TNF-α, IL-12 may be induced, albeit at significantly reduced levels. Among other effects, these and other cytokines can inhibit virus production and tumor cell growth, making the compounds or salts useful in the treatment of viral diseases and neoplastic diseases. Accordingly, the invention provides a method of inducing cytokine biosynthesis in an animal comprising administering an effective amount of a compound or salt of the invention to the animal. The animal to which the compound or salt is administered for induction of cytokine biosynthesis may have a disease as described infra, for example a viral disease or a neoplastic disease, and administration of the compound or salt may provide therapeutic treatment. Alternatively, the compound or salt may be administered to the animal prior to the animal acquiring the disease so that administration of the compound or salt may provide a prophylactic treatment.


In addition to the ability to induce the production of cytokines, compounds or salts of the invention can affect other aspects of the innate immune response. For example, the compounds or salts may cause maturation of dendritic cells or proliferation and differentiation of B-lymphocytes.


Whether for prophylaxis or therapeutic treatment of a disease, and whether for effecting innate or acquired immunity, the compound or salt or composition may be administered alone or in combination with one or more active components as in, for example, a vaccine adjuvant. When administered with other components, the compound or salt or composition and other component or components may be administered separately; together but independently such as in a solution; or together and associated with one another such as (a) covalently linked or (b) non-covalently associated, e.g., in a colloidal suspension.


Conditions for which compounds or salts or compositions identified herein may be used as treatments include, but are not limited to:


(a) viral diseases such as, for example, diseases resulting from infection by an adenovirus, a herpesvirus (e.g., HSV-I, HSV-II, CMV, or VZV), a poxvirus (e.g., an orthopoxvirus such as variola or vaccinia, or molluscum contagiosum), a picornavirus (e.g., rhinovirus or enterovirus), an orthomyxovirus (e.g., influenzavirus), a paramyxovirus (e.g., parainfluenzavirus, mumps virus, measles virus, and respiratory syncytial virus (RSV)), a coronavirus (e.g., SARS), a papovavirus (e.g., papillomaviruses, such as those that cause genital warts, common warts, or plantar warts), a hepadnavirus (e.g., hepatitis B virus), a flavivirus (e.g., hepatitis C virus or Dengue virus), or a retrovirus (e.g., a lentivirus such as HIV);


(b) bacterial diseases such as, for example, diseases resulting from infection by bacteria of, for example, the genus Escherichia, Enterobacter, Salmonella, Staphylococcus, Shigella, Listeria, Aerobacter, Helicobacter, Klebsiella, Proteus, Pseudomonas, Streptococcus, Chlamydia, Mycoplasma, Pneumococcus, Neisseria, Clostridium, Bacillus, Corynebacterium, Mycobacterium, Campylobacter, Vibrio, Serratia, Providencia, Chromobacterium, Brucella, Yersinia, Haemophilus, or Bordetella;


(c) other infectious diseases, such as chlamydia, fungal diseases including but not limited to candidiasis, aspergillosis, histoplasmosis, cryptococcal meningitis, or parasitic diseases including but not limited to malaria, pneumocystis carnii pneumonia, leishmaniasis, cryptosporidiosis, toxoplasmosis, and trypanosome infection;


(d) neoplastic diseases, such as intraepithelial neoplasias, cervical dysplasia, actinic keratosis, basal cell carcinoma, squamous cell carcinoma, renal cell carcinoma, Kaposi's sarcoma, melanoma, leukemias including but not limited to acute myeloid leukemia, acute lymphocytic leukemia, chronic myeloid leukemia, chronic lymphocytic leukemia, multiple myeloma, Hodgkin's lymphoma, non-Hodgkin's lymphoma, cutaneous T-cell lymphoma, B-cell lymphoma, and hairy cell leukemia, and other cancers;


(e) TH2-mediated, atopic diseases, such as atopic dermatitis or eczema, eosinophilia, asthma, allergy, allergic rhinitis, and Ommen's syndrome;


(f) certain autoimmune diseases such as systemic lupus erythematosus, essential thrombocythemia, multiple sclerosis, discoid lupus, alopecia greata; and


(g) diseases associated with wound repair such as, for example, inhibition of keloid formation and other types of scarring (e.g., enhancing wound healing, including chronic wounds).


Additionally, a compound or salt identified herein may be useful as a vaccine adjuvant for use in conjunction with any material that raises either humoral and/or cell mediated immune response, such as, for example, live viral, bacterial, or parasitic immunogens; inactivated viral, tumor-derived, protozoal, organism-derived, fungal, or bacterial immunogens; toxoids; toxins; self-antigens; polysaccharides; proteins; glycoproteins; peptides; cellular vaccines; DNA vaccines; autologous vaccines; recombinant proteins; and the like, for use in connection with, for example, BCG, cholera, plague, typhoid, hepatitis A, hepatitis B, hepatitis C, influenza A, influenza B, parainfluenza, polio, rabies, measles, mumps, rubella, yellow fever, tetanus, diphtheria, hemophilus influenza b, tuberculosis, meningococcal and pneumococcal vaccines, adenovirus, HIV, chicken pox, cytomegalovirus, dengue, feline leukemia, fowl plague, HSV-1 and HSV-2, hog cholera, Japanese encephalitis, respiratory syncytial virus, rotavirus, papilloma virus, yellow fever, and Alzheimer's Disease.


Compounds or salts identified herein may be particularly helpful in individuals having compromised immune function. For example, compounds or salts may be used for treating the opportunistic infections and tumors that occur after suppression of cell mediated immunity in, for example, transplant patients, cancer patients and HIV patients.


Thus, one or more of the above diseases or types of diseases, for example, a viral disease or a neoplastic disease may be treated in an animal in need thereof (having the disease) by administering a therapeutically effective amount of a compound or salt of the invention to the animal.


An animal may also be vaccinated by administering an effective amount of a compound or salt described herein, as a vaccine adjuvant. In one embodiment, there is provided a method of vaccinating an animal comprising administering an effective amount of a compound or salt described herein to the animal as a vaccine adjuvant.


An amount of a compound or salt effective to induce cytokine biosynthesis is an amount sufficient to cause one or more cell types, such as dendritic cells and B-cells to produce an amount of one or more cytokines such as, for example, IFN-α, IP-10, and MCP-1 that is increased (induced) over a background level of such cytokines. The precise amount will vary according to factors known in the art but is expected to be a dose of about 100 ng/kg to about 50 mg/kg, preferably about 10 μg/kg to about 5 mg/kg. In other embodiments, the amount is expected to be a dose of, for example, from about 0.01 mg/m2 to about 5.0 mg/m2, (computed according to the Dubois method as described above) although in some embodiments the induction of cytokine biosynthesis may be performed by administering a compound or salt in a dose outside this range. In some of these embodiments, the method includes administering sufficient compound or salt or composition to provide a dose of from about 0.1 mg/m2 to about 2.0 mg/m2 to the subject, for example, a dose of from about 0.4 mg/m2 to about 1.2 mg/m2.


The invention provides a method of treating a disease which is responsive to the induction of cytokine biosynthesis, particularly the preferential induction of IFN-α, including a method of treating a viral infection in an animal and a method of treating a neoplastic disease in an animal, comprising administering an effective amount of a compound or salt or composition of the invention to the animal. An amount effective to treat or inhibit a viral infection is an amount that will cause a reduction in one or more of the manifestations of viral infection, such as viral lesions, viral load, rate of virus production, and mortality as compared to untreated control animals. The precise amount that is effective for such treatment will vary according to factors known in the art but is expected to be a dose of about 100 ng/kg to about 50 mg/kg, preferably about 10 μg/kg to about 5 mg/kg. An amount of a compound or salt effective to treat a neoplastic condition is an amount that will cause a reduction in tumor size or in the number of tumor foci. Again, the precise amount will vary according to factors known in the art but is expected to be a dose of about 100 ng/kg to about 50 mg/kg, preferably about 10 μg/kg to about 5 mg/kg. In other embodiments, the amount is expected to be a dose of, for example, from about 0.01 mg/m2 to about 5.0 mg/m2, (computed according to the Dubois method as described above) although in some embodiments either of these methods may be performed by administering a compound or salt in a dose outside this range. In some of these embodiments, the method includes administering sufficient compound or salt to provide a dose of from about 0.1 mg/m2 to about 2.0 mg/m2 to the subject, for example, a dose of from about 0.4 mg/m2 to about 1.2 mg/m2.


In addition to the formulations and uses described specifically herein, other formulations, uses, and administration devices suitable for compounds of the present invention are described in, for example, International Publication Nos. WO 03/077944 and WO 02/036592, U.S. Pat. No. 6,245,776, and U.S. Publication Nos. 2003/0139364, 2003/185835, 2004/0258698, 2004/0265351, 2004/076633, and 2005/0009858.


Objects and advantages of this invention are further illustrated by the following examples, but the particular materials and amounts thereof recited in these examples, as well as other conditions and details, should not be construed to unduly limit this invention.


