Hydroxyalkyl substituted imidazoquinolines

Information

  • Patent Grant
  • 8178677
  • Patent Number
    8,178,677
  • Date Filed
    Wednesday, February 22, 2006
    18 years ago
  • Date Issued
    Tuesday, May 15, 2012
    12 years ago
Abstract
Certain imidazoquinolines with a hydroxymethyl or hydroxyethyl substituent at the 2-position, pharmaceutical compositions containing the compounds, intermediates, methods of making and methods of use of these compounds as immunomodulators, for preferentially inducing IFN-α biosynthesis in animals and in the treatment of diseases including viral and neoplastic diseases are disclosed.
Description
BACKGROUND

Certain compounds have been found to be useful as immune response modifiers (IRMs), rendering them useful in the treatment of a variety of disorders. However, there continues to be interest in and a need for compounds that have the ability to modulate the immune response, by induction of cytokine biosynthesis or other means.


SUMMARY

The present invention provides a new class of compounds which preferentially induce the biosynthesis of interferon (α) (IFN-α) in animals. Such compounds are of the following Formulas I, II, and III:




embedded image



wherein R, R1, G1, G2, m, and n are as defined below.


It has now surprisingly been discovered that the amount of TNF-α induced by the 2-(hydroxyalkyl) substituted compounds of the invention is substantially less than the amount of TNF-α induced by closely related analogs having an alkyl or alkyl ether substituent at the 2-position and that the compounds of the invention still retain the ability to induce the biosynthesis of IFN-α. See, for example, FIGS. 1-4 below. The reduction in the amount of TNF-α induced is seen over a broad range of test concentrations. In some embodiments the amount of TNF-α induced by the compounds of the invention is at least two-fold less than the amount of TNF-α induced by analogs having an alkyl or alkyl ether substituent at the 2-position. In other embodiments the amount of TNF-α induced by the compounds of the invention is at least three-fold less than the amount of TNF-α induced by analogs having an alkyl or alkyl ether substituent at the 2-position. In still other embodiments the amount of TNF-α induced by the compounds of the invention is at least four-fold less than the amount of TNF-α induced by analogs having an alkyl or alkyl ether substituent at the 2-position.


As used herein “substantially less than the amount of TNF-α” means that there is at least a two-fold reduction in the maximal TNF-α response as determined using the test methods described herein.


The compounds or salts of Formulas I, II, and III are especially useful as immune response modifiers due to their ability to preferentially induce interferon-α, thus providing a benefit over compounds that also induce pro-inflammatory cytokines (e.g. TNF-α) or that induce pro-inflammatory cytokines at higher levels.


A compound is said to preferentially induce IFN-α if, when tested according to the test methods described herein, the effective minimum concentration for IFN-α induction is less than the effective minimum concentration for TNF-α induction. In some embodiments, the effective minimum concentration for IFN-α induction is at least 3-fold less than the effective minimum concentration for TNF-α induction. In some embodiments, the effective minimum concentration for IFN-α induction is at least 6-fold less than the effective minimum concentration for TNF-α induction. In other embodiments, the effective minimum concentration for IFN-α induction is at least 9-fold less than the effective minimum concentration for TNF-α induction. In some embodiments, when tested according to the test methods described herein, the amount TNF-α induced by compounds of the invention is at or below the background level of TNF-α in the test method.


The invention further provides pharmaceutical compositions containing an effective amount of a compound or salt of Formulas I, II, and/or III and methods of preferentially inducing the biosynthesis of IFN-α in an animal, and treating a viral infection or disease and/or treating a neoplastic disease in an animal by administering an effective amount of a compound or salt of Formulas I, II, and/or III or a pharmaceutical composition containing an effective amount of a compound or salt of Formulas I, II, and/or III to the animal.


In addition, methods of synthesizing compounds of Formulas I, II, and III and intermediates useful in the synthesis of these compounds are provided.


As used herein, “a,” “an,” “the,” “at least one,” and “one or more” are used interchangeably.


The terms “comprises” and variations thereof do not have a limiting meaning where these terms appear in the description and claims.


The above summary of the present invention is not intended to describe each disclosed embodiment or every implementation of the present invention. The description that follows more particularly exemplifies illustrative embodiments. In several places throughout the description, guidance is provided through lists of examples, which examples can be used in various combinations. In each instance, the recited list serves only as a representative group and should not be interpreted as an exclusive list.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows the IFN-α dose response curves (corresponding to values shown in Table 5 below) for Example 6, Analog 2, Analog 3, and Analog 5.



FIG. 2 shows the TNF-α dose response curves (corresponding to values shown in Table 5 below) for Example 6, Analog 2, Analog 3, and Analog 5.



FIG. 3 shows the IFN-α dose response curves (corresponding to values shown in Table 5 below) for Example 7, Analog 1, Analog 2, and Analog 4.



FIG. 4 shows the TNF-α dose response curves (corresponding to values shown in Table 5 below) for Example 7, Analog 1, Analog 2, and Analog 4.





DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS OF THE INVENTION

The present invention provides compounds of the following Formulas I, II, and III:




embedded image



wherein R, R1, G1, G2, m, and n are as defined below; and pharmaceutically acceptable salts thereof.


In one embodiment, the present invention provides a compound of the following Formula I:




embedded image



wherein:


m is 0 or 1;


n is 1 or 2;


R is selected from the group consisting of C1-10 alkyl, C1-10 alkoxy, halogen, and C1-10 haloalkyl;


R1 is selected from the group consisting of:

    • —X—Y—R4,
    • —X—R5, and
    • —X-Het;


X is straight chain or branched chain alkylene optionally interrupted by one —O— group;


Y is selected from the group consisting of —S(O)0-2— and —N(R8)-Q-;


R4 is selected from the group consisting of hydrogen, alkyl, alkenyl, aryl, arylalkylenyl, heteroaryl, and heteroarylalkylenyl, wherein the alkyl, alkenyl, aryl, arylalkylenyl, heteroaryl, and heteroarylalkylenyl, groups can be unsubstituted or substituted by one or more substituents independently selected from the group consisting of alkyl, alkoxy, hydroxyalkyl, haloalkyl, haloalkoxy, halogen, nitro, hydroxy, mercapto, cyano, aryl, aryloxy, heteroaryl, heteroaryloxy, heterocyclyl, amino, alkylamino, dialkylamino, and in the case of alkyl and alkenyl, oxo;


R5 is selected from the group consisting of:




embedded image


Het is selected from the group consisting of tetrahydropyranyl and tetrahydrofuranyl;


R6 is selected from the group consisting of ═O and ═S;


R7 is C2-7 alkylene;


R8 is selected from the group consisting of hydrogen, alkyl, alkoxyalkylenyl, hydroxyalkylenyl, arylalkylenyl, and heteroarylalkylenyl;


R10 is C3-8 alkylene;


A is selected from the group consisting of —O—, —C(O)—, —CH2—, —S(O)0-2—, and —N(Q-R4)—;


Q is selected from the group consisting of a bond, —C(R6)—, —S(O)2, —C(R6)—N(R8)—, —S(O)2—N(R8)—, —C(R6)—O—, and —C(R6)—S—; and


a and b are independently integers from 1 to 6 with the proviso that a+b is ≦7;


with the proviso that when Y is —S(O)0-2— then X can not contain an —O— group; or a pharmaceutically acceptable salt thereof.


In another embodiment, the present invention provides a compound of the following Formula II, which is a prodrug:




embedded image



wherein:


G1 is selected from the group consisting of:

    • —C(O)—R′,
    • α-aminoacyl,
    • α-aminoacyl-α-aminoacyl,
    • —C(O)—O—R′,
    • —C(O)—N(R″)R′,
    • —C(═NY′)—R′,
    • —CH(OH)—C(O)—OY′,
    • —CH(OC1-4 alkyl)Y0,
    • —CH2Y1, and
    • —CH(CH3)Y1;


R′ and R″ are independently selected from the group consisting of C1-10 alkyl, C3-7 cycloalkyl, phenyl, benzyl, and 2-phenylethyl, each of which may be unsubstituted or substituted by one or more substituents independently selected from the group consisting of halogen, hydroxy, nitro, cyano, carboxy, C1-6 alkyl, C1-4 alkoxy, aryl, heteroaryl, aryl-C1-4 alkylenyl, heteroaryl-C1-4 alkylenyl, halo-C1-4 alkylenyl, halo-C1-4 alkoxy, —O—C(O)—CH3, —C(O)—O—CH3, —C(O)—NH2, —O—CH2—C(O)—NH2, —NH2, and —S(O)2—NH2, with the proviso that R″ can also be hydrogen;


α-aminoacyl is an α-aminoacyl group derived from an α-amino acid selected from the group consisting of racemic, D-, and L-amino acids;


Y′ is selected from the group consisting of hydrogen, C1-6 alkyl, and benzyl;


Y0 is selected from the group consisting of C1-6 alkyl, carboxy-C1-6 alkylenyl, amino-C1-4 alkylenyl, mono-N—C1-6 alkylamino-C1-4 alkylenyl, and di-N,N—C1-6 alkylamino-C1-4alkylenyl;


Y1 is selected from the group consisting of mono-N—C1-6 alkylamino, di-N,N—C1-6 alkylamino, morpholin-4-yl, piperidin-1-yl, pyrrolidin-1-yl, and 4-C1-4 alkylpiperazin-1-yl;


m is 0 or 1;


n is 1 or 2;


R is selected from the group consisting of C1-10 alkyl, C1-10 alkoxy, halogen, and C1-10 haloalkyl;


R1 is selected from the group consisting of:

    • —X—Y—R4,
    • —X—R5, and
    • —X-Het;


X is straight chain or branched chain alkylene optionally interrupted by one —O— group;


Y is selected from the group consisting of —S(O)0-2— and —N(R8)-Q-;


R4 is selected from the group consisting of hydrogen, alkyl, alkenyl, aryl, arylalkylenyl, heteroaryl, and heteroarylalkylenyl, wherein the alkyl, alkenyl, aryl, arylalkylenyl, heteroaryl, and heteroarylalkylenyl, groups can be unsubstituted or substituted by one or more substituents independently selected from the group consisting of alkyl, alkoxy, hydroxyalkyl, haloalkyl, haloalkoxy, halogen, nitro, hydroxy, mercapto, cyano, aryl, aryloxy, heteroaryl, heteroaryloxy, heterocyclyl, amino, alkylamino, dialkylamino, and in the case of alkyl and alkenyl, oxo;


R5 is selected from the group consisting of:




embedded image


Het is selected from the group consisting of tetrahydropyranyl and tetrahydrofuranyl;


R6 is selected from the group consisting of ═O and ═S;


R7 is C2-7 alkylene;


R8 is selected from the group consisting of hydrogen, alkyl, alkoxyalkylenyl, hydroxyalkylenyl, arylalkylenyl, and heteroarylalkylenyl;


R10 is C3-8 alkylene;


A is selected from the group consisting of —O—, —C(O)—, —CH2—, —S(O)0-2—, and —N(Q-R4)—;


Q is selected from the group consisting of a bond, —C(R6)—, —S(O)2, —C(R6)—N(R8)—, —S(O)2—N(R8)—, —C(R6)—O—, and —C(R6)—S—; and


a and b are independently integers from 1 to 6 with the proviso that a+b is ≦7;


with the proviso that when Y is —S(O)0-2— then X can not contain an —O— group; or a pharmaceutically acceptable salt thereof.


In another embodiment, the present invention provides a compound of the following Formula III, which is a prodrug:




embedded image



wherein:


G2 is selected from the group consisting of:

    • —X2—C(O)—R′,
    • α-aminoacyl,
    • α-aminoacyl-α-aminoacyl,
    • —X2—C(O)—O—R′, and
    • —C(O)—N(R″)R′;


X2 is selected from the group consisting of a bond; —CH2—O—; —CH(CH3)—O—; —C(CH3)2—O—; and, in the case of —X2—C(O)—O—R′, —CH2—NH—;


R′ and R″ are independently selected from the group consisting of C1-10 alkyl, C3-7 cycloalkyl, phenyl, benzyl, and 2-phenylethyl, each of which may be unsubstituted or substituted by one or more substituents independently selected from the group consisting of halogen, hydroxy, nitro, cyano, carboxy, C1-6 alkyl, C1-4 alkoxy, aryl, heteroaryl, aryl-C1-4 alkylenyl, heteroaryl-C1-4 alkylenyl, halo-C1-4 alkylenyl, halo-C1-4 alkoxy, —O—C(O)—CH3, —C(O)—O—CH3, —C(O)—NH2, —O—CH2—C(O)—NH2, —NH2, and —S(O)2—NH2, with the proviso that R″ can also be hydrogen;


α-aminoacyl is an α-aminoacyl group derived from an α-amino acid selected from the group consisting of racemic, D-, and L-amino acids;


m is 0 or 1;


n is 1 or 2;


R is selected from the group consisting of C1-10 alkyl, C1-10 alkoxy, halogen, and C1-10 haloalkyl;


R1 is selected from the group consisting of:

    • —X—Y—R4,
    • —X—R5, and
    • —X-Het;


X is straight chain or branched chain alkylene optionally interrupted by one —O— group;


Y is selected from the group consisting of —S(O)0-2— and —N(R8)-Q-;


R4 is selected from the group consisting of hydrogen, alkyl, alkenyl, aryl, arylalkylenyl, heteroaryl, and heteroarylalkylenyl, wherein the alkyl, alkenyl, aryl, arylalkylenyl, heteroaryl, and heteroarylalkylenyl, groups can be unsubstituted or substituted by one or more substituents independently selected from the group consisting of alkyl, alkoxy, hydroxyalkyl, haloalkyl, haloalkoxy, halogen, nitro, hydroxy, mercapto, cyano, aryl, aryloxy, heteroaryl, heteroaryloxy, heterocyclyl, amino, alkylamino, dialkylamino, and in the case of alkyl and alkenyl, oxo;


R5 is selected from the group consisting of:




embedded image


Het is selected from the group consisting of tetrahydropyranyl and tetrahydrofuranyl;


R6 is selected from the group consisting of ═O and ═S;


R7 is C2-7 allylene;


R8 is selected from the group consisting of hydrogen, alkyl, alkoxyalkylenyl, hydroxyalkylenyl, arylalkylenyl, and heteroarylalkylenyl;


R10 is C3-8 alkylene;


A is selected from the group consisting of —O—, —C(O)—, —CH2—, —S(O)0-2—, and —N(Q-R4)—;


Q is selected from the group consisting of a bond, —C(R6)—, —S(O)2, —C(R6)—N(R8)—, —S(O)2—N(R8)—, —C(R6)—O—, and —C(R6)—S—; and


a and b are independently integers from 1 to 6 with the proviso that a+b is ≦7;


with the proviso that when Y is —S(O)0-2— then X can not contain an —O— group; or a pharmaceutically acceptable salt thereof.


Unless otherwise specified, as used herein, the terms “alkyl”, “alkenyl”, “alkynyl” and the prefix “alk-” are inclusive of both straight chain and branched chain groups and of cyclic groups, e.g., cycloalkyl and cycloalkenyl. Unless otherwise specified, these groups contain from 1 to 20 carbon atoms, with alkenyl groups containing from 2 to 20 carbon atoms, and alkynyl groups containing from 2 to 20 carbon atoms. In some embodiments, these groups have a total of up to 10 carbon atoms, up to 8 carbon atoms, up to 6 carbon atoms, or up to 4 carbon atoms. Cyclic groups can be monocyclic or polycyclic and preferably have from 3 to 10 ring carbon atoms. Exemplary cyclic groups include cyclopropyl, cyclobutyl, cyclopropylmethyl, cyclopentyl, cyclopentylmethyl, cyclohexyl, cyclohexylmethyl, adamantyl, and substituted and unsubstituted bornyl, norbornyl, and norbornenyl.