EXAMPLES
Examples 1-6

A solution of boron tribromide in heptane (400 μL of 1 M) was added to a tube containing a chilled (0° C.) solution of a compound of Formula Xa (about 25 mg) in dichloromethane (1 mL). The tube was vortexed, maintained at 0° C. for 0.5 hour, and then shaken overnight at ambient temperature. The reaction mixture was diluted with methanol (1 mL) and hydrochloric acid (250 μL of 6 N), vortexed, and then the solvents were removed by vacuum centrifugation. The compounds were purified by preparative high performance liquid chromatography (prep HPLC) using a Waters FractionLynx automated purification system. The prep HPLC fractions were analyzed using a Waters LC/TOF-MS, and the appropriate fractions were centrifuge evaporated to provide the trifluoroacetate salt of the desired compound. Reversed phase preparative liquid chromatography was performed with non-linear gradient elution from 5-95% B where A is 0.05% trifluoroacetic acid/water and B is 0.05% trifluoroacetic acid/acetonitrile. Fractions were collected by mass-selective triggering. Table 1 shows the structure of the starting material, a reference for the starting material, the structure of the resulting compound, and the observed accurate mass for the isolated trifluoroacetate salt.














embedded image

















Reference


Measured


Example
Formula Xa
R1
R3
Mass (M + H)














1
U.S. Patent Publication 2004/0147543 Example 206


embedded image




embedded image


430.2227





2
U.S. Patent Publication 2004/0147543 Example 136


embedded image




embedded image


377.1985





3
U.S. Patent Publication 2004/0147543 Example 145


embedded image




embedded image


362.2008





4
U.S. Patent Publication 2004/0147543 Example 146


embedded image




embedded image


392.2104





5
U.S. Patent Publication 2004/0147543 Example 183


embedded image




embedded image


431.2209





6
U.S. Patent Publication 2004/0147543 Example 184


embedded image




embedded image


431.2220









Examples 7-31
Part A

1-(4-Amino-7-bromo-2-ethoxymethyl-1H-imidazo[4,5-c]quinolin-1-yl)-2-methylpropan-2-ol (2 g, U.S. Patent Publication 2004/0147543 Example 125) was dissolved in 7:3 volume:volume chloroform:methanol (100 mL). Aliquots (2 mL, 1.0 eq.) were added to test tubes and the solvent was removed by vacuum centrifugation. A tube was charged with a boronic acid (1.1 eq) from the table below. n-Propanol (1.6 mL) was added to each tube, the tube was purged with nitrogen, and then sonicated until the contents were well mixed. Each tube was then charged sequentially with 150 μL of a solution of palladium (II) acetate in toluene (60 mg of palladium (II) acetate dissolved in 15 mL of toluene), 600 μL of 2 M aqueous sodium carbonate solution, 113 μL of water, and 53 μL of a 15 mole % solution of triphenylphosphine in n-propanol. The tubes were purged with nitrogen and then heated at 80° C. overnight.


The reaction mixtures were purified by solid phase extraction. Sufficient hydrochloric acid (1 N) was added to each reaction mixture to adjust the pH to ≦5. Each reaction mixture was loaded onto a cartridge (Waters Oasis Samples Extraction Cartridges MCX 6 cc). Methanol (5 mL) was added to each cartridge. The cartridge was placed in a clean test tube. The cartridge was eluted with two successive 5 mL portions of 1 N ammonia in methanol. The solvent was removed by vacuum centrifugation.


Part B

Dichloromethane (1 mL) was added to each tube, the tube was sonicated to dissolve the solids, and then the tube was chilled to 0° C. in an ice bath. A solution of boron tribromide in heptane (600 μL of 1 M) was added to each tube. The tube was vortexed, maintained at 0° C. for 0.5 hour, and then shaken overnight at ambient temperature. The solvents were removed by vacuum centrifugation. Methanol (1 mL) and hydrochloric acid (1 mL of 6 N) were added to each tube, the tubes were vortexed, and then the solvents were removed by vacuum centrifugation. The compounds were purified as described above for Examples 1-6. Table 2 shows the boronic acid, the structure of the resulting compound, and the observed accurate mass for the isolated trifluoroacetate salt.









TABLE 2









embedded image


















Measured


Example
Reagent
R3
Mass (M + H)













7
Phenylboronic acid


embedded image


363.1847





8
Pyridine-3-boronic acid


embedded image


364.1779





9
3-Methylphenylboronic acid


embedded image


377.2001





10
4-Methylphenylboronic acid


embedded image


377.1979





11
o-Tolylboronic acid


embedded image


377.1990





12
(2-Hydroxyphenyl)boronic acid


embedded image


379.1776





13
3-Hydroxyphenylboronic acid


embedded image


379.1755





14
3,5-Dimethylphenylboronic acid


embedded image


391.2130





15
4-(Hydroxymethyl)phenylboronic acid


embedded image


393.1935





16
3-Chlorophenylboronic acid


embedded image


397.1432





17
2-Chlorophenylboronic acid


embedded image


397.1447





18
4-Chlorophenylboronic acid


embedded image


397.1431





19
2,4-Difluorophenylboronic acid


embedded image


399.1642





20
Benzo[b]furan-2-boronic acid


embedded image


403.1812





21
(3-Aminocarbonylphenyl)boronic acid


embedded image


406.1889





22
4-(N,N-Dimethylamino)phenylboronic acid


embedded image


406.2255





23
(3-Aminomethylphenyl)boronic acid hydrochloride


embedded image


392.2108





24
3,4-Dichlorophenylboronic acid


embedded image


431.1061





25
4-(Ethylsulfonyl)phenylboronic acid


embedded image


455.1771





26
3- (Methylsulfonylamino)phenylboronic acid


embedded image


456.1727





27
3-(Pyrrolidine-1- carbonyl)phenylboronic acid


embedded image


460.2364





28
4-(Pyrrolidine-1- carbonyl)phenylboronic acid


embedded image


460.2395





29
3-(Butylaminocarbonyl)phenylboronic acid


embedded image


462.2488





30
3- (Isobutylaminocarbonyl)phenylboronic acid


embedded image


462.2527





31
4′-(4,4,5,5-Tetramethyl-1,3,2- dioxaborolan-2-yl)acetanilinde


embedded image


420.2022









Example 32
[4-Amino-7-pyridin-3-yl-1-(tetrahydro-2H-pyran-4-ylmethyl)-1H-imidazo[4,5-c]quinolin-2-yl]methanol



embedded image


Part A

To a mixture of 1-tetrahydro-2H-pyran-4-ylmethanamine HCl (19 g, 120 mmol), dichloromethane (626 mL), and triethyl amine (43.7 mL, 313 mmol) was added 4-chloro-3-nitroquinolin at 0° C. The resulting bright yellow solution was stirred at ambient temperature for 18 hours. The reaction was then concentrated under reduced pressure. The resulting solid was stirred in water (100 mL) and filtered to give 43 g of 7-bromo-3-nitro-N-(tetrahydro-2H-pyran-4-ylmethyl)quinolin-4-amine as a yellow powder.


Part B

7-Bromo-3-nitro-N-(tetrahydro-2H-pyran-4-ylmethyl)quinolin-4-amine (20 g, 55 mmol) was dissolved in a mixture of acetonitrile (500 mL) and isopropyl alcohol (50 mL) and the solution was placed in a pressure bottle. Platinum on carbon (5%, 2 g) was then added and the reaction mixture was shaken under H2 at 48 PSI (3.3×105 Pa). After 2 hours, the reaction mixture was filtered through a pad of CELITE filter agent. The pad was rinsed with acetonitrile and the combined filtrates were concentrated under reduced pressure to give 7-bromo-N4-(tetrahydro-2H-pyran-4-ylmethyl)quinoline-3,4-diamine which was carried forward without further purification assuming quantitative yield.


Part C

Chloroacetyl chloride (5.2 mL, 65 mmol) was added to 7-bromo-N4-(tetrahydro-2H-pyran-4-ylmethyl)quinoline-3,4-diamine (55 mmol) dissolved in 273 mL of dichloromethane at 0° C. A solid formed after adding half of the chloroacetyl chloride at which point additional dichloromethane (100 mL) was added. The reaction was stirred for 1 hour at ambient temperature. The yellow suspension was quenched first with aqueous saturated sodium bicarbonate followed by 50% aqueous sodium hydroxide until a pH of 14 was reached. Filtration provided 10 g of N-{7-bromo-4-[(tetrahydro-2H-pyran-4-ylmethyl)amino]quinolin-3-yl}-2-chloroacetamide as a tan solid. The filtrate was placed in a separatory funnel and the layers were separated. The aqueous layer was extracted with additional dichloromethane. The combined organic extracts were combined, dried over sodium sulfate, filtered, and concentrated under reduced pressure to afford additional N-{7-bromo-4-[(tetrahydro-2H-pyran-4-ylmethyl)amino]quinolin-3-yl}-2-chloroacetamide as a yellow oil. The yellow oil was carried forward without further purification assuming a 50% yield (27.3 mmol). The oil was combined with ethanol (100 mL) and triethylamine (7.5 mL, 54 mmol). The resulting yellow solution was refluxed for 2 hours. The reaction was cooled to ambient temperature and the solvent was removed under reduced pressure to provide 7-bromo-2-(chloromethyl)-1-(tetrahydro-2H-pyran-4-ylmethyl)-1H-imidazo[4,5-c]quinoline as a brown oil that was used without further purification assuming quantitative yield.


Part D

Potassium acetate (5.3 g, 55 mmol) was added to 7-bromo-2-(chloromethyl)-1-(tetrahydro-2H-pyran-4-ylmethyl)-1H-imidazo[4,5-c]quinoline (27.3 mmol) dissolved in dimethylformamide (100 mL). The resulting suspension was stirred at 90° C. for 1 hour. The reaction was cooled to ambient temperature and water (200 mL) was added. The aqueous layer was extracted with chloroform. The combined organic extracts were combined, dried over sodium sulfate, filtered, and concentrated under reduced pressure to afford an orange oily solid. Chromatography (SiO2, 0-30% 80/18/2 v/v/v CHCl3/CH3OH/concentrated NH4OH (CMA)/CHCl3) gave material that was stirred in acetonitrile and filtered to provide 2.3 g of [7-bromo-1-(tetrahydro-2H-pyran-4-ylmethyl)-1H-imidazo[4,5-c]quinolin-2-yl]methyl acetate as a tan solid.


Part E

3-Chloroperoxybenozic acid (2.4 g, 50% pure, 7.0 mmol) was added to a mixture of [7-bromo-1-(tetrahydro-2H-pyran-4-ylmethyl)-1H-imidazo[4,5-c]quinolin-2-yl]methyl acetate (2.3 g, 5.4 mmol) and chloroform (27 mL) at ambient temperature. The reaction was stirred at this temperature for 18 hours. Saturated aqueous sodium bicarbonate (50 mL) and water (50 mL) were then added to the reaction and the layers were separated. The aqueous layer was extracted with additional dichloromethane. The organic layers were combined, dried over sodium sulfate, and concentrated under reduced pressure to a dark oil. This oil was dissolved in methanol (27 mL) and to this solution was added 15 M ammonium hydroxide (3.6 mL, 54 mmol) and benzene sulfonyl chloride (2.9 mL, 23 mmol). The resulting reaction mixture was stirred at ambient temperature for 2 hours before adding additional 15 M ammonium hydroxide (3.6 mL, 54 mmol) and benzene sulfonyl chloride (2.9 mL, 23 mmol). The reaction was stirred 18 hours. The reaction was then concentrated under reduced pressure and diluted with saturated aqueous sodium bicarbonate and chloroform. A suspension resulted that was filtered to afford a solid that was stirred with saturated aqueous sodium bicarbonate and filtered to give 1.1 g of [4-amino-7-bromo-1-(tetrahydro-2H-pyran-4-ylmethyl)-1H-imidazo[4,5-c]quinolin-2-yl]methanol as a white solid.


Part F

To a mixture of [4-amino-7-bromo-1-(tetrahydro-2H-pyran-4-ylmethyl)-1H-imidazo[4,5-c]quinolin-2-yl]methanol (500 mg, 1.28 mmol), 3-pyridyl boronic acid (233 mg, 1.90 mmol), potassium carbonate (579 mg, 4.20 mmol), dimethoxyethane (5 mL), and water (2.5 mL) under a nitrogen atmosphere was added Pd(PPh3)2Cl2 (18 mg, 0.026 mmol). The resulting suspension was refluxed for 2 hours. The reaction was cooled to ambient temperature. The reaction mixture was diluted with chloroform and placed directly onto a silica gel column. Chromatography (SiO2, 0-40% CMA/CHCl3) gave material that was stirred in methanol and filtered to provide 263 mg of [4-amino-7-pyridin-3-yl-1-(tetrahydro-2H-pyran-4-ylmethyl)-1H-imidazo[4,5-c]quinolin-2-yl]methanol as tan crystals, m.p. 260-262° C. MS (APCI) m/z 500.3 (M+H)+; Anal. calcd for C22H23N5O2: C, 67.85; H, 5.95; N, 17.98. Found: C, 67.49; H, 5.87; N, 17.83.


Examples 33-44

The compounds in the table below were prepared according to the following general procedure. The ether analog was dissolved or suspended in a solvent such as dichloromethane and the reaction mixture was stirred at 0° C. or at ambient temperature. Boron tribromide (2.5-10 equivalents, 1 M solution in dichloromethane) was added dropwise to the reaction mixture. The reaction was stirred at ambient temperature for 4 h-6 days after which it was quenched by the careful addition of methanol or water and the solvent was removed under reduced pressure. The product was isolated by a procedure similar to that described below. The residue was combined with 2-6 M hydrochloric acid, heated to 50° C., and stirred for 1-2 hours. The resulting solution was cooled (ice bath) and then free-based (pH 9) with the addition of 2-6 M aqueous sodium hydroxide. The desired material was extracted from the aqueous using an organic solvent such as dichloromethane, ethyl acetate, or chloroform. The organic layer was separated, dried (MgSO4), filtered, and the solvent was evaporated under reduced pressure to afford the crude product. The final compound was isolated by prep HPLC (ISCO Combiflash Separation System or Analogix Purification System).














Example
Structure
Analytical Data

















33


embedded image


Off-white needles, mp 180-182° C. Anal. calcd for C21H23N5O3•2.60H2O: C, 57.29; H, 6.46; N, 15.91. Found: C, 57.32; H, 6.15; N, 15.73; MS (APCI) m/z 394 (M + H)+.





34


embedded image


Off-white needles, mp 196-198° C. Anal. calcd for C23H26N6O3S: C, 59.21; H, 5.62; N, 18.01. Found: C, 59.16; H, 5.84; N, 17.98; MS (APCI) m/z 467 (M + H)+.





35


embedded image


Off-white needles, mp 154-157° C. Anal. calcd for C26H30N6O2•0.25H2O: C, 67.44; H, 6.64; N, 18.15. Found: C, 67.48; H, 6.55; N, 18.00; MS (APCI) m/z 459 (M + H)+.





36


embedded image


Off-white needles, mp 182-184° C. Anal. calcd for C26H31N7O2: C, 65.94; H, 6.60; N, 20.70. Found: C, 65.70; H, 6.49; N, 20.39); MS (APCI) m/z 474 (M + H)+.





37


embedded image


Beige needles, mp 111-114° C. Anal. calcd for C20H20FN5O2•2.0 H2O: C, 57.55; H, 5.79; N, 16.78. Found: C, 57.33; H, 5.57; N, 16.76 MS (APCI) m/z 382 (M + H)+





38


embedded image


Off-white solid, mp 188-190° C. Anal. calcd for C21H24N6O3S•1.70H2O C: 53.53, H: 5.86, N: 17.84. Found: C: 53.23, % H: 5.62, N: 17.81. MS (APCI) m/z 459 (M + H)+





39


embedded image


Green solid, mp 206-209° C. Anal. calcd for C24H29N7O2•0.27H2O C: 63.72, H: 6.58, N: 21.67. Found: C: 63.97, H: 6.26, N: 21.64. MS (APCI) m/z 448 (M + H)+





40


embedded image


Off-white solid, mp 211-212° C. Anal. calcd for C24H25N6O2•0.25H2O C: 65.96, H: 6.57, N: 19.23. Found: C: 65.52 H: 6.38, N: 19.38 MS (APCI) m/z 433 (M + H)+





41


embedded image


Yellow solid, mp 225-227° C. Anal. calcd for C26H31N7O2•0.38H2O C: 65.00, H: 6.66, N: 20.41. Found: C: 65.26, H: 6.53, N: 20.42. MS (APCI) m/z 474 (M + H)+





42


embedded image


White solid, mp 241-242° C. Anal. calcd for C26H30N6O2 C: 68.10, H: 6.59, N: 18.33. Found: C: 67.85, H: 6.48, N: 18.32. MS (APCI) m/z 459 (M + H)+





43


embedded image


White solid, mp 225-227° C. Anal. calcd for C24H28N6O2•0.38H2O C: 65.61, H: 6.60, N: 19.13. Found: C: 65.19, H: 6.74, N: 18.96. MS (APCI) m/z 433 (M + H)+





44


embedded image


White solid, mp >300° C. Anal. calcd for C24H28N6O4S•HBr•0.2H2O: C, 49.61; H, 5.10; N, 14.46. Found: C, 49.26; H, 4.84; N, 14.29 MS (APCI) m/z 497 (M + H)+





45


embedded image


Tan solid, mp >300° C. Anal. calcd for C27H32N6O3•HBr: C, 56.94; H, 5.84; N, 14.76. Found: C, 56.66; H, 5.69; N, 14.63. MS (APCI) m/z 489 (M + H)+





46


embedded image


Off-white solid, mp >300° C. Anal. calcd for C27H33N7O3•HBr: C, 55.14; H, 5.90; N, 16.67. Found: C, 54.86; H, 5.60; N, 16.64. MS (APCI) m/z 504 (M + H)+





47


embedded image


Off white needles, mp 218-221° C. Anal. calcd for C26H29N5O2•1.25 H2O: C, 67.00; H, 6.81; N, 15.03. Found: C, 67.04; H, 6.78, N, 14.90. MS (APCI) m/z 444 (M + H)+





48


embedded image


Off white solid, mp >250° C. Anal. calcd for C25H27N5O3•0.75 H2O: C, 65.41; H, 6.26; N, 15.26. Found: C, 65.48; H, 6.40; N, 15.07. MS (APCI) m/z 446 (M + H)+





49


embedded image


Off-white solid, mp 166-170° C. Anal. calcd for C24H27N5O2•0.9 H2O: C, 66.46; H, 6.69; N, 16.15. Found: C, 66.09; H, 6.73; N, 15.97. MS (APCI) m/z 418 (M + H)+





50


embedded image


Off-white solid, mp 260-264° C. Anal. calcd for C29H33N5O3•0.6 H2O•1.0 HCl: C, 63.69; H, 6.49; N, 12.81. Found: C, 63.37; H, 6.23; N, 12.62. MS (APCI) m/z 500.3 (M + H)+





51


embedded image


Off-white needles, mp 141-143° C. Anal. calcd for C20H21N5O2•1.00CH4O•1.0 H2O: C, 61.15 H, 6.35 N, 16.98. Found: C, 61.15 H, 6.06 N, 17.34. MS (APCI) m/z 364 (M + H)+









Examples 52-92
Part A

A solution of 1-(4-aminobutyl)-2-ethoxymethyl-7-(pyridin-3-yl)-1H-imidazo[4,5-c]quinoline-4-amine (43 mg, 0.10 mmol, 1 eq, U.S. Patent Application Publication 2004/0147543, Example 372) and triethylamine (5 eq) in chloroform (1 mL) was added to a tube containing a reagent (1.1 eq) from the table below. The reaction mixture was vortexed overnight and then purified by solid-supported liquid-liquid extraction according to the following procedure. The reaction mixture was loaded onto diatomaceous earth that had been equilibrated with 1 N sodium hydroxide (600 μL) for about 20 minutes. After 10 minutes chloroform (300 μL) was added to elute the product from the diatomaceous earth into a well of a collection plate. After an additional 10 minutes the process was repeated with additional chloroform (500 μL). The solvent was then removed by vacuum centrifugation.