Unless otherwise specified, “alkylene”, “alkenylene”, and “alkynylene” are the divalent forms of the “alkyl”, “alkenyl”, and “alkynyl” groups defined above. The terms, “alkylenyl”, “alkenylenyl”, and “alkynylenyl” are use when “alkylene”, “alkenylene”, and “alkynylene,” respectively, are substituted. For example, an arylalkylenyl group comprises an alkylene moiety to which an aryl group is attached.


The term “haloalkyl” is inclusive of groups that are substituted by one or more halogen atoms, including perfluorinated groups. This is also true of other groups that include the prefix “halo-.” Examples of suitable haloalkyl groups are chloromethyl, chlorobutyl, trifluoromethyl, 2,2,2-trifluoroethyl, and the like.


The term “aryl” as used herein includes carbocyclic aromatic rings or ring systems. Examples of aryl groups include phenyl, naphthyl, biphenyl, fluorenyl and indenyl.


Unless otherwise indicated, the term “heteroatom” refers to the atoms O, S, or N.


The term “heteroaryl” includes aromatic rings or ring systems that contain at least one ring heteroatom (e.g., O, S, N). In some embodiments, the term “heteroaryl” includes a ring or ring system that contains 2-12 carbon atoms, 1-3 rings, 1-4 heteroatoms, and O, S, and N as the heteroatoms. Exemplary heteroaryl groups include furyl, thienyl, pyridyl, quinolinyl, isoquinolinyl, indolyl, isoindolyl, triazolyl, pyrrolyl, tetrazolyl, imidazolyl, pyrazolyl, oxazolyl, thiazolyl, benzofuranyl, benzothiophenyl, carbazolyl, benzoxazolyl, pyrimidinyl, benzimidazolyl, quinoxalinyl, benzothiazolyl, naphthyridinyl, isoxazolyl, isothiazolyl, purinyl, quinazolinyl, pyrazinyl, 1-oxidopyridyl, pyridazinyl, triazinyl, tetrazinyl, oxadiazolyl, thiadiazolyl, and so on.


The term “heterocyclyl” includes non-aromatic rings or ring systems that contain at least one ring heteroatom (e.g., O, S, N) and includes all of the fully saturated and partially unsaturated derivatives of the above mentioned heteroaryl groups. In some embodiments, the term “heterocyclyl” includes a ring or ring system that contains 2-12 carbon atoms, 1-3 rings, 1-4 heteroatoms, and O, S, and N as the heteroatoms. Exemplary heterocyclyl groups include pyrrolidinyl, tetrahydrofuranyl, morpholinyl, thiomorpholinyl, 1,1-dioxothiomorpholinyl, piperidinyl, piperazinyl, thiazolidinyl, imidazolidinyl, isothiazolidinyl, tetrahydropyranyl, quinuclidinyl, homopiperidinyl (azepanyl), 1,4-oxazepanyl, homopiperazinyl (diazepanyl), 1,3-dioxolanyl, aziridinyl, azetidinyl, dihydroisoquinolin-(1H)-yl, octahydroisoquinolin-(1H)-yl, dihydroquinolin-(2H)-yl, octahydroquinolin-(2H)-yl, dihydro-1H-imidazolyl, 3-azabicyclo[3.2.2]non-3-yl, and the like.


The term “heterocyclyl” includes bicylic and tricyclic heterocyclic ring systems. Such ring systems include fused and/or bridged rings and spiro rings. Fused rings can include, in addition to a saturated or partially saturated ring, an aromatic ring, for example, a benzene ring. Spiro rings include two rings joined by one spiro atom and three rings joined by two spiro atoms.


When “heterocyclyl” contains a nitrogen atom, the point of attachment of the heterocyclyl group may be the nitrogen atom.


The terms “arylene”, “heteroarylene”, and “heterocyclylene” are the divalent forms of the “aryl”, “heteroaryl”, and “heterocyclyl” groups defined above. The terms, “arylenyl”, “heteroarylenyl”, and “heterocyclylenyl” are used when “arylene”, “heteroarylene”, and “heterocyclylene”, respectively, are substituted. For example, an alkylarylenyl group comprises an arylene moiety to which an alkyl group is attached.


When a group (or substituent or variable) is present more than once in any Formula described herein, each group (or substituent or variable) is independently selected, whether explicitly stated or not. For example, for the formula —N(R8)—C(O)—N(R8)— each R8 group is independently selected.


The invention is inclusive of the compounds described herein in any of their pharmaceutically acceptable forms, including isomers (e.g., diastereomers and enantiomers), salts, solvates, polymorphs, and the like. In particular, if a compound is optically active, the invention specifically includes each of the compound's enantiomers as well as racemic mixtures of the enantiomers. It should be understood that the term “compound” includes any or all of such forms, whether explicitly stated or not (although at times, “salts” are explicitly stated).


The term “prodrug” means a compound that can be transformed in vivo to yield an immune response modifying compound, including any of the salt, solvated, polymorphic, or isomeric forms described above. The prodrug, itself, may be an immune response modifying compound, including any of the salt, solvated, polymorphic, or isomeric forms described above. The transformation may occur by various mechanisms, such as through a chemical (e.g., solvolysis or hydrolysis, for example, in the blood) or enzymatic biotransformation. A discussion of the use of prodrugs is provided by T. Higuchi and W. Stella, “Pro-drugs as Novel Delivery Systems,” Vol. 14 of the A. C. S. Symposium Series, and in Bioreversible Carriers in Drug Design, ed. Edward B. Roche, American Pharmaceutical Association and Pergamon Press, 1987.


For any of the compounds presented herein, each one of the following variables (e.g., Y, X, R1, Q, G1, G2, n, and so on) in any of its embodiments can be combined with any one or more of the other variables in any of their embodiments and associated with any one of the formulas described herein, as would be understood by one of skill in the art. Each of the resulting combinations of variables is an embodiment of the present invention.


For certain embodiments of Formula I, II, or III, n is 1.


For certain embodiments of Formula I, II, or III, n is 2.


For certain embodiments of Formula I, II, or III, including any one of the above embodiments, m is 0.


For certain embodiments of Formula I, II, or III, including any one of the above embodiments, R1 is —X—Y—R4 wherein X is straight chain or branched chain C1-6 alkylene which may be interrupted by one —O— group; Y is selected from the group consisting of —N(R8)—C(O)—, —N(R8)—S(O)2—, —N(R8)—C(O)—N(R8)—, and —S(O)2— wherein R8 is selected from hydrogen and methyl; and R4 is selected from the group consisting of C1-6 alkyl, isoquinolinyl, N-methylimidazolyl, pyridinyl, quinolinyl, phenyl, and phenyl substituted by a substituent selected from the group consisting of chloro, cyano, fluoro, hydroxy, and methyl; with the proviso that when Y is —S(O)2— then X can not contain an —O— group. For certain of these embodiments, as well as any one of the above embodiments, R1 is selected from the group consisting of 2-[(cyclopropylcarbonyl)amino]ethyl, 4-[(cyclopropylcarbonyl)amino]butyl, 2-[(cyclohexylcarbonyl)amino]-2-methylpropyl, 2-{[(1-methylethyl)carbonyl]amino}ethyl, 4-{[(1-methylethyl)carbonyl]amino}butyl, 2-methyl-2-{[(1-methylethyl)carbonyl]amino}propyl, 2-[(methylsulfonyl)amino]ethyl, 4-[(methylsulfonyl)amino]butyl, 2-methyl-2-[(methylsulfonyl)amino]propyl, 2-methyl-2-({[(1-methylethyl)amino]carbonyl}amino)propyl, and 2,2-dimethyl-3-(methylsulfonyl)propyl.


For certain embodiment, including any one of the above embodiments of Formulas I, II, and III, R1 is —X—Y—R4 wherein X is straight chain or branched chain C1-8 alkylene which may be interrupted by one —O— group; Y is selected from the group consisting of —N(R8)—C(O)—, —N(R8)—S(O)2—, —N(R8)—S(O)2—N(R8a)—, —N(R8)—C(O)—N(R8a)—, and —S(O)2— wherein R8 is hydrogen, methyl, benzyl, or pyridin-3-ylmethyl; R8a is hydrogen, methyl, or ethyl, and R4 is selected from the group consisting of C1-7 alkyl, haloC1-4 alkyl, hydroxyC1-4 alkyl, phenyl, benzyl, 1-phenylethyl, 2-phenylethyl, 2-phenylethenyl, phenylcyclopropyl, pyridinyl, thienyl, N-methylimidazolyl, 3,5-dimethylisoxazolyl, wherein benzyl is unsubstituted or substituted by a methyl group, and phenyl is unsubstituted or substituted by one or two substituents independently selected from the group consisting of methyl, fluoro, chloro, cyano, hydroxy, and dimethylamino; with the proviso that when Y is —S(O)2— then X can not contain an —O— group. For certain of these embodiments, Y is selected from the group consisting of —N(R8)—C(O)—, —N(R8)—S(O)2—, and —N(R8)—C(O)—N(R8a)—. For certain of these embodiments, R8a is hydrogen. Alternatively, for certain of these embodiments, R8a is methyl. For certain of these embodiments, R8 is hydrogen. Alternatively, for certain of these embodiments, R8 is benzyl. Alternatively, for certain of these embodiments, R8 is pyridin-3-ylmethyl. Alternatively, for certain of these embodiments, Y is —S(O)2—. For certain of these embodiments, X is C1-6 alkylene.


For certain embodiments of Formula I, II, or III, including any one of the above embodiments except where R1 is —X—Y—R4, R1 is —X—R5, wherein X is straight chain or branched chain C1-6 alkylene, and R5 is




embedded image



For certain of these embodiments, R5 is




embedded image



For certain of these embodiments, R8 is hydrogen, methyl, or pyridin-3-ylmethyl, A is —O—, —CH2—, or —N(CH3)—, a is 1 or 2, and b is 2. For certain of these embodiments, R1 is selected from the group consisting of 4-(1,1-dioxidoisothiazolidin-2-yl)butyl, 4-[(4-morpholinecarbonyl)amino]butyl, and 2-[(4-morpholinecarbonyl)amino]ethyl.


For certain embodiments of Formula I, II, or III, including any one of the above embodiments except where R1 is —X—Y—R4 or —X—R5, R1 is —C1-4 alkylenyl-Het. For certain of these embodiments, as well as any one of the above embodiments where Het is present, Het is selected from the group consisting of tetrahydropyranyl and tetrahydrofuranyl. For certain of these embodiments, as well as any one of the above embodiments where Het is present, R1 is tetrahydro-2H-pyran-4-ylmethyl.


For certain embodiments, for example, embodiments of Formula I, the present invention provides a compound selected from the group consisting of N-[4-(4-amino-2-hydroxymethyl-1H-imidazo[4,5-c]quinolin-1-yl)butyl]methanesulfonamide and N-{4-[4-amino-2-(2-hydroxyethyl)-1H-imidazo[4,5-c]quinolin-1-yl]butyl]}methanesulfonamide, or a pharmaceutically acceptable salt thereof.


For certain embodiments, for example, embodiments of Formula I, the present invention provides N-{2-[4-amino-2-(hydroxymethyl)-1H-imidazo[4,5-c]quinolin-1-yl]-1,1-dimethylethyl}methanesulfonamide or a pharmaceutically acceptable salt thereof.


For certain embodiments, the present invention provides a pharmaceutical composition comprising a therapeutically effective amount of a compound or salt of Formula I, II, III, or of any one of the above embodiments and a pharmaceutically acceptable carrier.


For certain embodiments, the present invention provides a method of preferentially inducing the biosynthesis of IFN-α in an animal comprising administering an effective amount of a compound or salt of Formula I, II, III, or of any one of the above embodiments or the above pharmaceutical composition to the animal.


For certain embodiments, the present invention provides a method of treating a viral disease in an animal in need thereof comprising administering a therapeutically effective amount of a compound or salt of Formula I, II, III, or of any one of the above embodiments or the above pharmaceutical composition to the animal.


For certain embodiments, the present invention provides a method of treating a neoplastic disease in an animal in need thereof comprising administering a therapeutically effective amount of a compound or salt of Formula I, II, III, or of any one of the above embodiments or the above pharmaceutical composition to the animal.


For certain embodiments of the above methods, the compound or salt or pharmaceutical composition is administered systemically.


For certain embodiments, R is selected from the group consisting of C1-10 alkyl, C1-10 alkoxy, halogen, and C1-10 haloalkyl.


For certain embodiments, R1 is selected from the group consisting of —X—Y—R4, —X—R5, and —X-Het.


For certain embodiments, R1 is —X—Y—R4.


For certain embodiments, R1 is —X—Y—R4 wherein X is straight chain or branched chain C1-6 alkylene which may be interrupted by one —O— group; Y is selected from the group consisting of —N(R8)—C(O)—, —N(R8)—S(O)2—, —N(R8)—C(O)—N(R8)—, and —S(O)2— wherein R8 is selected from hydrogen and methyl; and R4 is selected from the group consisting of C1-6 alkyl, isoquinolinyl, N-methylimidazolyl, pyridinyl, quinolinyl, phenyl, and phenyl substituted by a substituent selected from the group consisting of chloro, cyano, fluoro, hydroxy, and methyl.


For certain embodiments, R1 is selected from the group consisting of 2-[(cyclopropylcarbonyl)amino]ethyl, 4-[(cyclopropylcarbonyl)amino]butyl, 2-[(cyclohexylcarbonyl)amino]-2-methylpropyl, 2-{[(1-methylethyl)carbonyl]amino}ethyl, 4-{[(1-methylethyl)carbonyl]amino}butyl, 2-methyl-2-{[(1-methylethyl)carbonyl]amino}propyl, 2-[(methylsulfonyl)amino]ethyl, 4-[(methylsulfonyl)amino]butyl, 2-methyl-2-[(methylsulfonyl)amino]propyl, 2-methyl-2-({[(1-methylethyl)amino]carbonyl}amino)propyl, and 2,2-dimethyl-3-(methylsulfonyl)propyl.


For certain embodiments, R1 is —X—R5.


For certain embodiments, R1 is —X—R5 wherein X is straight chain or branched chain C1-6 alkylene, and R5 is




embedded image


For certain embodiments, R1 is selected from the group consisting of 4-(1,1-dioxidoisothiazolidin-2-yl)butyl, 4-[(4-morpholinecarbonyl)amino]butyl, and 2-[(4-morpholinecarbonyl)amino]ethyl.


For certain embodiments, R1 is —X-Het.


For certain embodiments, R1 is —C1-4 alkylenyl-Het.


For certain embodiments, R1 is tetrahydro-2H-pyran-4-ylmethyl.


For certain embodiments, R4 is selected from the group consisting of hydrogen, alkyl, alkenyl, aryl, arylalkylenyl, heteroaryl, and heteroarylalkylenyl, wherein the alkyl, alkenyl, aryl, arylalkylenyl, heteroaryl, and heteroarylalkylenyl, groups can be unsubstituted or substituted by one or more substituents independently selected from the group consisting of alkyl, alkoxy, hydroxyalkyl, haloalkyl, haloalkoxy, halogen, nitro, hydroxy, mercapto, cyano, aryl, aryloxy, heteroaryl, heteroaryloxy, heterocyclyl, amino, alkylamino, dialkylamino, and in the case of alkyl and alkenyl, oxo.


For certain embodiments, R4 is selected from the group consisting of C1-6 alkyl, isoquinolinyl, N-methylimidazolyl, pyridinyl, quinolinyl, phenyl, and phenyl substituted by a substituent selected from the group consisting of chloro, cyano, fluoro, hydroxy, and methyl.


For certain embodiments, R4 is selected from the group consisting of C1-7 alkyl, haloC1-4 alkyl, hydroxyC1-4 alkyl, phenyl, benzyl, 1-phenylethyl, 2-phenylethyl, 2-phenylethenyl, phenylcyclopropyl, pyridinyl, thienyl, N-methylimidazolyl, 3,5-dimethylisoxazolyl, wherein benzyl is unsubstituted or substituted by a methyl group, and phenyl is unsubstituted or substituted by one or two substituents independently selected from the group consisting of methyl, fluoro, chloro, cyano, hydroxy, and dimethylamino.