Part B

The material from Part A was dissolved in dichloromethane (600 μL) and the solution was cooled to 0° C. Boron tribromide (400 μL of 1 M in dichloromethane) was added, the reaction mixture was vortexed, chilled for 15 minutes, and then vortexed at ambient temperature overnight. The solvent was removed by vacuum centrifugation. Methanol (300 μL) and 6 N hydrochloric acid (300 μL) were added and the reaction mixture was vortexed for 10 minutes. The solvent was removed by vacuum centrifugation. The compounds were purified as described above for Examples 1-6. The table below shows the reagent used for each example, the structure of the resulting compound, and the observed accurate mass for the isolated trifluoroacetate salt.














embedded image


















Measured Mass


Example
Reagent
R
(M + H)













52
None
—H
363.1964





53
Propionyl chloride


embedded image


419.2168





54
Cyclopropanecarbonyl chloride


embedded image


431.2213





55
Butyryl chloride


embedded image


433.2345





56
Isobutyryl chloride


embedded image


433.2346





57
Methoxyacetyl chloride


embedded image


421.1982





58
Cyclobutanecarbonyl chloride


embedded image


445.2338





59
Isovaleryl chloride


embedded image


447.2536





60
Cyclohexanecarbonyl chloride


embedded image


473.2679





61
Phenylacetyl chloride


embedded image


481.2368





62
4-Cyanobenzoyl chloride


embedded image


492.2143





63
3-Methoxybenzoyl chloride


embedded image


483.2121





64
p-Anisoyl chloride


embedded image


483.2115





65
2-Chlorobenzoyl chloride


embedded image


501.1813





66
3-Chlorobenzoyl chloride


embedded image


501.1812





67
Nicotinoyl chloride hydrochloride


embedded image


468.2122





68
Picolinoyl chloride hydrochloride


embedded image


468.2124





69
1-Propanesulfonyl chloride


embedded image


469.2039





70
Dimethylsulfamoyl chloride


embedded image


470.1961





71
1-Butanesulfonyl chloride


embedded image


483.2160





72
3- Methylbenzenesulfonyl chloride


embedded image


517.2044





73
o-Toluenesulfonyl chloride


embedded image


517.2071





74
p-Toluenesulfonyl chloride


embedded image


517.2020





75
2-Fluorobenzenesulfonyl chloride


embedded image


521.1786





76
3-Cyanobenzenesulfonyl chloride


embedded image


528.1805





77
3- Methoxybenzenesulfonyl chloride


embedded image


519.1829





78
4- Methoxybenzenesulfonyl chloride


embedded image


519.1799





79
3-Pyridinesulfonyl chloride hydrochloride


embedded image


504.1852





80
Ethyl isocyanate


embedded image


434.2307





81
Isopropyl isocyanate


embedded image


448.2498





82
n-Propyl isocyanate


embedded image


448.2448





83
Cyclopentyl isocyanate


embedded image


474.2629





84
Phenyl isocyanate


embedded image


482.2338





85
Cyclohexyl isocyanate


embedded image


488.2759





86
2-Fluorophenyl isocyanate


embedded image


500.2209





87
3-Fluorophenyl isocyanate


embedded image


500.2206





88
4-Fluorophenyl isocyanate


embedded image


500.2209





89
(R)-(+)-alpha- Methylbenzyl isocyanate


embedded image


510.2580





90
(S)-(-)-alpha- Methylbenzyl isocyante


embedded image


510.2588





91
1-Piperidinecarbonyl chloride


embedded image


474.2606





92
4-Methyl-1- piperazinecarbonyl chloride


embedded image


489.2725









Examples 93-119

The compounds in the table below were prepared and purified according to the general method of Examples 7-31 using N-{4-[4-amino-7-bromo-2-ethoxymethyl-1H-imidazo[4,5-c]quinolin-1-yl]butyl}methanesulfonamide (U.S. Patent Application Publication 2004/0147543, Example 612) in lieu of 1-(4-amino-7-bromo-2-ethoxymethyl-1H-imidazo[4,5-c]quinolin-1-yl)-2-methylpropan-2-ol. Prior to purification by solid phase extraction, the reaction mixture for Example 119 was combined with water (500 μL), glacial acetic acid (500 μL), and tetrahydrofuran (500 μL) and then heated at 60° C. for 2 hours. The table below shows the boronic acid, the structure of the resulting compound, and the observed accurate mass for the isolated trifluoroacetate salt.














embedded image


















Measured





Mass


Example
Reagent
R
(M + H)













93
Phenylboronic acid


embedded image


440.1745





94
Pyridine-3-boronic acid


embedded image


441.1745





95
Pyridine-4-boronic acid


embedded image


441.1679





96
Thiophene-3-boronic acid


embedded image


446.1307





97
2-Fluorophenylboronic acid


embedded image


458.1668





98
3-Fluorophenylboronic acid


embedded image


458.1671





99
4-Fluorophenylboronic acid


embedded image


458.1674





100
4-Cyanophenylboronic acid


embedded image


465.1684





101
3-(Hydroxymethyl)phenylboronic acid


embedded image


470.1882





102
4-(Hydroxymethyl)phenylboronic acid


embedded image


470.1909





103
3-Chlorophenylboronic acid


embedded image


474.1408





104
2-Chlorophenylboronic acid


embedded image


474.1366





105
4-Chlorophenylboronic acid


embedded image


474.1384





106
(2-Aminocarbonylphenyl)boronic acid


embedded image


483.1796





107
(3-Aminocarbonylphenyl)boronic acid


embedded image


483.1812





108
(2-Acetylaminophenyl)boronic acid


embedded image


497.1938





109
[3-(3-Hydroxypropyl)phenyl]boronic acid


embedded image


498.2136





110
3,4-Dichlorophenylboronic acid


embedded image


508.0989





111
3-(N- Isopropylaminocarbonyl)phenylboronic acid


embedded image


525.2331





112
3-(N- Propylaminocarbonyl)phenylboronic acid


embedded image


525.2284





113
3-(Methylsulfonylamino)phenylboronic acid


embedded image


533.1659





114
3-(Pyrrolidine-1- carbonyl)phenylboronic acid


embedded image


537.2320





115
4-(Pyrrolidine-1- carbonyl)phenylboronic acid


embedded image


537.2271





116
3- (Isobutylaminocarbonyl)phenylboronic acid


embedded image


539.2418





117
4- (Isobutylaminocarbonyl)phenylboronic acid


embedded image


539.2429





118
3-(Piperidine-1- carbonyl)phenylboronic acid


embedded image


551.2483





119
5-tert-butyldimethylsilanyloxy- methyl)pyridine-3-boronic acid


embedded image


471.1819









Examples 120-138

The compounds in the table below were prepared according to the following method. A test tube containing a solution of the corresponding ether analog (ethoxymethyl or methoxyethyl) in dichloromethane (1 mL) was cooled to 0° C. in an ice bath. Boron tribromide (4 eq of 1 M in dichloromethane) was added. The tube was vortexed, maintained at 0° C. for 0.5 hr, and then stirred at ambient temperature for 9 hours. Methanol (1 mL) and 6 N hydrochloric acid (500 μL) were added and the tube was vortexed for 5 minutes. The solvent was removed by vacuum centrifugation. The compounds were purified as described above for Examples 1-6. The table below shows a reference for the starting ether, the structure of the resulting compound, and the observed accurate mass for the isolated trifluoroacetate salt.














embedded image


















U.S.







patent application




Publication



Measured Mass


Example
2004/0147543
R1
R2
R3
(M + H)





120
Example 102


embedded image




embedded image




embedded image


347.1904





121
Example 111


embedded image




embedded image




embedded image


372.1819





122
Example 201


embedded image




embedded image




embedded image


440.1755





123
Example 113


embedded image




embedded image




embedded image


348.1810





124
Example 194


embedded image




embedded image




embedded image


458.2540





125
Example 139


embedded image




embedded image




embedded image


470.1832





126
Example 152


embedded image




embedded image




embedded image


466.1897





127
Example 180


embedded image




embedded image




embedded image


502.2554





128
Example 129


embedded image




embedded image




embedded image


460.2326





129
Example 130


embedded image




embedded image




embedded image


476.2285





130
Example 185


embedded image




embedded image




embedded image


460.2365





131
Example 376


embedded image




embedded image




embedded image


469.2024





132
Example 438


embedded image




embedded image




embedded image


388.2130





133
Example 492


embedded image




embedded image




embedded image


467.1852





134
Example 488


embedded image




embedded image




embedded image


366.1574





135
Example 422


embedded image




embedded image




embedded image


433.2374





136
Example 480


embedded image




embedded image




embedded image


482.1815





137
*


embedded image




embedded image




embedded image


476.2383





138
Example 670


embedded image




embedded image




embedded image


444.2371





*Although not specifically exemplified, the compound is readily prepared using the disclosed synthetic methods.