For certain embodiments, R4 is C1-7 alkyl.


For certain embodiments, R4 is C1-4 alkyl.


For certain embodiments, R4 is phenyl which is unsubstituted or substituted by one or two substituents independently selected from the group consisting of methyl, fluoro, chloro, cyano, hydroxy, and dimethylamino.


For certain embodiments, R5 is selected from the group consisting of




embedded image


For certain embodiments, R5 is




embedded image


For certain embodiments, R5 is




embedded image


For certain embodiments, R6 is selected from the group consisting of ═O and ═S.


For certain embodiments, R6 is ═O.


For certain embodiments, R6 is ═S.


For certain embodiments, R7 is C2-7 alkylene.


For certain embodiments, R7 is C2-4 alkylene.


For certain embodiments, R8 is selected from the group consisting of hydrogen, alkyl, alkoxyalkylenyl, hydroxyalkylenyl, arylalkylenyl, and heteroarylalkylenyl.


For certain embodiments, R8 is selected from the group consisting of hydrogen, C1-4 alkyl, and C1-4 alkoxyC1-4 alkylenyl.


For certain embodiments, R8 is arylalkylenyl.


For certain embodiments, R8 is benzyl.


For certain embodiments, R8 is heteroarylalkylenyl.


For certain embodiments, R8 is pyridin-3-ylmethyl.


For certain embodiments, R8 is hydrogen or C1-4 alkyl.


For certain embodiments, R8 is selected from hydrogen and methyl


For certain embodiments, R8 is hydrogen.


For certain embodiments, R10 is C3-8 alkylene.


For certain embodiments, R10 is C4-6 alkylene.


For certain embodiments, A is selected from the group consisting of —O—, —C(O)—, —CH2—, —S(O)0-2—, and —N(Q-R4)—.


For certain embodiments, A is —O—, —CH2—, or —N(Q-R4)—.


For certain embodiments, A is —O—, —CH2—, —S—, or —S(O)2—.


For certain embodiments, A is —O— or —S(O)2—.


For certain embodiments, A is —O—.


For certain embodiments, A is —CH2—.


For certain embodiments, A is —N(Q-R4)—.


For certain embodiments, A is —N(CH3)—.


For certain embodiments, including any one of the above embodiments of Formula II, G1 is selected from the group consisting of —C(O)—R′, α-aminoacyl, α-aminoacyl-α-aminoacyl, —C(O)—O—R′, —C(O)—N(R″)R′, —C(═NY′)—R′, —CH(OH)—C(O)—OY′, —CH(OC1-4 alkyl)Y0, —CH2Y1, and —CH(CH3)Y1; R′ and R″ are independently selected from the group consisting of C1-10 alkyl, C3-7 cycloalkyl, phenyl, benzyl, and 2-phenylethyl, each of which may be unsubstituted or substituted by one or more substituents independently selected from the group consisting of halogen, hydroxy, nitro, cyano, carboxy, C1-6 alkyl, C1-4 alkoxy, aryl, heteroaryl, aryl-C1-4 alkylenyl, heteroaryl-C1-4 alkylenyl, halo-C1-4 alkylenyl, halo-C1-4 alkoxy, —O—C(O)—CH3, —C(O)—O—CH3, —C(O)—NH2, —O—CH2—C(O)—NH2, —NH2, and —S(O)2—NH2, with the proviso that R″ can also be hydrogen; α-aminoacyl is an α-aminoacyl group derived from an α-amino acid selected from the group consisting of racemic, D-, and L-amino acids; Y′ is selected from the group consisting of hydrogen, C1-6 alkyl, and benzyl; Y0 is selected from the group consisting of C1-6 alkyl, carboxy-C1-6 alkylenyl, amino-C1-4 alkylenyl, mono-N—C1-6 alkylamino-C1-4 alkylenyl, and di-N,N—C1-6 alkylamino-C1-4 alkylenyl; and Y1 is selected from the group consisting of mono-N—C1-6 alkylamino, di-N,N—C1-6 alkylamino, morpholin-4-yl, piperidin-1-yl, pyrrolidin-1-yl, and 4-C1-4 alkylpiperazin-1-yl.


For certain embodiments, including any one of the above embodiments of Formula II, G1 is selected from the group consisting of —C(O)—R′, α-aminoacyl, and —C(O)—O—R′. For certain of these embodiments, R′ contains one to ten carbon atoms. For certain of these embodiments, α-aminoacyl is an α-C2-11 aminoacyl group derived from an α-amino acid selected from the group consisting of racemic, D-, and L-amino acids containing a total of at least 2 carbon atoms and a total of up to 11 carbon atoms, and may also include one or more heteroatoms selected from the group consisting of O, S, and N.


For certain embodiments, including any one of the above embodiments of Formula III, G2 is selected from the group consisting of —X2—C(O)—R′, α-aminoacyl, α-aminoacyl-α-aminoacyl, —X2—C(O)—O—R′, and —C(O)—N(R″)R′. For certain of these embodiments, X2 is selected from the group consisting of a bond; —CH2—O—; —CH(CH3)—O—; —C(CH3)2—O—; and, in the case of —X2—C(O)—O—R′, —CH2—NH—; R′ and R″ are independently selected from the group consisting of C1-10 alkyl, C3-7 cycloalkyl, phenyl, benzyl, and 2-phenylethyl, each of which may be unsubstituted or substituted by one or more substituents independently selected from the group consisting of halogen, hydroxy, nitro, cyano, carboxy, C1-6 alkyl, C1-4 alkoxy, aryl, heteroaryl, aryl-C1-4 alkylenyl, heteroaryl-C1-4 alkylenyl, halo-C1-4 alkylenyl, halo-C1-4 alkoxy, —O—C(O)—CH3, —C(O)—O—CH3, —C(O)—NH2, —O—CH2—C(O)—NH2, —NH2, and —S(O)2—NH2, with the proviso that R″ can also be hydrogen; and α-aminoacyl is an α-aminoacyl group derived from an α-amino acid selected from the group consisting of racemic, D-, and L-amino acids.


For certain embodiments, including any one of the above embodiments of Formula III, G2 is selected from the group consisting of —C(O)—R′ and α-aminoacyl, wherein R′ is C1-6 alkyl or phenyl which is unsubstituted or substituted by one or more substituents independently selected from the group consisting of halogen, hydroxy, nitro, cyano, carboxy, C1-6 alkyl, C1-4 alkoxy, aryl, heteroaryl, aryl-C1-4 alkylenyl, heteroaryl-C1-4 alkylenyl, halo-C1-4 alkylenyl, halo-C1-4 alkoxy, —O—C(O)—CH3, —C(O)—O—CH3, —C(O)—NH2, —O—CH2—C(O)—NH2, —NH2, and —S(O)2—NH2.


For certain embodiments, including any one of the above embodiments of Formula III, G2 is selected from the group consisting of α-amino-C2-5 alkanoyl, C2-6 alkanoyl, C1-6 alkoxycarbonyl, and C1-6 alkylcarbamoyl.


For certain embodiments, including any one of the above embodiments which include an α-aminoacyl group, α-aminoacyl is an α-aminoacyl group derived from a naturally occurring α-amino acid selected from the group consisting of racemic, D-, and L-amino acids.


For certain embodiments, including any one of the above embodiments which include an α-aminoacyl group, α-aminoacyl is an α-aminoacyl group derived from an α-amino acid found in proteins, wherein the amino acid is selected from the group consisting of racemic, D-, and L-amino acids.


For certain embodiments, the hydrogen atom of the hydroxy group of Formula II (including any one of its embodiments) is replaced by G2, wherein G2 is defined as in any one of the above embodiments of G2.


For certain embodiments, Het is selected from the group consisting of tetrahydropyranyl and tetrahydrofuranyl.


For certain embodiments, Het is tetrahydro-2H-pyran-4-yl.


For certain embodiments, Q is selected from the group consisting of a bond, —C(R6)—, —S(O)2, —C(R6)—N(R8)—, —S(O)2—N(R8)—, —C(R6)—O—, and —C(R6)—S—.


For certain embodiments, Q is selected from the group consisting of a bond, —C(R6)—, —S(O)2—, and —C(R6)—N(R8)—.


For certain embodiments, Q is selected from the group consisting of —C(O)—, —S(O)2—, and —C(O)—N(R8)—. In certain of these embodiments, R8 is hydrogen or methyl.


For certain embodiments, Q is —C(O)—.


For certain embodiments, Q is —S(O)2—.


For certain embodiments, Q is —C(R6)—N(R8)—.


For certain embodiments, Q is —C(O)—N(R8)— wherein R8 is hydrogen or methyl.


For certain embodiments, X is straight chain or branched chain alkylene optionally interrupted by one —O— group.


For certain embodiments, X is straight chain or branched chain C1-6 alkylene which may be interrupted by one —O— group.


For certain embodiments, X is straight chain or branched chain C1-8 alkylene.


For certain embodiments, X is straight chain or branched chain C1-6 alkylene.


For certain embodiments, X is straight chain or branched chain C1-4 alkylene.


For certain embodiments, X is ethylene.


For certain embodiments, X is propylene.


For certain embodiments, X is butylene.


For certain embodiments, X is —CH2—C(CH3)2—.


For certain embodiments, Y is selected from the group consisting of —S(O)0-2— and —N(R8)-Q-, with the proviso that when Y is —S(O)0-2— then X does not contain an —O— group.


For certain embodiments, Y is selected from the group consisting of —N(R8)—C(O)—, —N(R8)—S(O)2—, —N(R8)—C(O)—N(R8)—, and —S(O)2—, with the proviso that when Y is —S(O)2— then X does not contain an —O— group. In certain of these embodiments, R8 is selected from hydrogen and methyl.


For certain embodiments, Y is selected from the group consisting of —N(R8)—C(O)—, —N(R8)—S(O)2—, —N(R8)—S(O)2—N(R8a)—, —N(R8)—C(O)—N(R8a)—, and —S(O)2—.


For certain embodiments, Y is selected from the group consisting of —N(R8)—C(O)—, —N(R8)—S(O)2—, —N(R8)—C(O)—N(R8a)—.


For certain embodiments, Y is —S(O)2—.


For certain embodiments, a and b are independently integers from 1 to 6 with the proviso that a+b is ≦7.


For certain embodiments, a and b are each independently 1 to 3.


For certain embodiments, a and b are each 2.


For certain embodiments, a is 1, 2, or 3, and b is 2.


For certain embodiments, a is 1 or 2, and b is 2.


For n certain embodiments, n is 1 or 2.


For certain embodiments, n is 1.


For certain embodiments, n is 2.


For certain embodiments, m is 0 or 1.


For certain embodiments, m is 0.


For certain embodiments, m is 1.


Preparation of the Compounds


Compounds of the invention may be synthesized by synthetic routes that include processes analogous to those well known in the chemical arts, particularly in light of the description contained herein. The starting materials are generally available from commercial sources such as Aldrich Chemicals (Milwaukee, Wis., USA) or are readily prepared using methods well known to those skilled in the art (e.g., prepared by methods generally described in Louis F. Fieser and Mary Fieser, Reagents for Organic Synthesis, v. 1-19, Wiley, New York, (1967-1999 ed.); Alan R. Katritsky, Otto Meth-Cohn, Charles W. Rees, Comprehensive Organic Functional Group Transformations, v. 1-6, Pergamon Press, Oxford, England, (1995); Barry M. Trost and Ian Fleming, Comprehensive Organic Synthesis, v. 1-8, Pergamon Press, Oxford, England, (1991); or Beilsteins Handbuch der organischen Chemie, 4, Aufl. Ed. Springer-Verlag, Berlin, Germany, including supplements (also available via the Beilstein online database)).


For illustrative purposes, the reaction schemes depicted below provide potential routes for synthesizing the compounds of the present invention as well as key intermediates. For more detailed description of the individual reaction steps, see the EXAMPLES section below. Those skilled in the art will appreciate that other synthetic routes may be used to synthesize the compounds of the invention. Although specific starting materials and reagents are depicted in the reaction schemes and discussed below, other starting materials and reagents can be easily substituted to provide a variety of derivatives and/or reaction conditions. In addition, many of the compounds prepared by the methods described below can be further modified in light of this disclosure using conventional methods well known to those skilled in the art.


In the preparation of compounds of the invention it may sometimes be necessary to protect a particular functionality while reacting other functional groups on an intermediate. The need for such protection will vary depending on the nature of the particular functional group and the conditions of the reaction step. Suitable amino protecting groups include acetyl, trifluoroacetyl, tert-butoxycarbonyl (Boc), benzyloxycarbonyl, and 9-fluorenylmethoxycarbonyl (Fmoc). Suitable hydroxy protecting groups include acetyl and silyl groups such as the tert-butyl dimethylsilyl group. For a general description of protecting groups and their use, see T. W. Greene and P. G. M. Wuts, Protective Groups in Organic Synthesis, John Wiley & Sons, New York, USA, 1991.


Conventional methods and techniques of separation and purification can be used to isolate compounds of the invention, as well as various intermediates related thereto. Such techniques may include, for example, all types of chromatography (high performance liquid chromatography (HPLC), column chromatography using common absorbents such as silica gel, and thin layer chromatography), recrystallization, and differential (i.e., liquid-liquid) extraction techniques.


In some embodiments, compounds of the invention can be prepared according to Reaction Scheme I, wherein R1, R, m, and n are as defined above and alkyl is methyl or ethyl.


In Reaction Scheme I an ether substituted 1H-imidazo[4,5-c]quinolin-4-amine of Formula X is cleaved to provide a hydroxyalkyl substituted 1H-imidazo[4,5-c]quinolin-4-amine of Formula I. The reaction is conveniently carried out by adding a solution of boron tribromide in a suitable solvent such as dichloromethane to a solution or suspension of a compound of Formula X in a suitable solvent such as dichloromethane at ambient or at a sub-ambient temperature, for example, at 0° C. The product or pharmaceutically acceptable salt thereof can be isolated using conventional methods.


Numerous compounds of Formula X are known; others can be prepared using known synthetic methods. See, for example, U.S. Pat. Nos. 6,069,149; 6,331,539; 6,451,810; 6,541,485; 6,756,382; 6,677,349; 6,573,273; 6,664,264; 6,664,265; 6,677,347; 6,660,735; 6,683,088; and 6,667,312 and the references cited therein.




embedded image


In some embodiments, compounds of the invention can be prepared according to Reaction Scheme II, wherein R1, G1, and n are as defined above. Compounds of Formula I can be prepared according to the method described above. The amino group of a compound of Formula I can be converted by conventional methods to a functional group such as an amide, carbamate, urea, amidine, or another hydrolyzable group. A compound of this type can be made by the replacement of a hydrogen atom in an amino group with a group such as —C(O)—R′, α-aminoacyl, α-aminoacyl-α-aminoacyl, C(O)—O—R′, —C(O)—N(R″)R′, —C(═NY′)—R′, —CH(OH)—C(O)—OY′, —CH(OC1-4 alkyl)Y0, —CH2Y1, and —CH(CH3)Y1; wherein R′ and R″ are independently selected from the group consisting of C1-10 alkyl, C3-7 cycloalkyl, phenyl, benzyl, and 2-phenylethyl, each of which may be unsubstituted or substituted by one or more substituents independently selected from the group consisting of halogen, hydroxy, nitro, cyano, carboxy, C1-6 alkyl, C1-4 alkoxy, aryl, heteroaryl, aryl-C1-4 alkylenyl, heteroaryl-C1-4 alkylenyl, halo-C1-4 alkylenyl, halo-C1-4 alkoxy, —O—C(O)—CH3, —C(O)—O—CH3, —C(O)—NH2, —O—CH2—C(O)—NH2, —NH2, and —S(O)2—NH2, with the proviso that R″ can also be hydrogen; each α-aminoacyl is an α-aminoacyl group derived from an α-amino acid selected from the group consisting of racemic, D-, and L-amino acids; Y′ is selected from the group consisting of hydrogen, C1-6 alkyl, and benzyl; Y0 is selected from the group consisting of C1-6 alkyl, carboxy-C1-6 alkylenyl, amino-C1-4 alkylenyl, mono-N—C1-6 alkylamino-C1-4 alkylenyl, and di-N,N—C1-6 alkylamino-C1-4 alkylenyl; and Y1 is selected from the group consisting of mono-N—C1-6 alkylamino, di-N,N—C1-6 alkylamino, morpholin-4-yl, piperidin-1-yl, pyrrolidin-1-yl, and 4-C1-4 alkylpiperazin-1-yl. Particularly useful compounds of Formula II are amides derived from carboxylic acids containing one to ten carbon atoms, amides derived from amino acids, and carbamates containing one to ten carbon atoms. The reaction can be carried out, for example, by combining a compound of Formula I with a chloroformate or acid chloride, such as ethyl chloroformate or acetyl chloride, in the presence of a base such as triethylamine in a suitable solvent such as dichloromethane at ambient temperature.