Example 139
[4-Amino-7-[3-(pyrrolidin-1-ylcarbonyl)phenyl]-1-(tetrahydro-2H-pyran-4-ylmethyl)-1H-imidazo[4,5-c]quinolin-2-yl]methanol



embedded image


To a mixture of [4-amino-7-bromo-1-(tetrahydro-2H-pyran-4-ylmethyl)-1H-imidazo[4,5-c]quinolin-2-yl]methanol (400 mg, 1.00 mmol), 3-pyrrolidinylcarbonyl phenyl boronic acid (328 mg, 1.50 mmol), potassium carbonate (455 mg, 3.30 mmol), dimethoxyethane (4 mL), and water (2 mL) under a nitrogen atmosphere was added Pd(PPh3)2Cl2 (14 mg, 0.02 mmol). The resulting suspension was refluxed for 18 hours. The reaction was cooled to ambient temperature. The reaction mixture was diluted with water and extracted with chloroform. The organic layer was dried over sodium sulfate, filtered and concentrated under reduced pressure. Chromatography (SiO2, 0-40% CMA/CHCl3) gave material that was stirred in acetonitrile and filtered to provide 100 mg of [4-amino-7-[3-(pyrrolidin-1-ylcarbonyl)phenyl]-1-(tetrahydro-2H-pyran-4-ylmethyl)-1H-imidazo[4,5-c]quinolin-2-yl]methanol as a white powder, m.p. 281-284° C. MS (APCI) m/z 486.3 (M+H)+; Anal. calcd for C28H31N5O3: C, 69.26; H, 6.43; N, 14.42. Found: C, 68.99; H, 6.16; N, 14.46.


Exemplary Compounds


Certain exemplary compounds, including some of those described above in the Examples, have the following Formulas Ib, Ic, Id, Ie, If, Ig, Ih, Ii, or Ij and the following substituents n and R1 wherein each line of the table is matched to Formula Ib, Ic, Id, Ie, If, Ig, Ih, Ii, or Ij to represent a specific embodiment of the invention.
















Ib




embedded image








Ic




embedded image








Id




embedded image








Ie




embedded image








If




embedded image








Ig




embedded image








Ih




embedded image








Ii




embedded image








Ij




embedded image













n
R1





1
2-[(cyclohexylcarbonyl)amino]-2-methylpropyl


1
2-[(cyclopropylcarbonyl)amino]ethyl


1
4-[(cyclopropylcarbonyl)amino]butyl


1
2,3-dihydroxypropyl


1
2,2-dimethyl-3-(methylsulfonyl)propyl


1
2-fluoro-2-methylpropyl


1
2-hydroxy-2-methylpropyl


1
2-methylpropyl


1
2-methyl-2-({[(1-methylethyl)amino]carbonyl}amino)propyl


1
2-{[(1-methylethyl)carbonyl]amino}ethyl


1
4-{[(1-methylethyl)carbonyl]amino }butyl


1
2-methyl-2-[(methylsulfonyl)amino]propyl


1
4-[(methylsulfonyl)amino]butyl


1
2-[(methylsulfonyl)amino]ethyl


1
4-[(4-morpholinecarbonyl)amino]butyl


1
2-[(4-morpholinecarbonyl)amino]ethyl


1
tetrahydro-2H-pyran-4-ylmethyl


1
(4-hydroxytetrahydro-2H-pyran-4-yl)methyl


1
(1-hydroxycyclobutyl)methyl


1
(1-hydroxycyclopentyl)methyl


1
(1-hydroxycyclohexyl)methyl


2
2-[(cyclohexylcarbonyl)amino]-2-methylpropyl


2
2-[(cyclopropylcarbonyl)amino]ethyl


2
4-[(cyclopropylcarbonyl)amino]butyl


2
2,3-dihydroxypropyl


2
2,2-dimethyl-3-(methylsulfonyl)propyl


2
2-fluoro-2-methylpropyl


2
2-hydroxy-2-methylpropyl


2
2-methylpropyl


2
2-methyl-2-({[(1-methylethyl)amino]carbonyl}amino)propyl


2
2-{[(1-methylethyl)carbonyl]amino}ethyl


2
4-{[(1-methylethyl)carbonyl]amino}butyl


2
2-methyl-2-[(methylsulfonyl)amino]propyl


2
4-[(methylsulfonyl)amino]butyl


2
2-[(methylsulfonyl)amino]ethyl


2
4-[(4-morpholinecarbonyl)amino]butyl


2
2-[(4-morpholinecarbonyl)amino]ethyl


2
tetrahydro-2H-pyran-4-ylmethyl


2
(4-hydroxytetrahydro-2H-pyran-4-yl)methyl


2
(1-hydroxycyclobutyl)methyl


2
(1-hydroxycyclopentyl)methyl


2
(1-hydroxycyclohexyl)methyl









Cytokine Induction in Human Cells

An in vitro human blood cell system is used to assess cytokine induction. Activity is based on the measurement of interferon (α) and tumor necrosis factor (α) (IFN-α and TNF-α, respectively) secreted into culture media as described by Testerman et. al. in “Cytokine Induction by the Immunomodulators Imiquimod and S-27609”, Journal of Leukocyte Biology, 58, 365-372 (September, 1995).


Blood Cell Preparation for Culture


Whole blood from healthy human donors is collected by venipuncture into vacutainer tubes or syringes containing EDTA. Peripheral blood mononuclear cells (PBMC) are separated from whole blood by density gradient centrifugation using HISTOPAQUE-1077 (Sigma, St. Louis, Mo.) or Ficoll-Paque Plus (Amersham Biosciences Piscataway, N.J.). Blood is diluted 1:1 with Dulbecco's Phosphate Buffered Saline (DPBS) or Hank's Balanced Salts Solution (HBSS). Alternately, whole blood is placed in Accuspin (Sigma) or LeucoSep (Greiner Bio-One, Inc., Longwood, Fla.) centrifuge frit tubes containing density gradient medium. The PBMC layer is collected and washed twice with DPBS or HBSS and re-suspended at 4×106 cells/mL in RPMI complete. The PBMC suspension is added to 96 well flat bottom sterile tissue culture plates containing an equal volume of RPMI complete media containing test compound.


Compound Preparation


The compounds are solubilized in dimethyl sulfoxide (DMSO). The DMSO concentration should not exceed a final concentration of 1% for addition to the culture wells. The compounds are generally tested at concentrations ranging from 30-0.014 μM. Controls include cell samples with media only, cell samples with DMSO only (no compound), and cell samples with reference compound.


Incubation


The solution of test compound is added at 60 μM to the first well containing RPMI complete and serial 3 fold dilutions are made in the wells. The PBMC suspension is then added to the wells in an equal volume, bringing the test compound concentrations to the desired range (usually 30-0.014 μM). The final concentration of PBMC suspension is 2×106 cells/mL. The plates are covered with sterile plastic lids, mixed gently and then incubated for 18 to 24 hours at 37° C. in a 5% carbon dioxide atmosphere.


Separation


Following incubation the plates are centrifuged for 10 minutes at 1000 rpm (approximately 200×g) at 4° C. The cell-free culture supernatant is removed and transferred to sterile polypropylene tubes. Samples are maintained at −30 to −70° C. until analysis. The samples are analyzed for IFN-α by ELISA and for TNF-α by IGEN/BioVeris Assay.


Interferon (α) and Tumor Necrosis Factor (α) Analysis


IFN-α concentration is determined with a human multi-subtype colorimetric sandwich ELISA (Catalog Number 41105) from PBL Biomedical Laboratories, Piscataway, N.J. Results are expressed in pg/mL.


The TNF-α concentration is determined by ORIGEN M-Series Immunoassay and read on an IGEN M-8 analyzer from BioVeris Corporation, formerly known as IGEN International, Gaithersburg, Md. The immunoassay uses a human TNF-α capture and detection antibody pair (Catalog Numbers AHC3419 and AHC3712) from Biosource International, Camarillo, Calif. Results are expressed in pg/mL.


Assay Data and Analysis


In total, the data output of the assay consists of concentration values of TNF-α and IFN-α(y-axis) as a function of compound concentration (x-axis).


Analysis of the data has two steps. First, the greater of the mean DMSO (DMSO control wells) or the experimental background (usually 20 pg/mL for IFN-α and 40 pg/mL for TNF-α) is subtracted from each reading. If any negative values result from background subtraction, the reading is reported as “*”, and is noted as not reliably detectable. In subsequent calculations and statistics, “*”, is treated as a zero. Second, all background subtracted values are multiplied by a single adjustment ratio to decrease experiment to experiment variability. The adjustment ratio is the area of the reference compound in the new experiment divided by the expected area of the reference compound based on the past 61 experiments (unadjusted readings). This results in the scaling of the reading (y-axis) for the new data without changing the shape of the dose-response curve. The reference compound used is 2-[4-amino-2-ethoxymethyl-6,7,8,9-tetrahydro-α,α-dimethyl-1H-imidazo[4,5-c]quinolin-1-yl]ethanol hydrate (U.S. Pat. No. 5,352,784; Example 91) and the expected area is the sum of the median dose values from the past 61 experiments.


The minimum effective concentration is calculated based on the background-subtracted, reference-adjusted results for a given experiment and compound. The minimum effective concentration (μmolar) is the lowest of the tested compound concentrations that induces a response over a fixed cytokine concentration for the tested cytokine (usually 20 pg/mL for IFN-α and 40 pg/mL for TNF-α). The maximal response (pg/mL) is the maximal response attained in the dose response curve.


Compounds of the invention and close analogs were tested for their ability to induce cytokine biosynthesis using the test method described above. The analogs used are shown in the table below.














Analog
Chemical Name
Reference







1
1-(4-amino-2-ethyl-7-pyridin-3-yl-
U.S. Patent Publication



1H-imidazo[4,5-c]quinolin-1-yl)-
2004/0147543



2-methylpropan-2-ol
Example 142


2
1-(4-amino-2-propyl-7-pyridin-3-yl-
U.S. Patent Publication



1H-imidazo[4,5-c]quinolin-1-yl)-
2004/0147543



2-methylpropan-2-ol
Example 418


3
1-(4-amino-2-ethoxymethyl-7-
U.S. Patent Publication



pyridin-3-yl-1H-imidazo[4,5-
2004/0147543



c]quinolin-1-yl)-2-methylpropan-2-ol
Example 126









The compound of Example 8 and several closely related analogs were tested using the test method described above. The IFN-α dose response curves are shown in FIG. 1. The TNF-α dose response curves are shown in FIG. 2. The minimum effective concentration for the induction of IFN-α, minimum effective concentration for the induction of TNF-α, the maximal response for IFN-α, and the maximal response for TNF-α are shown in Table 3 below where # is the number of separate experiments in which the compound was tested. When a compound was tested in more than one experiment the values shown are the median values.









TABLE 3









embedded image

















Maximal




Minimum Effective
Response




Concentration (μM)
(pg/mL)














Compound
R2
IFN
TNF
IFN
TNF
#
















Example 8
—CH2OH
1.11
>30
2251
*
1


Analog 1
—CH2CH3
0.12
0.37
1118
3234
4


Analog 2
—(CH2)2CH3
0.04
0.37
597
3951
1


Analog 3
—CH2OCH2CH3
0.04
0.12
840
7773
5





*Below experimental background level of 40/pg mL.






Compounds of the invention and in some instances, close analogs, were tested for their ability to induce cytokine biosynthesis using the test method described above. The minimum effective concentration for the induction of IFN-α, minimum effective concentration for the induction of TNF-α, the maximal response for IFN-α, and the maximal response for TNF-α are shown in the table below where # is the number of separate experiments in which the compound was tested. When a compound was tested in more than one experiment the values shown are the median values.














embedded image
















Minimum Effective
Maximal Response




Concentration (μM)
(pg/mL)















Compound
R2
R1
R3
IFN
TNF
IFN
TNF
#


















Example 8


embedded image




embedded image




embedded image


0.37
10
2886
51
3





Analog 1


embedded image




embedded image




embedded image


0.12
0.37
1652
3571
6





Analog 2


embedded image




embedded image




embedded image


0.04
0.37
597
3951
1





Analog 3


embedded image




embedded image




embedded image


0.04
0.12
840
7867
7





Analog 4


embedded image




embedded image




embedded image


0.37
1.11
829
3445
4





Analog 5


embedded image




embedded image




embedded image


0.014
0.014
1065
8386
8





Example 33


embedded image




embedded image




embedded image


0.37
>30
4357
*
3





Analog 6


embedded image




embedded image




embedded image


0.12
3.33
1771
8000
4





Analog 7


embedded image




embedded image




embedded image


0.014
0.12
6308
18284
4





Analog 8


embedded image




embedded image




embedded image


0.014
1.11
2084
10087
5





Analog 9


embedded image




embedded image




embedded image


0.014
0.04
5868
16296
2





Analog 10


embedded image




embedded image




embedded image


0.014
0.12
1079
16482
2





Example 35


embedded image




embedded image




embedded image


1.11
>30
969
*
1





Analog 11


embedded image




embedded image




embedded image


0.12
0.37
2979
1449
2





Analog 12


embedded image




embedded image




embedded image


0.12
1.11
1686
619
8





Analog 13


embedded image




embedded image




embedded image


0.12
0.37
1157
1054
2





Example 1


embedded image




embedded image




embedded image


>30
>30
*
*
1





Analog 14


embedded image




embedded image




embedded image


0.12
1.11
1880
201
2





Analog 15


embedded image




embedded image




embedded image


0.37
1.11
1665
62
1





Example 2


embedded image




embedded image




embedded image


0.37
3.33
1274
67
1





Analog 16


embedded image




embedded image




embedded image


0.014
0.014
260
2296
1





Analog 17


embedded image




embedded image




embedded image


0.014
0.12
440
2238
1





Example 3


embedded image




embedded image




embedded image


0.37
3.33
1180
42
1





Analog 18


embedded image




embedded image




embedded image


0.014
0.04
1199
3151
3





Analog 19


embedded image




embedded image




embedded image


0.014
0.12
591
647
1





Example 4


embedded image




embedded image




embedded image


0.12
10
1891
349
1





Analog 20


embedded image




embedded image




embedded image


0.014
0.04
1332
9563
2





Analog 21


embedded image




embedded image




embedded image


0.04
0.37
1263
3885
3





Example 39


embedded image




embedded image




embedded image


0.37
30
5089
81
1





Analog 22


embedded image




embedded image




embedded image


0.04
1.11
936
1059
2





Analog 23


embedded image




embedded image




embedded image


0.37
0.37
531
5284
1





Analog 40


embedded image




embedded image




embedded image


0.12
>30
3516
*
1





Analog 24


embedded image




embedded image




embedded image


0.12
1.11
965
991
2





Analog 25


embedded image




embedded image




embedded image


0.12
0.37
862
1647
2





Example 41


embedded image




embedded image




embedded image


0.04
10
4373
600
1





Analog 26


embedded image




embedded image




embedded image


0.014
1.11
925
1618
2





Analog 27


embedded image




embedded image




embedded image


0.014
0.37
649
9019
1





Example 42


embedded image




embedded image




embedded image


0.12
3.33
2745
410
1





Analog 28


embedded image




embedded image




embedded image


0.04
0.37
969
1366
2





Analog 29


embedded image




embedded image




embedded image


0.12
0.37
521
2222
1





Example 43


embedded image




embedded image




embedded image


0.37
10
5880
217
1





Analog 30


embedded image




embedded image




embedded image


0.12
1.11
1194
728
2





Analog 31


embedded image




embedded image




embedded image


0.12
0.37
1610
960
2





Example 5


embedded image




embedded image




embedded image


30
>30
109
*
1





Analog 32


embedded image




embedded image




embedded image


0.12
1.11
753
380
3





Example 6


embedded image




embedded image




embedded image


>30
>30
*
*
1





Analog 33


embedded image




embedded image




embedded image


0.37
3.33
1179
943
3





Example 9


embedded image




embedded image




embedded image


30
>30
87
*
1





Analog 34


embedded image




embedded image




embedded image


0.014
0.12
541
10184
1





Example 10


embedded image




embedded image




embedded image


0.37
0.37
1681
7423
1





Analog 35


embedded image




embedded image




embedded image


0.12
0.12
650
4456
1





Example 13


embedded image




embedded image




embedded image


0.37
10
12641
352
1





Analog 36


embedded image




embedded image




embedded image


0.04
0.04
740
3955
1





Example 45


embedded image




embedded image




embedded image


>30
>30
*
*
1





Analog 37


embedded image




embedded image




embedded image


0.04
1.11
1382
3128
1





Example 49


embedded image




embedded image




embedded image


3.33
>30
1087
*
1





Analog 38


embedded image




embedded image




embedded image


0.014
1.11
1062
2865
2





Example 50


embedded image




embedded image




embedded image


1.11
>30
1266
*
1





Analog 39


embedded image




embedded image




embedded image


0.014
0.37
815
1054
1





*Below experimental background level


All analogs are either specifically exemplified in or are readily prepared using the synthetic methods disclosed in U.S. patent application Publication 2004/0147543






The complete disclosures of the patents, patent documents, and publications cited herein are incorporated by reference in their entirety as if each were individually incorporated. Various modifications and alterations to this invention will become apparent to those skilled in the art without departing from the scope and spirit of this invention. It should be understood that this invention is not intended to be unduly limited by the illustrative embodiments and examples set forth herein and that such examples and embodiments are presented by way of example only with the scope of the invention intended to be limited only by the claims set forth herein as follows.