Alternatively, the hydroxy group on a compound of Formula I can be protected using a suitable silyl group such as tert-butyl dimethylsilyl using conventional methods. The G1 group may then be installed using conventional methods followed by the removal of the hydroxy protecting group under acidic conditions to provide a compound of Formula II.




embedded image


In some embodiments, compounds of the invention can be prepared according to Reaction Scheme III, wherein R1, G2, and n are as defined above. Compounds of Formula I can be prepared according to the method described above. The hydrogen atom of the alcohol group of a compound of Formula I can be replaced using conventional methods with a group such as X2—C(O)—R′, α-aminoacyl, α-aminoacyl-α-aminoacyl, —X2—C(O)—O—R′, and —C(O)—N(R″)R′; wherein X2 is selected from the group consisting of a bond; —CH2—O—; —CH(CH3)—O—; —C(CH3)2—O—; and, in the case of —X2—C(O)—O—R′, —CH2—NH—; R′ and R″ are independently selected from the group consisting of C1-10 alkyl, C3-7 cycloalkyl, phenyl, benzyl, and 2-phenylethyl, each of which may be unsubstituted or substituted by one or more substituents independently selected from the group consisting of halogen, hydroxy, nitro, cyano, carboxy, C1-6 alkyl, C1-4 alkoxy, aryl, heteroaryl, aryl-C1-4 alkylenyl, heteroaryl-C1-4 alkylenyl, halo-C1-4 alkylenyl, halo-C1-4 alkoxy, —O—C(O)—CH3, —C(O)—O—CH3, —C(O)—NH2, —O—CH2—C(O)—NH2, —NH2, and —S(O)2—NH2, with the proviso that R″ can also be hydrogen; and each α-aminoacyl is an α-aminoacyl group derived from an α-amino acid selected from the group consisting of racemic, D-, and L-amino acids. Particularly useful compounds of Formula III are esters made from carboxylic acids containing one to six carbon atoms, unsubstituted or substituted benzoic acid esters, or esters made from naturally occurring amino acids. For example, the reaction can be carried out by treating a compound of Formula I with a carboxylic acid or amino acid under Mitsunobu reaction conditions by adding triphenylphosphine and a carboxylic acid to a solution or suspension of a compound of Formula I in a suitable solvent such as tetrahydrofuran and then slowly adding diisopropyl azodicarboxylate. The reaction can be run at a sub-ambient temperature such as 0° C.




embedded image


In some embodiments, compounds of the invention can also be prepared using the synthetic methods described in the EXAMPLES below.


Pharmaceutical Compositions and Biological Activity


Pharmaceutical compositions of the invention contain a therapeutically effective amount of a compound or salt described above in combination with a pharmaceutically acceptable carrier.


The terms “a therapeutically effective amount” and “effective amount” mean an amount of the compound or salt sufficient to induce a therapeutic or prophylactic effect, such as cytokine induction, immunomodulation, antitumor activity, and/or antiviral activity. Cytokine induction can include preferentially inducing the biosynthesis of IFN-α. The exact amount of compound or salt used in a pharmaceutical composition of the invention will vary according to factors known to those of skill in the art, such as the physical and chemical nature of the compound or salt, the nature of the carrier, and the intended dosing regimen.


In some embodiments, the compositions of the invention will contain sufficient active ingredient or prodrug to provide a dose of about 100 nanograms per kilogram (ng/kg) to about 50 milligrams per kilogram (mg/kg), preferably about 10 micrograms per kilogram (μg/kg) to about 5 mg/kg, of the compound or salt to the subject.


In other embodiments, the compositions of the invention will contain sufficient active ingredient or prodrug to provide a dose of, for example, from about 0.01 mg/m2 to about 5.0 mg/m2, computed according to the Dubois method, in which the body surface area of a subject (m2) is computed using the subject's body weight: m2=(wt kg0.425×height cm0.725)×0.007184, although in some embodiments the methods may be performed by administering a compound or salt or composition in a dose outside this range. In some of these embodiments, the method includes administering sufficient compound to provide a dose of from about 0.1 mg/m2 to about 2.0 mg/m2 to the subject, for example, a dose of from about 0.4 mg/m2 to about 1.2 mg/m2.


A variety of dosage forms may be used, such as tablets, lozenges, capsules, parenteral formulations (e.g., intravenous formulations), syrups, creams, ointments, aerosol formulations, transdermal patches, transmucosal patches and the like. These dosage forms can be prepared with conventional pharmaceutically acceptable carriers and additives using conventional methods, which generally include the step of bringing the active ingredient into association with the carrier.


The compounds or salts of the invention can be administered as the single therapeutic agent in the treatment regimen, or the compounds or salts described herein may be administered in combination with one another or with other active agents, including additional immune response modifiers, antivirals, antibiotics, antibodies, proteins, peptides, oligonucleotides, etc.


Compounds or salts of the invention have been shown to induce the production of certain cytokines in experiments performed according to the tests set forth below. These results indicate that the compounds or salts are useful for modulating the immune response in a number of different ways, rendering them useful in the treatment of a variety of disorders. The compounds or salts of the invention are especially useful as immune response modifiers due to their ability to preferentially induce interferon-α, thus providing a benefit over compounds that also induce pro-inflammatory cytokines (e.g. TNF-α) or that induce pro-inflammatory cytokines at higher levels. While interferon-α and pro-inflammatory cytokines are beneficial in treating certain conditions, interferon-α preferentially induced is believed to be better tolerated by patients, because the significantly lower levels of pro-inflammatory cytokines can result in fewer or less severe adverse side effects experienced by patients. For example, if a subject is treated for a disease (e.g., hepatitis C, metastatic cancer) with a compound that induces significant levels of pro-inflammatory cytokines, while treating the disease, the compound may also cause side effects, such as severe and/or widespread inflammation, tissue destruction, or emesis, that render the subject unable or unwilling to receive the treatment. Alternatively, if a subject is treated with a compound that preferentially induces interferon-α then the compound may treat the disease with less risk of adverse side effects from pro-inflammatory cytokines such as TNF-α. Therefore, by maintaining the ability to treat a condition and reducing adverse side effects, compounds that preferentially induce IFN-α provide an advantage over compounds that would also induce pro-inflammatory cytokines, such as TNF-α, at higher levels.


The ability of the compounds or salts of the invention to preferentially induce the biosynthesis of IFN-α may be particularly advantageous when administered systemically, since adverse side effects, including for example widespread inflammation, may be reduced or even eliminated. Compounds of the invention may be administered systemically in a number of ways, including but not limited to oral and intravenous administration.


Cytokines whose biosynthesis may be induced by compounds or salts of the invention include IFN-α, IP-10, MCP-1, and a variety of other cytokines. In some instances, cytokines such as TNF-α, IL-12 may be induced, albeit at significantly reduced levels. Among other effects, these and other cytokines can inhibit virus production and tumor cell growth, making the compounds or salts useful in the treatment of viral diseases and neoplastic diseases. Accordingly, the invention provides a method of inducing cytokine biosynthesis in an animal comprising administering an effective amount of a compound or salt of the invention to the animal. The animal to which the compound or salt is administered for induction of cytokine biosynthesis may have a disease as described infra, for example a viral disease or a neoplastic disease, and administration of the compound or salt may provide therapeutic treatment. Alternatively, the compound or salt may be administered to the animal prior to the animal acquiring the disease so that administration of the compound or salt may provide a prophylactic treatment.


In addition to the ability to induce the production of cytokines, compounds or salts of the invention can affect other aspects of the innate immune response. For example, the compounds or salts may cause maturation of dendritic cells or proliferation and differentiation of B-lymphocytes.


Whether for prophylaxis or therapeutic treatment of a disease, and whether for effecting innate or acquired immunity, the compound or salt or composition may be administered alone or in combination with one or more active components as in, for example, a vaccine adjuvant. When administered with other components, the compound or salt or composition and other component or components may be administered separately; together but independently such as in a solution; or together and associated with one another such as (a) covalently linked or (b) non-covalently associated, e.g., in a colloidal suspension.


Conditions for which compounds or salts or compositions identified herein may be used as treatments include, but are not limited to:


(a) viral diseases such as, for example, diseases resulting from infection by an adenovirus, a herpesvirus (e.g., HSV-I, HSV-II, CMV, or VZV), a poxvirus (e.g., an orthopoxvirus such as variola or vaccinia, or molluscum contagiosum), a picornavirus (e.g., rhinovirus or enterovirus), an orthomyxovirus (e.g., influenzavirus), a paramyxovirus (e.g., parainfluenzavirus, mumps virus, measles virus, and respiratory syncytial virus (RSV)), a coronavirus (e.g., SARS), a papovavirus (e.g., papillomaviruses, such as those that cause genital warts, common warts, or plantar warts), a hepadnavirus (e.g., hepatitis B virus), a flavivirus (e.g., hepatitis C virus or Dengue virus), or a retrovirus (e.g., a lentivirus such as HIV);


(b) bacterial diseases such as, for example, diseases resulting from infection by bacteria of, for example, the genus Escherichia, Enterobacter, Salmonella, Staphylococcus, Shigella, Listeria, Aerobacter, Helicobacter, Klebsiella, Proteus, Pseudomonas, Streptococcus, Chlamydia, Mycoplasma, Pneumococcus, Neisseria, Clostridium, Bacillus, Corynebacterium, Mycobacterium, Campylobacter, Vibrio, Serratia, Providencia, Chromobacterium, Brucella, Yersinia, Haemophilus, or Bordetella;


(c) other infectious diseases, such as chlamydia, fungal diseases including but not limited to candidiasis, aspergillosis, histoplasmosis, cryptococcal meningitis, or parasitic diseases including but not limited to malaria, pneumocystis carnii pneumonia, leishmaniasis, cryptosporidiosis, toxoplasmosis, and trypanosome infection;


(d) neoplastic diseases, such as intraepithelial neoplasias, cervical dysplasia, actinic keratosis, basal cell carcinoma, squamous cell carcinoma, renal cell carcinoma, Kaposi's sarcoma, melanoma, leukemias including but not limited to acute myeloid leukemia, acute lymphocytic leukemia, chronic myeloid leukemia, chronic lymphocytic leukemia, multiple myeloma, Hodgkin's lymphoma, non-Hodgkin's lymphoma, cutaneous T-cell lymphoma, B-cell lymphoma, and hairy cell leukemia, and other cancers;


(e) TH2-mediated, atopic diseases, such as atopic dermatitis or eczema, eosinophilia, asthma, allergy, allergic rhinitis, and Ommen's syndrome;


(f) certain autoimmune diseases such as systemic lupus erythematosus, essential thrombocythaemia, multiple sclerosis, discoid lupus, alopecia areata; and


(g) diseases associated with wound repair such as, for example, inhibition of keloid formation and other types of scarring (e.g., enhancing wound healing, including chronic wounds).


Additionally, a compound or salt identified herein may be useful as a vaccine adjuvant for use in conjunction with any material that raises either humoral and/or cell mediated immune response, such as, for example, live viral, bacterial, or parasitic immunogens; inactivated viral, tumor-derived, protozoal, organism-derived, fungal, or bacterial immunogens; toxoids; toxins; self-antigens; polysaccharides; proteins; glycoproteins; peptides; cellular vaccines; DNA vaccines; autologous vaccines; recombinant proteins; and the like, for use in connection with, for example, BCG, cholera, plague, typhoid, hepatitis A, hepatitis B, hepatitis C, influenza A, influenza B, parainfluenza, polio, rabies, measles, mumps, rubella, yellow fever, tetanus, diphtheria, hemophilus influenza b, tuberculosis, meningococcal and pneumococcal vaccines, adenovirus, HIV, chicken pox, cytomegalovirus, dengue, feline leukemia, fowl plague, HSV-1 and HSV-2, hog cholera, Japanese encephalitis, respiratory syncytial virus, rotavirus, papilloma virus, yellow fever, and Alzheimer's Disease.


Compounds or salts identified herein may be particularly helpful in individuals having compromised immune function. For example, compounds or salts may be used for treating the opportunistic infections and tumors that occur after suppression of cell mediated immunity in, for example, transplant patients, cancer patients and HIV patients.


Thus, one or more of the above diseases or types of diseases, for example, a viral disease or a neoplastic disease may be treated in an animal in need thereof (having the disease) by administering a therapeutically effective amount of a compound or salt of the invention to the animal.


An animal may also be vaccinated by administering an effective amount of a compound or salt described herein, as a vaccine adjuvant. In one embodiment, there is provided a method of vaccinating an animal comprising administering an effective amount of a compound or salt described herein to the animal as a vaccine adjuvant.


An amount of a compound or salt effective to induce cytokine biosynthesis is an amount sufficient to cause one or more cell types, such as dendritic cells and B-cells to produce an amount of one or more cytokines such as, for example, IFN-α, IP-10, and MCP-1 that is increased (induced) over a background level of such cytokines. The precise amount will vary according to factors known in the art but is expected to be a dose of about 100 ng/kg to about 50 mg/kg, preferably about 10 μg/kg to about 5 mg/kg. In other embodiments, the amount is expected to be a dose of, for example, from about 0.01 mg/m2 to about 5.0 mg/m2, (computed according to the Dubois method as described above) although in some embodiments the induction of cytokine biosynthesis may be performed by administering a compound or salt in a dose outside this range. In some of these embodiments, the method includes administering sufficient compound or salt or composition to provide a dose of from about 0.1 mg/m2 to about 2.0 mg/m2 to the subject, for example, a dose of from about 0.4 mg/m2 to about 1.2 mg/m2.


The invention provides a method of treating a disease which is responsive to the induction of cytokine biosynthesis, particularly the preferential induction of IFN-α, including a method of treating a viral infection in an animal and a method of treating a neoplastic disease in an animal, comprising administering an effective amount of a compound or salt or composition of the invention to the animal. An amount effective to treat or inhibit a viral infection is an amount that will cause a reduction in one or more of the manifestations of viral infection, such as viral lesions, viral load, rate of virus production, and mortality as compared to untreated control animals. The precise amount that is effective for such treatment will vary according to factors known in the art but is expected to be a dose of about 100 ng/kg to about 50 mg/kg, preferably about 10 μg/kg to about 5 mg/kg. An amount of a compound or salt effective to treat a neoplastic condition is an amount that will cause a reduction in tumor size or in the number of tumor foci. Again, the precise amount will vary according to factors known in the art but is expected to be a dose of about 100 ng/kg to about 50 mg/kg, preferably about 10 μg/kg to about 5 mg/kg. In other embodiments, the amount is expected to be a dose of, for example, from about 0.01 mg/m2 to about 5.0 mg/m2, (computed according to the Dubois method as described above) although in some embodiments either of these methods may be performed by administering a compound or salt in a dose outside this range. In some of these embodiments, the method includes administering sufficient compound or salt to provide a dose of from about 0.1 mg/m2 to about 2.0 mg/m2 to the subject, for example, a dose of from about 0.4 mg/m2 to about 1.2 mg/m2.