Claims
  • 1. A compound of Formula I:
  • 2. The compound or salt of claim 1 wherein n is 1.
  • 3. The compound or salt of claim 1 wherein R1 is selected from the group consisting of alkyl, aminoalkyl, dihydroxyalkyl, haloalkyl, and hydroxyalkyl.
  • 4. The compound or salt of claim 1 wherein R1 is heterocyclylalkylenyl wherein heterocyclyl is unsubstituted or substituted by one or more substituents independently selected from the group consisting of C1-4 alkyl, hydroxy, and oxo.
  • 5. The compound or salt of claim 1 wherein R1 is —X—Y—R4 wherein X is C1-6 alkylene which may be interrupted by an —O— group; Y is selected from the group consisting of —N(R8)—C(O)—, —N(R8)—S(O)2—, —N(R8)—C(O)—N(R8)—, and —S(O)2— wherein R8 is selected from hydrogen and methyl; and R4 is selected from the group consisting of C1-6 alkyl, isoquinolinyl, N-methylimidazolyl, pyridinyl, quinolinyl, phenyl, and phenyl substituted by a substituent selected from the group consisting of chloro, cyano, fluoro, hydroxy, and methyl.
  • 6. The compound or salt of claim 1 wherein R1 is —X—Y—R4 wherein X is C1-6 alkylene which may be interrupted by an —O— group; Y is selected from the group consisting of —N(R8)—C(O)—, —N(R8)—S(O)2—, —N(R8)—C(O)—N(R8)—, —N(R8)—S(O)2—N(R8)—, —S(O)2—, and
  • 7. The compound or salt of claim 1 wherein Z is a bond.
  • 8. The compound or salt of claim 1 wherein R3 is phenyl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, or quinolin-3-yl any of which may be unsubstituted or substituted by one or more substituents selected from the group consisting of alkyl, alkoxy, halogen, hydroxy, and hydroxyalkyl.
  • 9. The compound or salt of claim 1 wherein R3 is thien-3-yl, phenyl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, or quinolin-3-yl any of which may be unsubstituted or substituted by one or more substituents selected from the group consisting of alkyl, alkoxy, halogen, cyano, hydroxy, and hydroxyalkyl.
  • 10. The compound or salt of claim 1 wherein R3 is -Ar′—Y—R4 wherein Ar′ is phenylene, Y is selected from the group consisting of —C(O)—, —C(O)—N(R8)—, —N(R8)—C(O)—, —N(R8)—S(O)2—, and —N(R8)—C(O)—N(R8)— wherein R8 is selected from hydrogen and methyl; and R4 is selected from the group consisting of C1-6 alkyl, morpholin-4-yl, phenyl, and phenyl substituted by a substituent selected from the group consisting of alkyl, alkoxy, halogen, hydroxy, and hydroxyalkyl.
  • 11. The compound of claim 1 selected from the group consisting of 2-hydroxymethyl-1-(2-methylpropyl)-7-phenyl-1H-imidazo[4,5-c]quinolin-4-amine, 2-(2-hydroxyethyl)-1-(2-methylpropyl)-7-phenyl-1H-imidazo[4,5-c]quinolin-4-amine, 1-(4-amino-2-hydroxymethyl-7-phenyl-1H-imidazo[4,5-c]quinolin-1-yl)-2-methylpropan-2-ol, and 1-[4-amino-2-(2-hydroxyethyl)-7-phenyl-1H-imidazo[4,5-c]quinolin-1-yl]-2-methylpropan-2-ol, or a pharmaceutically acceptable salt thereof.
  • 12. The compound of claim 1 selected from the group consisting of N-[4-(4-amino-2-hydroxymethyl-7-phenyl-1H-imidazo[4,5-c]quinolin-1-yl)butyl]methanesulfonamide and N-{4-[4-amino-2-(2-hydroxyethyl)-7-phenyl-1H-imidazo[4,5-c]quinolin-1-yl]butyl]}methanesulfonamide, or a pharmaceutically acceptable salt thereof.
  • 13. The compound of claim 1 selected from the group consisting of 2-hydroxymethyl-1-(2-methylpropyl)-7-(pyridin-3-yl)-1H-imidazo[4,5-c]quinolin-4-amine, 2-(2-hydroxyethyl)-1-(2-methylpropyl)-7-(pyridin-3-yl)-1H-imidazo[4,5-c]quinolin-4-amine, 1-[4-amino-2-hydroxymethyl-7-(pyridin-3-yl)-1H-imidazo[4,5-c]quinolin-1-yl]-2-methylpropan-2-ol, and 1-[4-amino-2-(2-hydroxyethyl)-7-(pyridin-3-yl)-1H-imidazo[4,5-c]quinolin-1-yl]-2-methylpropan-2-ol, or a pharmaceutically acceptable salt thereof.
  • 14. The compound of claim 1 selected from the group consisting of N-{4-[4-amino-2-hydroxymethyl-7-(pyridin-3-yl)-1H-imidazo[4,5-c]quinolin-1-yl]butyl]}methanesulfonamide and N-{4-[4-amino-2-(2-hydroxyethyl)-7-(pyridin-3-yl)-1H-imidazo[4,5-c]quinolin-1-yl]butyl]}methanesulfonamide, or a pharmaceutically acceptable salt thereof.
  • 15. A pharmaceutical composition comprising a therapeutically effective amount of a compound or salt of claim 1 and a pharmaceutically acceptable carrier.
  • 16. A method of preferentially inducing the biosynthesis of IFN-α in an animal comprising administering an effective amount of a compound or salt of claim 1 to the animal.
  • 17. A method of treating a viral disease in an animal in need thereof comprising administering a therapeutically effective amount of a compound or salt of claim 1 to the animal.
  • 18. A method of treating a neoplastic disease in an animal in need thereof comprising administering a therapeutically effective amount of a compound or salt of claim 1 to the animal.
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2006/006042 2/22/2006 WO 00 8/18/2008
Publishing Document Publishing Date Country Kind
WO2006/091567 8/31/2006 WO A
US Referenced Citations (267)
Number Name Date Kind
3314941 Littell et al. Apr 1967 A
4689338 Gerster Aug 1987 A
4698348 Gerster Oct 1987 A
4929624 Gerster et al. May 1990 A
4988815 Andre et al. Jan 1991 A
5037986 Gerster Aug 1991 A
5175296 Gerster Dec 1992 A
5238944 Wick et al. Aug 1993 A
5266575 Gerster Nov 1993 A
5268376 Gester Dec 1993 A
5346905 Gerster Sep 1994 A
5352784 Nikolaides et al. Oct 1994 A
5367076 Gerster Nov 1994 A
5389640 Gerster et al. Feb 1995 A
5395937 Nikolaides et al. Mar 1995 A
5444065 Nikolaides et al. Aug 1995 A
5446153 Lindstrom et al. Aug 1995 A
5482936 Lindstrom Jan 1996 A
5494916 Lindstrom et al. Feb 1996 A
5525612 Gerster Jun 1996 A
5605899 Gerster et al. Feb 1997 A
5627281 Nikolaides et al. May 1997 A
5644063 Lindstrom et al. Jul 1997 A
5648516 Nikolaides et al. Jul 1997 A
5693811 Lindstrom Dec 1997 A
5714608 Gerster Feb 1998 A
5741908 Gerster et al. Apr 1998 A
5756747 Gerster et al. May 1998 A
5886006 Nikolaides et al. Mar 1999 A
5939090 Beaurline et al. Aug 1999 A
6039969 Tomai et al. Mar 2000 A
6069149 Nanba et al. May 2000 A
6083505 Miller et al. Jul 2000 A
6110929 Gerster et al. Aug 2000 A
6194425 Gerster et al. Feb 2001 B1
6200592 Tomai et al. Mar 2001 B1
6245776 Skwierczynski et al. Jun 2001 B1
6331539 Crooks et al. Dec 2001 B1
6365166 Beaurline et al. Apr 2002 B2
6376669 Rice et al. Apr 2002 B1
6440992 Gerster et al. Aug 2002 B1
6451810 Coleman et al. Sep 2002 B1
6465654 Gerster et al. Oct 2002 B2
6486168 Skwierczynski et al. Nov 2002 B1
6514985 Gerster et al. Feb 2003 B1
6518265 Kato et al. Feb 2003 B1
6525064 Dellaria et al. Feb 2003 B1
6541485 Crooks et al. Apr 2003 B1
6545016 Dellaria et al. Apr 2003 B1
6545017 Dellaria et al. Apr 2003 B1
6558951 Tomai et al. May 2003 B1
6573273 Crooks et al. Jun 2003 B1
6610319 Tomai et al. Aug 2003 B2
6627638 Gerster et al. Sep 2003 B2
6627640 Gerster et al. Sep 2003 B2
6630588 Rice et al. Oct 2003 B2
6656938 Crooks et al. Dec 2003 B2
6660735 Crooks et al. Dec 2003 B2
6660747 Crooks et al. Dec 2003 B2
6664260 Charles et al. Dec 2003 B2
6664264 Dellaria et al. Dec 2003 B2
6664265 Crooks et al. Dec 2003 B2
6667312 Bonk et al. Dec 2003 B2
6670372 Charles et al. Dec 2003 B2
6677347 Crooks et al. Jan 2004 B2
6677348 Heppner et al. Jan 2004 B2
6677349 Griesgraber Jan 2004 B1
6683088 Crooks et al. Jan 2004 B2
6696076 Tomai et al. Feb 2004 B2
6696465 Dellaria et al. Feb 2004 B2
6703402 Gerster et al. Mar 2004 B2
6706728 Hedenstrom et al. Mar 2004 B2
6716988 Dellaria et al. Apr 2004 B2
6720333 Dellaria et al. Apr 2004 B2
6720334 Dellaria et al. Apr 2004 B2
6720422 Dellaria et al. Apr 2004 B2