In addition to the formulations and uses described specifically herein, other formulations, uses, and administration devices suitable for compounds of the present invention are described in, for example, International Publication Nos. WO 03/077944 and WO 02/036592, U.S. Pat. No. 6,245,776, and U.S. Publication Nos. 2003/0139364, 2003/185835, 2004/0258698, 2004/0265351, 2004/076633, and 2005/0009858.


Objects and advantages of this invention are further illustrated by the following examples, but the particular materials and amounts thereof recited in these examples, as well as other conditions and details, should not be construed to unduly limit this invention.


EXAMPLES

In the examples below normal high performance flash chromatography (prep HPLC) was carried out using a COMBIFLASH system (an automated high-performance flash purification product available from Teledyne Isco, Inc., Lincoln, Nebr., USA) or a HORIZON HPFC system (an automated high-performance flash purification product available from Biotage, Inc, Charlottesville, Va., USA). The eluent used for each purification is given in the example. In some chromatographic separations, the solvent mixture 80/18/2 v/v/v chloroform/methanol/concentrated ammonium hydroxide (CMA) was used as the polar component of the eluent. In these separations, CMA was mixed with chloroform in the indicated ratio.


Example 1
N-{3-[4-Amino-2-(2-hydroxyethyl)-1H-imidazo[4,5-c]quinolin-1-yl]propyl}-4-methylbenzenesulfonamide



embedded image


Boron tribromide (5.50 mL of 1 M in dichloromethane) was added dropwise to a chilled (0° C.) suspension of N-{3-[4-amino-2-(2-methoxyethyl)-1H-imidazo[4,5-c]quinolin-1-yl]propyl}-4-methylbenzenesulfonamide (1.0 g, 2.2 mmol; U.S. Pat. No. 6,677,349, Example 253) in dichloromethane (20 mL). The reaction mixture was stirred at 0° C. for 3 hours. The reaction mixture was quenched with methanol. Hydrochloric acid (about 10 mL of 6 N) was added and the mixture was stirred at 50° C. overnight. The mixture was diluted with water (50 mL) and ethyl acetate (100 mL) and then brought to neutral pH with solid sodium hydroxide. The layers were separated and the aqueous was extracted with ethyl acetate (×2). The combined organics were dried over magnesium sulfate, filtered, and then concentrated under reduced pressure to provide a yellow solid. This material was purified by prep HPLC (COMBIFLASH system eluting first with a gradient of 0 to 5% methanol in dichloromethane containing 1% ammonium hydroxide and then with a gradient of 5 to 10% methanol in dichloromethane containing 1% ammonium hydroxide) to provide a white solid. This material was suspended in hot acetonitrile, allowed to cool, and then the solvent was decanted. The resulting material was dried under vacuum to provide about 200 mg of N-{3-[4-amino-2-(2-hydroxyethyl)-1H-imidazo[4,5-c]quinolin-1-yl]propyl}-4-methylbenzenesulfonamide as a white solid, m p. 231-232° C. Anal. calcd for C22H25N5O3S.0.20 CH4O: % C, 59.79; % H, 5.85; % N, 15.70. Found: % C, 59.44; % H, 5.89; % N, 15.52.


Example 2
N-{3-[4-Amino-2-(2-hydroxyethyl)-1H-imidazo[4,5-c]quinolin-1-yl]propyl}isoquinoline-3-carboxamide



embedded image


Boron tribromide (5.50 mL of 1 M in dichloromethane) was added dropwise to a chilled (0° C.) suspension of N-{3-[4-amino-2-(2-methoxyethyl)-1H-imidazo[4,5-c]quinolin-1-yl]propyl}isoquinoline-3-carboxamide (1.0 g, 2.2 mmol; U.S. Pat. No. 6,756,382, Example 192) in dichloromethane (20 mL). The reaction mixture was stirred at 0° C. for 45 minutes and then allowed to warm to ambient temperature. After 5 hours the reaction mixture was concentrated under reduced pressure and the residue was allowed to stand over the weekend. The residue was diluted with methanol (20 mL) and then heated to 50° C. Hydrochloric acid (about 10 mL of 6 N) was added and the mixture was stirred for about 2.5 hours. The mixture was made basic with aqueous sodium hydroxide and then extracted with ethyl acetate (×2). The combined extracts were dried over magnesium sulfate, filtered, and then concentrated under reduced pressure to provide a yellow solid. This material was purified by prep HPLC (COMBIFLASH system eluting first with a gradient of 0 to 5% methanol in dichloromethane containing 1% ammonium hydroxide and then with a gradient of 5 to 10% methanol in dichloromethane containing 1% ammonium hydroxide) to provide a white solid. This material was suspended in hot acetonitrile, allowed to cool, and then the solvent was decanted. The resulting material was dried under vacuum to provide about 400 mg of N-{3-[4-amino-2-(2-hydroxyethyl)-1H-imidazo[4,5-c]quinolin-1-yl]propyl}isoquinoline-3-carboxamide as a white solid, mp 245-246° C. Anal calcd for C25H24N6O2: % C, 67.73; % H, 5.59; % N, 18.80. Found: % C, 67.38; % H, 5.54; % N, 18.84.


Example 3
N-{4-[4-Amino-2-(2-hydroxyethyl)-1H-imidazo[4,5-c]quinolin-1-yl]butyl}methanesulfonamide



embedded image



Part A


3-Methoxypropionyl chloride (15.4 g, 126 mmol) was added dropwise over a period of 20 minutes to a chilled (ice bath) solution of tert-butyl N-{4-[(3-aminoquinolin-4-yl)amino]butyl}carbamate (38 g, 115 mmol, U.S. Pat. No. 6,541,485, Example 2, Part B) in pyridine. The reaction mixture was stirred for 4 hours and then allowed to stand at ambient temperature over the weekend. Pyridine hydrochloride (3.9 g, 34 mmol) was added and the reaction mixture was heated at reflux overnight. The reaction mixture was concentrated under reduced pressure and the residue was diluted with dichloromethane (250 mL) and aqueous sodium bicarbonate (250 mL). The layers were separated. The separatory funnel was rinsed with a small amount of methanol to remove a residue coating the walls. The combined organics were concentrated under reduced pressure. The residue was purified by prep HPLC (COMBIFLASH system eluting first with a gradient of 0 to 5% methanol in dichloromethane containing 1% ammonium hydroxide and then with a gradient of 5 to 10% methanol in dichloromethane containing 1% ammonium hydroxide) to provide 18 g of tert-butyl N-{4-[2-(2-methoxyethyl)-1H-imidazo[4,5-c]quinolin 1-yl]butyl}carbamate.


Part B


3-Chloroperoxybenzoic acid (20 g of 77%) was added in a single portion to a solution of the material from Part A (18 g, 45.2 mmol) in dichloroethane (170 mL). After 2 hours concentrated ammonium hydroxide (150 mL) was added and the reaction mixture was stirred until the phases were mixed well. Para-Toluenesulfonyl chloride (10.6 g, 54 mmol) was added in a single portion along with a small amount of dichloroethane. The reaction mixture was stirred overnight at ambient temperature and then diluted with water and dichloromethane. The layers were separated and the aqueous layer was extracted with dichloromethane (×2). The combined organics were dried over magnesium sulfate, filtered, and then concentrated under reduced pressure to provide 23 g of crude tert-butyl N-{4-[4-amino-2-(2-methoxyethyl)-1H-imidazo[4,5-c]quinolin-1-yl]butyl}carbamate as a red tar.


Part C


The material from Part B was combined with a solution of hydrochloric acid in dioxane (325 mL of 4 M) and stirred at ambient temperature for 3 hours. The reaction mixture was concentrated under reduced pressure. The residue was dissolved in methanol (30 mL) and 6 M sodium hydroxide was added with stirring to about pH 9. Attempts to extract with dichloromethane and ethyl acetate were not successful. The organic and aqueous layers were concentrated under reduced pressure and combined to provide a dark orange solid. This material was purified by prep HPLC (COMBIFLASH system eluting first with a gradient of 0 to 8% methanol in dichloromethane containing 1% ammonium hydroxide and then with a gradient of 9 to 35% methanol in dichloromethane containing 1% ammonium hydroxide) to provide 10.65 g of 1-(4-aminobutyl)-2-(2-methoxyethyl)-1H-imidazo[4,5-c]quinolin-4-amine as an orange solid.


Part D


Triethylamine (10.5 mL, 75.0 mmol) was added to a mixture of a portion (4.7 g, 15 mmol) of the material from Part C in pyridine (50 mL). The reaction mixture was stirred for several minutes and then methanesulfonyl chloride (1.27 mL, 16.5 mmol) was added dropwise. The reaction mixture was stirred at ambient temperature for 2 hours and then at 50° C. for 2 hours. More methanesulfonyl chloride (0.5 eq) was added and the reaction mixture was stirred at 50° C. for 2 hours. Another portion of methanesulfonyl chloride (0.25 eq) was added and the reaction mixture was stirred at ambient temperature overnight. The reaction mixture was diluted with dichloromethane and water. The layers were separated and the aqueous layer was extracted with dichloromethane (×3). The combined organics were dried over magnesium sulfate, filtered, and then concentrated under reduced pressure to provide 5 g of crude N-{4-[4-amino-2-(2-methoxyethyl)-1H-imidazo[4,5-c]quinolin-1-yl]butyl}methanesulfonamide as a red oil.


Part E


Boron tribromide (22.4 mL of 1 M in dichloromethane) was added slowly to a chilled (ice bath) mixture of a portion of the material from Part D (3.5 g, about 8.9 mmol) and dichloromethane (50 mL). After the addition was complete the ice bath was removed and the reaction mixture was allowed to stir at ambient temperature for 3 hours. The reaction mixture was concentrated under reduced pressure. The residue was dissolved in methanol and then combined with hydrochloric acid (50 mL of 6 M). The mixture was stirred at 50° C. for 2 hours and then concentrated under reduced pressure. The residue was combined with ammonia in methanol (about 50 mL of 7 M) to neutralize the acid and then concentrated. This procedure was repeated 3 times. The crude product was purified by prep HPLC (COMBIFLASH system eluting with a gradient of 0 to 10% methanol in dichloromethane containing 1% ammonium hydroxide). The product was stirred with hot acetonitrile, allowed to stand overnight, and then isolated by filtration, washed with acetonitrile, and dried in a vacuum oven to provide 1.1 g of N-{4-[4-amino-2-(2-hydroxyethyl)-1H-imidazo[4,5-c]quinolin-1-yl]butyl}methanesulfonamide, mp 206-208° C. Anal calcd for C17H23N5O3S: % C, 54.09; % H, 6.14; % N, 18.55. Found: % C, 53.83; % H, 6.29; % N, 18.29.


Example 4
1-(2-Amino-2-methylpropyl)-2-hydroxymethyl-1H-imidazo[4,5-c]quinolin-4-amine



embedded image



Part A


Under a nitrogen atmosphere, triethylamine (6.6 mL, 47 mmol) was added slowly to a solution of 2,4-dichloro-3-nitroquinoline (10.0 g, 41.1 mmol) in anhydrous 1-methyl-2-pyrrolidinone (40 mL). The reaction mixture was cooled to 0° C. with an ice bath. A solution of 1,2-diamino-2-methylpropane (4.1 g, 47.3 mmol) in anhydrous 1-methyl-2-pyrrolidinone (5 mL) was added dropwise over a period of 15 minutes while maintaining the temperature of the reaction mixture below 4° C. After the addition was completed the ice bath was removed and the reaction mixture was allowed to stir at ambient temperature for 4 hours. The reaction mixture was slowly poured into vigorously stirred warm water (300 mL). The resulting suspension was stirred for 1 hour and then cooled to 13° C. by adding ice. The solid was isolated by filtration and then washed with cold water until the filtrate was clear to provide 12.1 g of N1-(2-chloro-3-nitroquinolin-4-yl)-2-methylpropane-1,2-diamine as a damp yellow solid.


Part B


A solution of sodium hydroxide (1.8 g of solid sodium hydroxide dissolved in 45 mL of water) was added slowly to a solution of the material from Part A (41.1 mmol) in tetrahydrofuran (96 mL). A solution of di-tert-butyl dicarbonate (10.8 g, 49.4 mmol) in tetrahydrofuran (30 mL) was added dropwise over a period of 15 minutes. The reaction solution was stirred at ambient temperature. After 6 hours 10% sodium hydroxide (2 mL) and additional di-tert-butyl dicarbonate (1.5 g) were added and the reaction solution was stirred at ambient temperature overnight. The layers were separated and the tetrahydrofuran was removed under reduced pressure to provide a mixture. The mixture was diluted with water (200 mL) and then extracted with dichloromethane (2×100 mL). The organics were combined, washed sequentially with aqueous sodium carbonate (2×150 mL) and brine (100 mL), dried over sodium sulfate and magnesium sulfate, filtered, and then concentrated under reduced pressure. The residue was triturated with heptane (75 mL) for 15 minutes at 65° C. and then filtered while hot. The isolated solids were washed with heptane (20 mL) to provide 13.2 g of tert-butyl N-{2-[(2-chloro-3-nitroquinolin-4-yl)amino]-1,1-dimethylethyl}carbamate as a yellow powdery solid.


Part C


A Parr vessel was charged with 5% Pt/C (0.5 g) and acetonitrile (10 mL). A solution of the material from Part B in acetonitrile (450 mL) was added. The vessel was placed on a Parr shaker under hydrogen pressure (40 psi, 2.8×105 Pa) for 5 hours. The reaction mixture was filtered through a layer of CELITE filter aid to remove the catalyst. The filtrate was carried on to the next step.


Part D


The solution of tert-butyl N-{2-[(3-amino-2-chloroquinolin-4-yl)amino]-1,1-dimethylethyl}carbamate in acetonitrile from Part C was cooled to 5° C. using an ice bath.


A solution of acetoxyacetyl chloride (4.8 g, 35.1 mmol) in acetonitrile (20 mL) was added dropwise at a rate such that the temperature of the reaction mixture was maintained at 5° C. After the addition was complete the ice bath was removed and the reaction mixture was allowed to stir at ambient temperature for 5 hours. The reaction mixture was concentrated under reduced pressure to provide 16.7 g of N-{2-[(3-acetoxyacetylamino-2-chloroquinolin-4-yl)amino]-1,1-dimethylethyl}carbamate hydrochloride as a yellow powder.


Part E


A mixture of the material from Part D (15.7 g) and ammonia in methanol (235 mL of 7 N) was divided into equal portions and placed in pressure vessels. The vessels were sealed, heated at 160° C. for 20 hrs, and then allowed to cool to ambient temperature overnight. The reaction mixtures were filtered. The isolated solids were washed with water and dried in a vacuum oven at 60° C. overnight to provide 6.0 g of a tan powder. A portion (1 g) was treated with activated charcoal and recrystallized from ethanol (75 mL) to provide 0.5 g of 1-(2-amino-2-methylpropyl)-2-hydroxymethyl-1H-imidazo[4,5-c]quinolin-4-amine as a white granular solid, mp 248-250° C. Anal calcd for C15H19N5O: % C, 63.14; % H, 6.71; % N, 24.54. Found: % C, 63.13; % H, 6.81; % N, 24.64.


Example 5
N-[2-(4-Amino-2-hydroxymethyl-1H-imidazo[4,5-c]quinolin-1-yl)-1,1-dimethylethyl]cyclohexanecarboxamide



embedded image


A solution of 1-(2-amino-2-methylpropyl)-2-hydroxymethyl-1H-imidazo[4,5-c]quinolin-4-amine (2.0 g, 7.0 mmol) in 1-methyl-2-pyrrolidinone (30 mL) was cooled to −20° C. Triethylamine (1.1 mL, 7.7 mmol) was added in a single portion. A chilled (−5° C.) solution of cyclohexanecarbonyl chloride (1.03 g, 7.0 mmol) in 1-methyl-2-pyrrolidinone (2 mL) was added dropwise over a period of 20 minutes while maintaining the reaction mixture at −20° C. The reaction mixture was stirred at ambient temperature overnight. Additional cyclohexanecarbonyl chloride (0.1 g) was added and the reaction mixture stirred for 2 hours. The reaction mixture was poured into water with vigorous stirring. The resulting precipitate was isolated by filtration to provide 1.7 g of an ivory powder. Analysis by high performance liquid chromatography and NMR indicated that the powder was a mixture of the desired product and an ester formed from the reaction of the hydroxy group of the desired product with cyclohexanecarbonyl chloride.


The powder was dissolved in ethanol (25 mL), combined with a solution of sodium hydroxide (0.21 g) in water (25 mL), and then heated at 50° C. for 3 hours. The ethanol was removed under reduced pressure and the solids were isolated by filtration to provide 1.2 g of a light tan powder. The powder was dissolved in a mixture of acetonitrile (100 mL), water (2 mL) and ethanol (25 mL). The solution was allowed to stand overnight and was then concentrated to a volume of 5 mL to provide a white paste. The paste was triturated with warm (70° C.) acetonitrile (50 mL) for 30 minutes, heated to reflux, and then allowed to cool to ambient temperature. The resulting solid was isolated by filtration to provide 1.05 g of N-[2-(4-amino-2-hydroxymethyl-1H-imidazo[4,5-c]quinolin-1-yl)-1,1-dimethylethyl]cyclohexanecarboxamide as a light yellow powder, mp 248-250° C. Anal calcd for C22H29N5O2: % C, 66.81; % H, 7.39; % N, 17.71. Found: % C, 66.56; % H, 7.60; % N, 17.82.


Example 6
N-{2-[4-Amino-2-(2-hydroxyethyl)-1H-imidazo[4,5-c]quinolin-1-yl]-1,1-dimethylethyl}methanesulfonamide



embedded image



Part A


Triethylamine (39.3 mL, 0.282 mol) was added to a chilled (ice bath) solution of N1-(2-chloro-3-nitroquinolin-4-yl)-2-methylpropane-1,2-diamine (41.42 g, 0.141 mol) in dichloromethane (about 500 mL). Under a nitrogen atmosphere a solution of methanesulfonic anhydride in (29.47 g, 0.169 mol) in dichloromethane (100 mL) was added via a cannula to the reaction mixture over a period of 45 minutes. After the addition was complete the ice bath was removed and the reaction mixture was allowed to stir at ambient temperature overnight. The reaction mixture was washed sequentially with saturated aqueous sodium bicarbonate (×2) and brine, dried over a mixture of sodium sulfate and magnesium sulfate, filtered, and then concentrated under reduced pressure to provide 46.22 g of an orange solid. This material was recrystallized from toluene (about 1 L), isolated by filtration, rinsed with cold toluene, and dried under high vacuum at 60° C. to provide 33.09 g of N-{2-[(2-chloro-3-nitroquinolin-4-yl)amino]-1,1-dimethylethyl}methanesulfonamide.


Part B


A hydrogenation vessel was charged with 5% Pt/C (4.14 g) and a solution of N-{2-[(2-chloro-3-nitroquinolin-4-yl)amino]-1,1-dimethylethyl}methanesulfonamide (54.59 g, 0.147 mol) in acetonitrile (1800 mL). The vessel was placed under hydrogen pressure (48 psi, 3.3×105 Pa) overnight. An additional portion (4.25 g) of catalyst was added and the vessel was placed under hydrogen pressure (48 psi, 3.3×105 Pa) for 4 hours. The reaction mixture was filtered through a layer of CELITE filter aid and the filter cake was rinsed with fresh acetonitrile until the washes were clear.


Part C


Under a nitrogen atmosphere, 3-methoxypropionyl chloride (17.6 mL, 0.162 mol) was added dropwise to the solution of N-{2-[(3-amino-2-chloroquinolin-4-yl)amino]-1,1-dimethylethyl}methanesulfonamide (0.147 mol) in acetonitrile (2.2 L) from Part B. The reaction mixture was allowed to stir at ambient temperature over the weekend. The resulting precipitate was isolated by filtration, rinsed with a small amount of acetonitrile, and then dried under high vacuum at 60° C. to provide 55.84 g of N-{2-chloro-4-[2-(methanesulfonylamino)-2-methylpropyl]quinolin-3-yl}-3-methoxypropionamide.


Part D


A Parr bomb was charged with 25.0 g of N-{2-chloro-4-[2-(methanesulfonylamino)-2-methylpropyl]aminoquinolin-3-yl}-3-methoxypropionamide and ammonia in methanol (300 mL of 7 N). A second vessel was charged with 30.21 g of N-{2-chloro-4-[2-(methanesulfonylamino)-2-methylpropyl]quinolin-3-yl}-3-methoxypropionamide and ammonia in methanol (400 mL of 7 N). Both vessels were sealed and then heated at 170° C. for 14 hours. The reaction mixtures were combined and the solvent was removed under reduced pressure. The residue was partitioned between dichloromethane and saturated aqueous sodium bicarbonate. The organic layer was washed sequentially with saturated aqueous sodium bicarbonate and brine, dried over sodium sulfate, filtered, and then concentrated under reduced pressure to provide 38.16 g of N-{2-[4-amino-2-(2-methoxyethyl)-1H-imidazo[4,5-c]quinolin-1-yl]-1,1-dimethylethyl}methanesulfonamide as an off white foam.


Part E


Under a nitrogen atmosphere, boron tribromide (3.5 mL of 1 M in dichloromethane) was added dropwise to a chilled (0° C.) solution of N-{2-[4-amino-2-(2-methoxyethyl)-1H-imidazo[4,5-c]quinolin-1-yl]-1,1-dimethylethyl}methanesulfonamide (0.55 g, 1.40 mmol) in dichloromethane (20 mL). The reaction was allowed to warm to ambient temperature overnight. The reaction was quenched with methanol (10 mL) and the solvent was removed under reduced pressure. The residue was dissolved in hydrochloric acid (6 N), stirred at 50° C. for about 2.5 hours, and then allowed to cool to ambient temperature. The reaction mixture was adjusted to pH 11 with ammonium hydroxide and then extracted with dichloromethane (×10). The combined organics were washed with brine, dried over sodium sulfate, filtered, and then concentrated under reduced pressure to provide 0.47 g of a white solid. This material was purified by prep HPLC (HORIZON HPFC system, eluting with a gradient of 30-50% CMA in chloroform for 15 column volumes followed by 50% CMA in chloroform for 5 column volumes) and then dried under high vacuum to provide 250 mg of N-{2-[4-amino-2-(2-hydroxyethyl)-1H-imidazo[4,5-c]quinolin-1-yl]-1,1-dimethylethyl}methanesulfonamide as white solid, m.p. 209-212° C. 1H NMR (500 MHz, DMSO-d6) δ 8.30 (d, J=8.2 Hz, 1H), 7.60 (d, J=8.2 Hz, 1H), 7.39 (m, 1H), 7.27 (s, 1H), 7.21 (m, 1H), 6.49 (s, 2H), 4.84 (t, J=5.4 Hz, 2H), 4.82 (br s, 1H), 3.88 (m, 2H), 3.18 (br s, 2H), 3.00 (s, 3H), 1.27 (br s, 6H); 13C NMR (125 MHz, DMSO-d6) δ 153.6, 152.0, 145.4, 133.5, 126.9, 126.8, 126.5, 121.3, 120.8, 115.6, 60.5, 57.9, 54.1, 44.8, 31.4, 25.8; MS (ESI) m/z 378 (M+H)+; Anal. calcd for C17H23N5O3S: % C, 54.09; % H, 6.14; % N, 18.55. Found: % C, 53.76; % H, 6.02; % N, 18.32.


Example 7
N-[2-(4-Amino-2-hydroxymethyl-1H-imidazo[4,5-c]quinolin-1-yl)-1,1-dimethylethyl]methanesulfonamide



embedded image



Part A


A pressure vessel was charged with a solution of N-{2-[(2-chloro-3-nitroquinolin-4-yl)amino]-1,1-dimethylethyl}methanesulfonamide (5 g, 13 mmol) in acetonitrile (150 mL). Catalyst was added (0.5 g of 5% Pt/C) and the vessel was placed under hydrogen pressure (50 psi, 3.4×105 Pa) for 2 hours. The reaction mixture was filtered through a layer of CELITE filter aid.


Part B


The solution of N-{2-[(3-amino-2-chloroquinolin-4-yl)amino]-1,1-dimethylethyl}methanesulfonamide in acetonitrile from Part A was chilled in an ice bath. Acetoxyacetyl chloride (1.5 mL, 14 mmol) was added over a period of 5 minutes. The reaction mixture was allowed to stir for 3 hours. A precipitate was isolated by filtration and rinsed with acetonitrile to provide crude N-{2-chloro-4-[2-(methanesulfonylamino)-2-methylpropyl]quinolin-3-yl}acetoxyacetamide hydrochloride.


Part C


A solution of sodium hydroxide (0.8 g) in water (15 mL) was added to a suspension of the material from Part B in ethanol (60 mL) until all of the solid dissolved. The reaction mixture was heated at 60° C. overnight and then concentrated under reduced pressure. The residue was dissolved in water (50 mL), sodium chloride (10 g) was added, and the mixture was extracted with chloroform (3×300 mL). The extracts were concentrated under reduced pressure to provide about 4 g of crude N-[2-(4-chloro-2-hydroxymethyl-1H-imidazo[4,5-c]quinolin-1-yl)-1,1-dimethylethyl]methanesulfonamide.


Part D


The material from Part C was combined with a solution of ammonia in methanol (50 mL of 7 N) and heated at 150° C. for 10 hours. The reaction mixture was allowed to cool to ambient temperature. A precipitate was isolated by filtration, rinsed with methanol (20 mL), slurried with water (50 mL), isolated by filtration, washed with water (20 mL), and dried to provide 2.7 g of a brown crystalline solid. This material was combined with methanol (50 mL), heated at 50° C. overnight, and then isolated by filtration to provide 2.3 g of N-[2-(4-amino-2-hydroxymethyl-1H-imidazo[4,5-c]quinolin-1-yl)-1,1-dimethylethyl]methanesulfonamide, mp 262-265° C. Anal. calcd for C16H21N5O3S: % C, 52.88; % H, 5.82; % N, 19.27. Found: % C, 52.64; % H, 5.95; % N, 19.50.


Examples 8-72

Part A


A reagent (1.1 eq) from Table 1 below was added to a test tube containing a solution of 1-(4-aminobutyl)-2-(2-methoxyethyl)-1H-imidazo[4,5-c]quinolin-4-amine (73 mg) in N,N-dimethylacetamide (1 mL) containing N,N-diisopropylethylamine (2 eq). The test tube was placed on a shaker overnight. The solvent was removed by vacuum centrifugation. The reaction mixtures were separated by solid-supported liquid-liquid extraction according to the following procedure. Each sample was dissolved in chloroform (1 mL) then loaded onto diatomaceous earth that had been equilibrated with de-ionized water (600 μL) for about 20 minutes. After 10 minutes chloroform (500 μL) was added to elute the product from the diatomaceous earth into a well of a collection plate. After an additional 10 minutes the process was repeated with additional chloroform (500 μL). The solvent was then removed by vacuum centrifugation.


Part B


The residue (in a test tube) was combined with dichloromethane (1 mL) and the mixture was sonicated to dissolve the solids. The solution was cooled (0° C.) and then combined with boron tribromide (400 μL of 1 M in heptane). The mixture was shaken for 5 minutes, placed in an ice bath for 30 minutes, and then shaken overnight. The solvents were removed by vacuum centrifugation. The residue was diluted with methanol (1 mL) and hydrochloric acid (500 μL of 6 N). The mixture was shaken for 30 minutes and then the solvents were removed by vacuum centrifugation. The compounds were purified by preparative high performance liquid chromatography (prep HPLC) using a Waters FractionLynx automated purification system. The prep HPLC fractions were analyzed using a Waters LC/TOF-MS, and the appropriate fractions were centrifuge evaporated to provide the trifluoroacetate salt of the desired compound. Reversed phase preparative liquid chromatography was performed with non-linear gradient elution from 5-95% B where A is 0.05% trifluoroacetic acid/water and B is 0.05% trifluoroacetic acid/acetonitrile. Fractions were collected by mass-selective triggering. Table 1 below shows the reagent used for each example, the structure of the resulting compound, and the observed accurate mass for the isolated trifluoroacetate salt.









TABLE 1









embedded image















Measured





Mass


Example
Reagent
R
(M + H)