6743920 Lindstrom et al. Jun 2004 B2
6756382 Coleman et al. Jun 2004 B2
6790961 Gerster et al. Sep 2004 B2
6797718 Dellaria et al. Sep 2004 B2
6800624 Crooks et al. Oct 2004 B2
6809203 Gerster et al. Oct 2004 B2
6818650 Griesgraber Nov 2004 B2
6825350 Crooks et al. Nov 2004 B2
6841678 Merli et al. Jan 2005 B2
6852861 Merli et al. Feb 2005 B2
6878719 Lindstrom et al. Apr 2005 B2
6888000 Crooks et al. May 2005 B2
6894060 Slade May 2005 B2
6897221 Crooks et al. May 2005 B2
6903113 Heppner et al. Jun 2005 B2
6916925 Rice et al. Jul 2005 B1
6921826 Dellaria et al. Jul 2005 B2
6924293 Lindstrom Aug 2005 B2
6943225 Lee et al. Sep 2005 B2
6949649 Bonk et al. Sep 2005 B2
6953804 Dellaria et al. Oct 2005 B2
6969722 Heppner et al. Nov 2005 B2
6989389 Heppner et al. Jan 2006 B2
7030129 Miller et al. Apr 2006 B2
7030131 Crooks et al. Apr 2006 B2
7038053 Lindstrom et al. May 2006 B2
7049439 Crooks et al. May 2006 B2
7078523 Crooks et al. Jul 2006 B2
7091214 Hays et al. Aug 2006 B2
7098221 Heppner et al. Aug 2006 B2
7112677 Griesgraber Sep 2006 B2
7115622 Crooks et al. Oct 2006 B2
7125890 Dellaria et al. Oct 2006 B2
7132429 Griesgraber et al. Nov 2006 B2
7132438 Frenkel et al. Nov 2006 B2
7148232 Gerster et al. Dec 2006 B2
7157453 Crooks et al. Jan 2007 B2
7163947 Griesgraber et al. Jan 2007 B2
7179253 Graham et al. Feb 2007 B2
7199131 Lindstrom Apr 2007 B2
7214675 Griesgraber May 2007 B2
7220758 Dellaria et al. May 2007 B2
7226928 Mitra et al. Jun 2007 B2
7276515 Dellaria et al. Oct 2007 B2
7288550 Dellaria et al. Oct 2007 B2
7301027 Colombo et al. Nov 2007 B2
7375180 Gorden et al. May 2008 B2
7387271 Noelle et al. Jun 2008 B2
7393859 Coleman et al. Jul 2008 B2
7427629 Kedl et al. Sep 2008 B2
7485432 Fink et al. Feb 2009 B2
7544697 Hays et al. Jun 2009 B2
7576068 Averett Aug 2009 B2
7578170 Mayer et al. Aug 2009 B2
7579359 Krepski et al. Aug 2009 B2
7598382 Hays et al. Oct 2009 B2
7612083 Griesgraber Nov 2009 B2
7648997 Kshirsagar et al. Jan 2010 B2
7655672 Statham et al. Feb 2010 B2
7687628 Gutman et al. Mar 2010 B2
7696159 Owens et al. Apr 2010 B2
7699057 Miller et al. Apr 2010 B2
7731967 O'Hagan et al. Jun 2010 B2
7799800 Wightman Sep 2010 B2
7879849 Hays et al. Feb 2011 B2
7884207 Stoermer et al. Feb 2011 B2
7888349 Kshirsagar et al. Feb 2011 B2
7897597 Lindstrom et al. Mar 2011 B2
7897609 Niwas et al. Mar 2011 B2
7897767 Kshirsagar et al. Mar 2011 B2
7902209 Statham et al. Mar 2011 B2
7902210 Statham et al. Mar 2011 B2
7902211 Statham et al. Mar 2011 B2
7902212 Statham et al. Mar 2011 B2
7902213 Statham et al. Mar 2011 B2
7902214 Statham et al. Mar 2011 B2
7902215 Statham et al. Mar 2011 B2
7902216 Statham et al. Mar 2011 B2
7902242 Statham et al. Mar 2011 B2
7902243 Statham et al. Mar 2011 B2
7902244 Statham et al. Mar 2011 B2
7902245 Statham et al. Mar 2011 B2
7902246 Statham et al. Mar 2011 B2
7968562 Skwierczynski et al. Jun 2011 B2
7968563 Kshirsagar et al. Jun 2011 B2
7993659 Noelle et al. Aug 2011 B2
8017779 Merrill et al. Sep 2011 B2
8026366 Prince et al. Sep 2011 B2
20020055517 Smith May 2002 A1
20020058674 Hedenstrom et al. May 2002 A1
20020107262 Lindstrom Aug 2002 A1
20030133913 Tomai et al. Jul 2003 A1
20030139364 Krieg et al. Jul 2003 A1
20040014779 Gorden et al. Jan 2004 A1
20040132079 Gupta et al. Jul 2004 A1
20040175336 Egging et al. Sep 2004 A1
20040180919 Lee et al. Sep 2004 A1
20040191833 Fink et al. Sep 2004 A1
20040197865 Gupta et al. Oct 2004 A1
20040202720 Wightman et al. Oct 2004 A1
20040214851 Birmachu et al. Oct 2004 A1
20040258698 Wightman et al. Dec 2004 A1
20040265351 Miller et al. Dec 2004 A1
20050048072 Kedl et al. Mar 2005 A1
20050059072 Birmachu et al. Mar 2005 A1
20050070460 Hammerbeck et al. Mar 2005 A1
20050096259 Tomai et al. May 2005 A1
20050106300 Chen et al. May 2005 A1
20050158325 Hammerbeck et al. Jul 2005 A1
20050165043 Miller et al. Jul 2005 A1
20050171072 Tomai et al. Aug 2005 A1
20050239735 Miller et al. Oct 2005 A1
20050245562 Garcia-Echeverria et al. Nov 2005 A1
20060045885 Kedl et al. Mar 2006 A1
20060045886 Kedl Mar 2006 A1
20060051374 Miller et al. Mar 2006 A1
20060088542 Braun Apr 2006 A1
20060142202 Alkan et al. Jun 2006 A1
20060142235 Miller et al. Jun 2006 A1
20060195067 Wolter et al. Aug 2006 A1
20060216333 Miller et al. Sep 2006 A1
20070060754 Lindstrom et al. Mar 2007 A1
20070066639 Kshirsagar et al. Mar 2007 A1
20070072893 Krepski et al. Mar 2007 A1
20070099901 Krepski et al. May 2007 A1
20070123559 Statham et al. May 2007 A1
20070155767 Radmer et al. Jul 2007 A1
20070166384 Zarraga et al. Jul 2007 A1
20070167479 Busch et al. Jul 2007 A1
20070213355 Capraro et al. Sep 2007 A1
20070219196 Krepski et al. Sep 2007 A1
20070243215 Miller et al. Oct 2007 A1
20070259881 Dellaria et al. Nov 2007 A1
20070259907 Prince Nov 2007 A1
20070287725 Moser et al. Dec 2007 A1
20070292456 Hammerbeck et al. Dec 2007 A1
20080015184 Kshirsagar et al. Jan 2008 A1
20080039533 Sahouani et al. Feb 2008 A1
20080063714 Sahouani et al. Mar 2008 A1
20080070907 Griesgraber et al. Mar 2008 A1
20080085895 Griesgraber et al. Apr 2008 A1
20080119508 Slade et al. May 2008 A1
20080188513 Skwierczynski et al. Aug 2008 A1
20080193468 Levy et al. Aug 2008 A1
20080193474 Griesgraber et al. Aug 2008 A1
20080207674 Stoesz et al. Aug 2008 A1
20080213308 Valiante et al. Sep 2008 A1
20080262021 Capraro et al. Oct 2008 A1
20080262022 Lee et al. Oct 2008 A1
20080269192 Griesgraber et al. Oct 2008 A1
20080306252 Crooks et al. Dec 2008 A1
20080306266 Martin et al. Dec 2008 A1
20080312434 Lindstrom et al. Dec 2008 A1
20080318998 Prince et al. Dec 2008 A1
20090005371 Rice et al. Jan 2009 A1
20090017076 Miller et al. Jan 2009 A1
20090023720 Kshirsagar et al. Jan 2009 A1
20090023722 Coleman et al. Jan 2009 A1
20090029988 Kshirsagar et al. Jan 2009 A1
20090030030 Bonk et al. Jan 2009 A1
20090030031 Kshirsagar et al. Jan 2009 A1
20090035323 Stoermer et al. Feb 2009 A1
20090062272 Bonk et al. Mar 2009 A1
20090069299 Merrill et al. Mar 2009 A1
20090069314 Kshirsagar et al. Mar 2009 A1
20090075980 Hays et al. Mar 2009 A1
20090099161 Rice et al. Apr 2009 A1
20090105295 Kshirsagar et al. Apr 2009 A1
20090124611 Hays et al. May 2009 A1
20090124652 Ach et al. May 2009 A1
20090163532 Perman et al. Jun 2009 A1
20090163533 Hays et al. Jun 2009 A1
20090176821 Kshirsagar et al. Jul 2009 A1
20090202443 Miller et al. Aug 2009 A1
20090221551 Kshirsagar et al. Sep 2009 A1
20090221556 Kshirsagar et al. Sep 2009 A1
20090240055 Krepski et al. Sep 2009 A1
20090246174 Rook et al. Oct 2009 A1
20090253695 Kshirsagar et al. Oct 2009 A1
20090270443 Stoermer et al. Oct 2009 A1
20090298821 Kshirsagar et al. Dec 2009 A1
20090306388 Zimmerman et al. Dec 2009 A1
20100028381 Gorski et al. Feb 2010 A1
20100056557 Benninghoff et al. Mar 2010 A1
20100096287 Stoesz et al. Apr 2010 A1
20100113565 Gorden et al. May 2010 A1
20100152230 Dellaria et al. Jun 2010 A1
20100158928 Stoermer et al. Jun 2010 A1
20100173906 Griesgraber Jul 2010 A1
20100180902 Miller et al. Jul 2010 A1
20100240693 Lundquist et al. Sep 2010 A1
Foreign Referenced Citations (14)
Number Date Country
0 394 026 Oct 1990 EP
1 104 764 Jun 2001 EP
9-208584 Aug 1997 JP
11-080156 Mar 1999 JP
11-222432 Aug 1999 JP
2000-247884 Sep 2000 JP
WO 9215581 Sep 1992 WO
WO 9215582 Sep 1992 WO
WO 0236592 May 2002 WO
WO 03009852 Feb 2003 WO
WO 2006028451 Mar 2006 WO
WO 2006063072 Jun 2006 WO
WO 2006121528 Nov 2006 WO
WO 2007030775 Mar 2007 WO
Related Publications (1)
Number Date Country
20090069314 A1 Mar 2009 US
Provisional Applications (1)
Number Date Country
60655495 Feb 2005 US