8
None


embedded image


300.1840





9
Cyclopropanecarbonyl chloride


embedded image


368.2063





10
Isobutyryl chloride


embedded image


370.2224





11
Pivaloyl chloride


embedded image


384.2390





12
Benzoyl chloride


embedded image


404.2103





13
Phenyl chloroformate


embedded image


420.2056





14
3-Cyanobenzoyl chloride


embedded image


429.2031





15
Hydrocinnamoyl chloride


embedded image


432.2377





16
Isonicotinoyl chloride hydrochloride


embedded image


405.2071





17
Nicotinoyl chloride hydrochloride


embedded image


405.2058





18
Methanesulfonyl chloride


embedded image


378.1592





19
Ethanesulfonyl chloride


embedded image


392.1729





20
1-Propanesulfonyl chloride


embedded image


406.1899





21
Isopropylsulfonyl chloride


embedded image


406.1888





22
Dimethylsulfamoyl chloride


embedded image


407.1853





23
1-Butanesulfonyl chloride


embedded image


420.2050





24
Benzenesulfonyl chloride


embedded image


440.1741





25
1-Methylimidazole-4-sulfonyl chloride


embedded image


444.1806





26
3-Methylbenzenesulfonyl chloride


embedded image


454.1895





27
alpha-Toluenesulfonyl chloride


embedded image


454.1923





28
o-Toluenesulfonyl chloride


embedded image


454.1944





29
p-Toluenesulfonyl chloride


embedded image


454.1907





30
2-Fluorobenzenesulfonyl chloride


embedded image


458.1664





31
3-Fluorobenzenesulfonyl chloride


embedded image


458.1652





32
4-Fluorobenzenesulfonyl chloride


embedded image


458.1639





33
3-Cyanobenzenesulfonyl chloride


embedded image


465.1678





34
4-Cyanobenzenesulfonyl chloride


embedded image


465.1668





35
beta-Styrene sulfonyl chloride


embedded image


466.1895





36
2,5-Dimethylbenzenesulfonyl chloride


embedded image


468.2063





37
3,5-Dimethylbenzenesulfonyl chloride


embedded image


468.2046





38
2-Chlorobenzenesulfonyl chloride


embedded image


474.1351





39
3-Chlorobenzenesulfonyl chloride


embedded image


474.1385





40
4-Chlorobenzenesulfonyl chloride


embedded image


474.1390





41
1-Naphthalenesulfonyl chloride


embedded image


490.1891





42
2-Naphthalenesulfonyl chloride


embedded image


490.1885





43
2- (Trifluoromethyl)benzenesulfonyl chloride


embedded image


508.1592





44
3- (Trifluoromethyl)benzenesulfonyl chloride


embedded image


508.1612





45
4- (Trifluoromethyl)benzenesulfonyl chloride


embedded image


508.1640





46
2,3-Dichlorobenzenesulfonyl chloride


embedded image


508.0967





47
2,4-Dichlorobenzenesulfonyl chloride


embedded image


508.0979





48
2,5-Dichlorobenzenesulfonyl chloride


embedded image


508.0987





49
2,6-Dichlorobenzenesulfonyl chloride


embedded image


508.0968





50
3,4-Dichlorobenzenesulfonyl chloride


embedded image


508.0961





51
3,5-Dichlorobenzenesulfonyl chloride


embedded image


508.0985





52
Methyl isocyanate


embedded image


357.2073





53
Ethyl isocyanate


embedded image


371.2203





54
Isopropyl isocyanate


embedded image


385.2347





55
n-Propyl isocyanate


embedded image


385.2349





56
n-Butyl isocyanate


embedded image


399.2494





57
sec-Butyl isocyanate


embedded image


399.2517





58
Cyclopentyl isocyanate


embedded image


411.2516





59
Cyclopropylmethyl isothiocyanate


embedded image


413.2133





60
Phenyl isocyanate


embedded image


419.2226





61
Cyclohexyl isocyanate


embedded image


425.2701





62
Benzyl isocyanate


embedded image


433.2374





63
m-Tolyl isocyanate


embedded image


433.2344





64
Benzoyl isocyanate


embedded image


447.2126





65
2-Phenyl ethylisocyanate


embedded image


447.2512





66
4-Chlorophenyl isocyanate


embedded image


453.1797





67
trans-2-Phenylcyclopropyl isocyanate


embedded image


459.2518





68
N,N-Dimethylcarbamoyl chloride


embedded image


371.2185





69
1-Pyrrolidinecarbonyl chloride


embedded image


397.2382





70
1-Piperidinecarbonyl chloride


embedded image


411.2526





71
4-Morpholinylcarbonyl chloride


embedded image


413.2330





72
N-Methyl-N-phenylcarbamoyl chloride


embedded image


433.2364









Examples 73-110

Part A


Tert-Butyl 3-[4-amino-2-(2-methoxyethyl)-1H-imidazo[4,5-c]quinolin-1-yl]propylcarbamate (5 g, U.S. Pat. No. 6,573,273, example 148) and hydrochloric acid in dioxane (100 mL of 4 M) were combined and stirred for 4 hours at ambient temperature. The reaction mixture was concentrated under reduced pressure. The residue was dissolved in methanol (30 mL). The pH was adjusted to pH 8 with 6 M sodium hydroxide. The solution was diluted with dichloromethane, ethyl acetate, triethylamine, and brine. The organic layer was concentrated under reduced pressure to provide an orange solid. This material was purified by prep HPLC (COMBIFLASH system eluting first with a gradient of 0 to 10% methanol in dichloromethane containing 1% ammonium hydroxide and then with a gradient of 9 to 30% methanol in dichloromethane containing 1% ammonium hydroxide) to provide 1.58 g of 1-(3-aminopropyl)-2-(2-methoxyethyl)-1H-imidazo[4,5-c]quinolin-4-amine as a yellow solid.


Part B


A reagent (1.1 eq) from Table 2 below was added to a test tube containing a solution of 1-(3-aminopropyl)-2-(2-methoxyethyl)-1H-imidazo[4,5-c]quinolin-4-amine (30 mg) in chloroform (1 mL) containing N,N-diisopropylethylamine (1.5 eq). The test tube was placed on a shaker overnight. The reaction mixtures were separated by solid-supported liquid-liquid extraction according to the following procedure. Each reaction mixture was loaded onto diatomaceous earth that had been equilibrated with de-ionized water (600 μL) for about 20 minutes. After 10 minutes chloroform (500 μL) was added to elute the product from the diatomaceous earth into a well of a collection plate. After an additional 10 minutes the process was repeated with additional chloroform (500 μL). The solvent was then removed by vacuum centrifugation.


Part C


The ether was cleaved and the resulting product was purified using the method of Part B in Examples 8-72. Table 2 below shows the reagent used for each example, the structure of the resulting compound, and the observed accurate mass for the isolated trifluoroacetate salt.









TABLE 2









embedded image


















Measured Mass


Example
Reagent
R
(M + H)













73
None


embedded image


286.1689





74
Propionyl chloride


embedded image


342.1956





75
Cyclopropanecarbonyl chloride


embedded image


354.1946





76
Butyryl chloride


embedded image


356.2122





77
Isobutyryl chloride


embedded image


356.2119





78
Cyclobutanecarbonyl chloride


embedded image


368.2120





79
3-Chlorobenzoyl chloride


embedded image


424.1570





80
4-Chlorobenzoyl chloride


embedded image


424.1583





81
Nicotinoyl chloride hydrochloride


embedded image


391.1913





82
trans-2-Phenyl-1- cyclopropanecarbonyl chloride


embedded image


430.2257





83
Methanesulfonyl chloride


embedded image


364.1479





84
Ethanesulfonyl chloride


embedded image


378.1639





85
1-Propanesulfonyl chloride


embedded image


392.1783





86
Isopropylsulfonyl chloride


embedded image


392.1788





87
Dimethylsulfamoyl chloride


embedded image


393.1715





88
1-Butanesulfonyl chloride


embedded image


406.1946





89
Benzenesulfonyl chloride


embedded image


426.1633





90
2,2,2- Trifluoroethanesulfonyl chloride


embedded image


432.1355





91
3- Methylbenzenesulfonyl chloride


embedded image


440.1774





92
alpha-Toluenesulfonyl chloride


embedded image


440.1762





93
p-Toluenesulfonyl chloride


embedded image


440.1790





94
3-Fluorobenzenesulfonyl chloride


embedded image


444.1523





95
4-Fluorobenzenesulfonyl chloride


embedded image


444.1545





96
3-Cyanobenzenesulfonyl chloride


embedded image


451.1554





97
4-Cyanobenzenesulfonyl chloride


embedded image


451.1582





98
Ethyl isocyanate


embedded image


357.2050





99
Isopropyl isocyanate


embedded image


371.2234





100
n-Butyl isocyanate


embedded image


385.2364





101
Cyclopentyl isocyanate


embedded image


397.2359





102
Cyclopropylmethyl isothiocyanate


embedded image


399.1979





103
Phenyl isocyanate


embedded image


405.2040





104
Cyclohexyl isocyanate


embedded image


411.2526





105
Benzyl isocyanate


embedded image


419.2239





106
trans-2- Phenylcyclopropyl isocyanate


embedded image


445.2388





107
1-Piperidinecarbonyl chloride


embedded image


397.2384





108
4-Morpholinylcarbonyl chloride


embedded image


399.2173





109
4-Methyl-1- piperazinecarbonyl chloride


embedded image


412.2485





110
N-Methyl-N- phenylcarbamoyl chloride


embedded image


419.2229









Examples 111-140

Boron tribromide (400 μL of 1 M in heptane) was added to a tube containing a chilled (0° C.) solution of a compound of Formula Xa (about 25 mg) in dichloromethane (1 mL). The tube was vortexed, maintained at 0° C. for 0.5 hour, and then shaken overnight at ambient temperature. The reaction mixture was diluted with methanol (1 mL) and hydrochloric acid (250 μL of 6 N), vortexed, and then the solvents were removed by vacuum centrifugation. The compounds were purified by prep HPLC as described in Examples 8-72. Table 3 shows the structure of the starting material, a reference for the starting material, the structure of the resulting compound, and the observed accurate mass for the isolated trifluoroacetate salt.









TABLE 3









embedded image
















Reference

Measured


Example
Formula III
R1
Mass (M + H)





111
U.S. Pat. No. 6,756,382 Example 57


embedded image


455.2222





112
U.S. Pat. No. 6,331,539 Example 121


embedded image


458.1657





113
U.S. Pat. No. 6,331,539 Example 111


embedded image


378.1599





114
Example 3 Part C


embedded image


300.1853





115
U.S. Pat. No. 6,541,485 Example 121


embedded image


413.2301





116
U.S. Pat. No. 6,756,382 Example 182


embedded image


455.2198





117
U.S. Pat. No. 6,756,382 Example 183


embedded image


456.2161





118
U.S. Pat. No. 6,573,273 Example 145


embedded image


475.2829





119
U.S. Pat. No. 6,677,349 Example 243


embedded image


434.2253





120
Example 73 Part A


embedded image


286.1683





121
U.S. Pat. No. 6,756,382 Example 187


embedded image


460.2737





122
U.S. Pat. No. 6,677,349 Example 247


embedded image


364.1446





123
U.S. Pat. No. 6,573,273 Example 158


embedded image


411.2505





124
U.S. Pat. No. 6,756,382 Example 190


embedded image


418.2275





125
U.S. Pat. No. 6,664,264 Example 16


embedded image


377.1655





126
U.S. Pat. No. 6,573,273 Example 162


embedded image


385.2358





127
U.S. Pat. No. 6,677,349 Example 253


embedded image


440.1720





128
U.S. Pat. No. 6,573,273 Example 163


embedded image


399.2145





129
U.S. Pat. No. 6,677,349#


embedded image


314.1980





130
U.S. Pat. No. 6,573,273 Example 169


embedded image


433.2321





131
U.S. Pat. No. 6,677,349 Example 256


embedded image


392.1757





132
U.S. Pat. No. 6,756,382 Example 196


embedded image


390.1929





133
U.S. Pat. No. 6,683,088 Example 3


embedded image


408.1714





134
U.S. Pat. No. 6,664,265 Example 8


embedded image


434.2197





135
U.S. Pat. No. 6,664,265 Example 73


embedded image


440.2672





136
U.S. Pat. No. 6,677,349#


embedded image


350.1316





137
U.S. Pat. No. 6,573,273#


embedded image


343.1884





138
U.S. Pat. No. 6,451.810#


embedded image


356.2078





139
U.S. Pat. No. 6,677,349#


embedded image


378.1595





140
U.S. Patent Publication 2004/0091491 IRM3


embedded image


554.4064






#Although not specifically exemplified the compound can be readily prepared using the disclosed synthetic routes.







Example 141
N-{3-[4-Amino-2-(2-hydroxyethyl)-1H-imidazo[4,5-c]quinolin-1-yl]propyl}-2-methylpropionamide



embedded image



Part A


1-(3-Aminopropyl)-2-(2-methoxyethyl)-1H-imidazo[4,5-c]quinolin-4-amine dihydrochloride (6 g, 16 mmol) was combined with triethylamine (11.2 mL, 80 mmol) and pyridine (100 mL). Isobutyryl chloride (1.9 g, 18 mmol) was added dropwise and the reaction mixture was stirred at ambient temperature for 1 hour. The reaction mixture was combined with saturated aqueous sodium bicarbonate and extracted with dichloromethane (3×200 mL). The combined organics were dried over magnesium sulfate, filtered through a layer of CELITE filter aid, and then concentrated under reduced pressure to provide 6.2 g of crude N-{3-[4-amino-2-(2-methoxyethyl)-1H-imidazo[4,5-c]quinolin-1-yl]propyl}-2-methylpropionamide as a brown solid.


Part B


The material from Part A was combined with dichloromethane (40 mL), stirred until homogeneous, and then chilled in an ice bath. Boron tribromide (40 mL of 1 M in dichloromethane) was slowly added. The ice bath was removed and the reaction mixture was stirred overnight at ambient temperature. The reaction mixture was concentrated under reduced pressure. The residue was combined with methanol (50 mL) and hydrochloric acid (50 mL of 6 N) and heated at 50° C. for 2 hours. The solution was adjusted to pH 9 with sodium hydroxide (6 M) and then extracted first with ethyl acetate (3×100 mL) and then with dichloromethane. The organics were dried over magnesium sulfate, filtered through a layer of CELITE filter aid, and then concentrated under reduced pressure. The residue was purified by prep HPLC (HORIZON HPFC system, eluting with a gradient of 0-10% methanol in dichloromethane), recrystallized from acetonitrile, and then dried in a vacuum oven to provide 208 mg of N-{3-[4-amino-2-(2-hydroxyethyl)-1H-imidazo[4,5-c]quinolin-1-yl]propyl}-2-methylpropionamide as an off-white solid, mp 196-198° C. Anal. calcd for C19H25N5O2: % C, 64.20; % H, 7.09; % N, 19.70. Found: % C, 63.99; % H, 7.28; % N, 19.63.


Example 142
1-[2-(4-Amino-2-hydroxymethyl-1H-imidazo[4,5-c]quinolin-1-yl)-1,1-dimethylethyl]-3-(1-methylethyl)urea



embedded image



Part A


Under a nitrogen atmosphere, a solution of 1,2-diamino-2-methylpropane (52.20 mL, 503.3 mmol), triethylamine (131.8 mL, 958.8 mmol), and dichloromethane (1.0 L) was chilled in an ice water bath. 4-Chloro-3-nitroquinoline (100.0 g, 479.4 mmol) was added in portions over a period of 5 minutes. The reaction mixture was stirred at 0° C. for 2 hours and then allowed to slowly warm to ambient temperature. After 16 hours the reaction mixture was concentrated under reduced pressure. The residue was triturated with water (500 mL) for 1 hour. The resulting solid was isolated by filtration and dried overnight in a vacuum desiccator to provide 124.6 g of N1-(3-nitroquinolin-1-yl)-2-methylpropane-1,2-diamine as a yellow crystalline solid.


Part B


Under a nitrogen atmosphere, a suspension of N1-(3-nitroquinolin-1-yl)-2-methylpropane-1,2-diamine (60.0 g, 231 mmol) in dichloromethane (1.0 L) was chilled in an ice bath. Isopropyl isocyanate (23.8 mL, 242 mmol) was added dropwise over a period of 10 minutes. The reaction was allowed to slowly warm to room temperature. After 17 hours additional isopropyl isocyanate (about 2 mL) was added. After an additional 3 hours more isopropyl isocyanate (1 mL) was added. After 2 more hours the reaction mixture was concentrated under reduced pressure to provide 79.8 g of 1-{1,1-dimethyl-2-[(3-nitroquinolin-1-yl)amino]ethyl}-3-(1-methylethyl)urea as a bright yellow solid.


Part C


A pressure vessel was charged with the material from Part B, 5% Pt/C (4.24 g), and acetonitrile (1.5 L). The mixture was placed under hydrogen pressure for 20 hours and then filtered through a layer of CELITE filter aid. The filter cake was rinsed with additional acetonitrile. The filtrate was concentrated under reduced pressure. The residue was dissolved in toluene (750 mL) and then concentrated under reduced pressure to remove residual water. The toluene concentration was repeated. The residue was dissolved in dichloromethane (about 1 L), concentrated under reduced pressure, and then dried under high vacuum to provide 66.4 g of 1-{1,1-dimethyl-2-[(3-aminoquinolin-1-yl)amino]ethyl}-3-(1-methylethyl)urea as an orange foam.


Part D


Under a nitrogen atmosphere, a solution of 1-{1,1-dimethyl-2-[(3-aminoquinolin-1-yl)amino]ethyl}-3-(1-methylethyl)urea (66.0 g, 209 mmol) and triethylamine (32.1 mL, 230 mmol) in dichloromethane (1.0 L) was chilled in an ice bath. Ethoxyacetyl chloride (23.6 mL, 291 mmol) was added dropwise over a period of 10 minutes. The reaction mixture was allowed to slowly warm to ambient temperature overnight. The reaction mixture was concentrated under reduced pressure. The residue was combined with 1-butanol (800 mL) and triethylamine (87 mL, 627 mmol) and heated at 140° C. for 3 hours. The reaction mixture was cooled to ambient temperature and then concentrated under reduced pressure to provide a light brown foam. This material was purified by column chromatography (silica gel, eluting with 98/2/0.5 chloroform/methanol/ammonium hydroxide) to provide 29.36 g of 1-[2-(2-ethoxymethyl-1H-imidazo[4,5-c]quinolin-1-yl)-1,1-dimethylethyl]-3-(1-methylethyl)urea as a light yellow foam.


Part E


3-Chloroperoxybenzoic acid (26.33 g of 60%, 91.56 mmol) was added in portions over a period of 5 minutes to a chilled solution of the material from Part D in chloroform (350 mL). The reaction mixture was allowed to slowly warm to ambient temperature. After 2 hours the reaction mixture was chilled in an ice bath and ammonium hydroxide (100 mL) was added with vigorous stirring to homogenize. Para-toluenesulfonyl chloride (15.27 g, 80.12 mmol) was added in portions over a period of 10 minutes. The ice bath was removed and the reaction mixture was stirred for 30 minutes. The reaction mixture was diluted with water (100 mL) and chloroform (250 mL). The layers were separated. The organic layer was washed with 10% sodium carbonate (200 mL) and water (200 mL). The combined aqueous was back extracted with chloroform (100 mL). The combined organics were washed with brine (200 mL), dried over magnesium sulfate, filtered, and then concentrated under reduced pressure to provide a light brown foam. The foam was purified by column chromatography (silica gel, eluting with 95/5 chloroform/methanol) and then recrystallized from acetonitrile to provide 3.75 g of 1-[2-(4-amino-2-ethoxymethyl-1H-imidazo[4,5-c]quinolin-1-yl)-1,1-dimethylethyl]-3-(1-methylethyl)urea as an off white solid.


Part F


Under a nitrogen atmosphere, a suspension of 1-[2-(4-amino-2-ethoxymethyl-1H-imidazo[4,5-c]quinolin-1-yl)-1,1-dimethylethyl]-3-(1-methylethyl)urea (1.19 g, 2.99 mmol) in dichloromethane (30 mL) was chilled in an ice bath. Boron tribromide (7.47 mL of 1 M in dichloromethane) was added. The reaction mixture was allowed to warm slowly to ambient temperature and then stirred for 18 hours. Additional boron tribromide (2 eq) was added. After 2 hours the reaction mixture was diluted with acetonitrile (10 mL) and the reaction mixture was stirred overnight. The reaction mixture was diluted with dichloromethane (10 mL) and acetonitrile (10 mL), stirred for an additional 16 hours, quenched with methanol (25 mL), and then concentrated under reduced pressure to provide an orange foam. The foam was dissolved in hydrochloric acid (25 mL of 6 N) and heated at 50° C. for 2 hours. The solution was neutralized with 50% sodium hydroxide. The resulting gummy precipitate was extracted with chloroform (3×15 mL). The combined organics were washed with brine (15 mL), dried over magnesium sulfate, filtered, and then concentrated under reduced pressure to provide an off white solid. This material was purified by prep HPLC (HORIZON HPFC system, eluting with a gradient of 15-50% CMA in chloroform) and then recrystallized from acetonitrile to provide 335 g of 1-[2-(4-amino-2-hydroxymethyl-1H-imidazo[4,5-c]quinolin-1-yl)-1,1-dimethylethyl]-3-(1-methylethyl)urea as a white crystalline solid, mp 196-199° C.; 1H NMR (300 MHz, DMSO-d6) δ 8.38 (d, J=8.0 Hz, 1H), 7.59 (d, J=7.5 Hz, 1H), 7.43-7.38 (m, 1H), 7.24-7.19 (m, 1H), 6.54 (s, 2H), 5.72 (s, 1H), 5.63 (d, J=7.6 Hz, 1H), 5.46 (t, J=5.7 Hz, 1H), 5.01 (s, 2H), 4.78 (s, 2H), 3.78-3.67 (m, 1H), 1.17 (bs, 6H), 1.05 (d, J=6.9 Hz, 6H); 13C NMR (75 MHz, DMSO-d6) δ 157.2, 154.2, 152.3, 145.6, 134.3, 126.8, 126.7, 121.5, 120.9, 115.8, 56.5, 54.2, 52.1, 26.4, 23.6; MS (APCI) m/z 371 (M+H)+; Anal. Calcd for C19H26N6O2.0.3H2O: % C, 60.72; % H, 7.13; % N, 22.36. Found: % C, 60.44; % H, 7.42; % N, 22.52.


Example 143
{4-Amino-1-[2,2-dimethyl-3-(methylsulfonyl)propyl]-1H-imidazo[4,5-c]quinolin-2-yl}methanol



embedded image


To a suspension of 1-[2,2-dimethyl-3-(methylsulfonyl)propyl]-2-(ethoxymethyl)-1H-imidazo[4,5-c]quinolin-4-amine (0.4 g, 1.02 mmol) in dichloromethane (5 mL) was added boron tribromide (5.1 mL, 1M solution in dichloromethane). An exotherm was observed upon addition and the mixture turned light purple. After stirring at ambient temperature for 20 hours, the remaining starting material was consumed by adding boron tribromide (2.5 mL, 1M solution in dichloromethane). The reaction was quenched with aqueous hydrochloric acid (1N, 20 mL) to afford a homogeneous mixture. The layers were separated and the aqueous layer washed with dichloromethane (20 mL). The pH of the aqueous layer was adjusted to 12 by addition of aqueous sodium hydroxide (50%) at which time a solid precipitated out of solution. The solid was stirred for 18 hours, collected by filtration and washed with water. The crude product was purified by chromatography over silica gel (eluting with CMA) to afford a white powder. The powder was triturated with methanol (20 mL). The resulting solid was isolated by filtration, washed with methanol and dried for 4 hours at 65° C. to provide 150 mg of {4-amino-1-[2,2-dimethyl-3-(methylsulfonyl)propyl]-1H-imidazo[4,5-c]quinolin-2-yl}methanol as a white powder, mp 230-232° C.


Anal. Calcd for C17H22N4O3S: % C, 56.33; % H, 6.12; % N, 15.46. Found: % C, 56.33; % H, 6.31; % N, 15.27.


Example 144
N-{2-[4-amino-2-(hydroxymethyl)-1H-imidazo[4,5-c]quinolin-1-yl]ethyl}-N′-isopropylurea



embedded image


A stirring solution of N-{2-[4-amino-2-(ethoxymethyl)-1H-imidazo[4,5-c]quinolin-1-yl]ethyl}-N′-isopropylurea (400 mg, 1.1 mmol) in dichloromethane (50 mL) was sealed with a septum and purged with nitrogen gas. The solution was cooled in an ice/water bath and a 1.0 M solution of boron tribromide in dichloromethane (2.2 mL) was added via syringe. The resulting mixture was stirred for 2 hours while warming to ambient temperature. The mixture was cooled back to 0° C. in an ice/water bath and the second portion of boron tribromide (1.0 M, 5.5 mL) was added. The reaction was stirred for 18 hours while warming to ambient temperature. Aqueous hydrochloric acid (6N, 10 ml) was added and the mixture was stirred for 1 hour. The layers were separated and the aqueous fraction was neutralized by the slow addition of solid sodium hydroxide until the pH reached 14. A fine precipitate formed. The aqueous mixture was extracted with chloroform (2×50 mL) and filtered. The resulting solid (filter cake) was combined with the organic extracts, methanol (50 mL), and silica gel (5 g). The mixture was concentrated under reduced pressure. The crude product absorbed on silica was purified by chromatography using a HORIZON HPFC system (silica cartridge, eluting with 0-35% CMA in chloroform over 2.6 L) followed by recrystallization from acetonitrile to provide 170 mg of N-{2-[4-amino-2-(hydroxymethyl)-1H-imidazo[4,5-c]quinolin-1-yl]ethyl}-N′-isopropylurea as an off-white solid, mp>240° C.



1H NMR (500 MHz, DMSO-d6) δ 8.30 (d, J=7.9 Hz, 1H), 7.61 (dd, J=8.3, 0.9 Hz, 1H), 7.43 (m, 1H), 7.24 (m, 1H), 6.53 (br s, 2H), 5.99 (t, J=5.8 Hz, 1H), 5.82 (d, J=7.8 Hz, 1H), 5.67 (d, J=5.8 Hz, 1H), 4.75 (d, J=5.8 Hz, 2H), 4.66 (t, J=6.7 Hz, 2H), 3.69 (m, 1H), 3.48 (q, J=6.4 Hz, 2H), 1.01 (d, J=6.5 Hz, 6H);


MS (APCI) m/z 343 (M+H)+;


Anal. Calcd. for C17H22N6O2: % C, 59.63; % H, 6.48; % N, 24.54. Found: % C, 59.64; % H, 6.59; % N, 24.58.


Example 145
N-{4-[4-amino-2-(hydroxymethyl)-1H-imidazo[4,5-c]quinolin-1-yl]butyl}cyclopentanecarboxamide



embedded image


Boron tribromide (2.5 equivalents, 14.6 mL of 1 M solution in dichloromethane) was added dropwise to a cooled (ice bath) suspension of N-{4-[4-amino-2-(ethoxymethyl)-1H-imidazo[4,5-c]quinolin-1-yl]butyl}cyclopentanecarboxamide (2.4 g, 5.8 mmol) in dichloromethane (25 mL). The reaction mixture was allowed to slowly warm to ambient temperature and then stirred for 6 days. Additional boron tribromide (5 equivalents, 29 mmol, 29 mL) was added and the reaction was stirred at ambient until starting material was consumed. The reaction was quenched slowly with methanol (100 mL) and then concentrated under reduced pressure. The residue was combined with 6 M hydrochloric acid (100 mL), heated to 50° C., and stirred for 2 hours. The resulting solution was cooled (ice bath) and then free-based (pH 9) with the addition of 6 M aqueous sodium hydroxide. A brown gummy solid formed in the basic aqueous solution. The aqueous liquid was decanted from the solid and acetonitrile was added (30 mL). A white precipitate formed and was isolated by filtration. The white precipitate was then triturated with hot acetonitrile, allowed to cool, isolated by filtration, washed with ether, and dried under vacuum to provide N-{4-[4-amino-2-(hydroxymethyl)-1H-imidazo[4,5-c]quinolin-1-yl]butyl}cyclopentanecarboxamide (0.48 g) as a fine white solid, mp 183-186° C.; MS (ESI) m/z 382 (M+H)+; Anal. Calcd for C21H27N5O2: C, 65.35; H, 7.18; N, 18.14; Found C, 65.06; H, 6.90; N, 18.13.


Example 146
N-[4-(4-amino-2-hydroxymethyl-1H-imidazo[4,5-c]quinolin-1-yl)butyl]isobutyramide



embedded image


Boron tribromide (2.5 equivalents, 15.6 mL of 1 M solution in dichloromethane) was added dropwise to a cooled (ice bath) suspension of N-[4-(4-amino-2-ethoxymethyl-1H-imidazo[4,5-c]quinolin-1-yl)butyl]isobutyramide (2.4 g, 6.2 mmol) in dichloromethane (25 mL). The reaction mixture was allowed to slowly warm to ambient temperature and then stirred for 1 day. Additional boron tribromide (5 equivalents, 31 mmol, 31 mL) was added to the mixture. The reaction was quenched slowly with methanol (100 mL) and then concentrated under reduced pressure. The residue was combined with 6 M hydrochloric acid (100 mL), heated to 50° C., and stirred for 2 hours. The resulting solution was cooled (ice bath) and then free-based (pH 9) with the addition of 6 M sodium hydroxide. A brown gummy solid formed in the basic aqueous solution. The resulting solid was extracted with dichloromethane (6×50 mL). The combined extracts were washed with brine (100 mL), dried with magnesium sulfate, filtered, and then concentrated under reduced pressure. This material was purified by prep HPLC (Analogix Separation System, Biotage Si 40+M column, eluted with a gradient of 0-20% methanol in dichloromethane with 1% ammonium hydroxide) to provide a light brown solid. The solid was triturated with hot acetonitrile, allowed to cool, isolated by filtration, washed with ether, and dried under vacuum to provide N-[4-(4-amino-2-hydroxymethyl-1H-imidazo[4,5-c]quinolin-1-yl)butyl]isobutyramide (0.049 g) as a white solid, mp 222-224° C.; MS (ESI) m/z 356 (M+H)+; Anal. Calcd for C19H25N5O2.0.25HBr.0.10H2O: C, 60.46; H, 6.80; N, 18.55; Found C, 60.26; H, 6.64; N, 18.43.


Example 147
N-[4-(4-amino-2-hydroxymethyl-1H-imidazo[4,5-c]quinolin-1-yl)butyl]methanesulfonamide



embedded image


Boron tribromide (2.5 equivalents, 20 mL of 1 M solution in dichloromethane) was added dropwise to a cooled (ice bath) suspension of N-[4-(4-amino-2-ethoxymethyl-1H-imidazo[4,5-c]quinolin-1-yl)butyl]methanesulfonamide (3 g, 7.92 mmol) in dichloromethane (20 mL). The reaction mixture was allowed to slowly warm to ambient temperature and then stirred for 4 hours. Additional boron tribromide (2 mL) was added and the mixture was stirred for 3 hours. The reaction was quenched slowly with methanol (20 mL) and then concentrated under reduced pressure. The residue was combined with 6 M hydrochloric acid (50 mL), heated to 50° C., and stirred for 2 hours. The resulting solution was concentrated under reduced pressure to a slurry that cooled (ice bath) and then free-based with the addition of 7 M ammonia in methanol (40 mL). The mixture was concentrated under reduced pressure and the addition of 7 M ammonia in methanol (40 mL) was repeated 2 more times. The concentrated brown sludge like material was purified by prep HPLC (ISCO Combiflash Separation System, Biotage Si 40+M column, eluted with a gradient of methanol in dichloromethane with 1% ammonium hydroxide) to provide a light brown solid. The solid was triturated with hot acetonitrile, allowed to cool, isolated by filtration, washed with ether, and dried under vacuum to provide N-[4-(4-amino-2-hydroxymethyl-1H-imidazo[4,5-c]quinolin-1-yl)butyl]methanesulfonamide (0.1 g) as a fine beige solid, mp 216-219° C.; MS (ESI) m/z 364 (M+H)+; Anal. Calcd for C16H21N5O3S: C, 52.88; H, 5.82; N, 19.27; Found C, 52.62; H, 5.71; N, 19.02.


Example 148
(4-Amino-1-{4-[(methylsulfonyl)amino]butyl}-1H-imidazo[4,5-c]quinolin-2-yl)methyl N-[(benzyloxy)carbonyl]-L-valinate



embedded image


To a stirred suspension of N-[4-(4-amino-2-hydroxymethyl-1H-imidazo[4,5-c]quinolin-1-yl)butyl]methanesulfonamide (2.1 g, 5.8 mmol) in THF was added triphenylphosphine (1.5 equivalents, 8.7 mmol, 2.2 g) followed by CBZ-L-valine (1.5 equivalents, 8.7 mmol, 2.3 g). The suspension was stirred for 5 min after which it was cooled in an ice-bath. To this cooled reaction mixture diisopropyl azodicarboxylate (DIAD, 1.8 equivalents, 10.4 mmol, 2.0 mL) was added and the reaction was warmed to room temperature and stirred overnight. The solvent was evaporated under reduced pressure and the crude solid was purified by prep HPLC (ISCO Combiflash Separation System, Biotage Si 40+M column, eluted with a gradient of 0-8% methanol in dichloromethane with 1% ammonium hydroxide) to provide a solid. The solid was heated in diethyl ether and filtered to afford (4-amino-1-{4-[(methylsulfonyl)amino]butyl}-1H-imidazo[4,5-c]quinolin-2-yl)methyl N-[(benzyloxy)carbonyl]-L-valinate (2 g) as a beige solid, mp 99-100° C.; MS (ESI) m/z 597 (M+H)+; Anal. Calcd for C29H36N6O6S: C, 58.37; H, 6.08; N, 14.08; Found C, 57.98; H, 6.31; N, 13.82.


Example 149
(4-Amino-1-{4-[(methylsulfonyl)amino]butyl}-1H-imidazo[4,5-c]quinolin-2-yl)methyl L-valinate



embedded image


To a hydrogenation bottle was added (4-amino-1-{4-[(methylsulfonyl)amino]butyl}-1H-imidazo[4,5-c]quinolin-2-yl)methyl N-[(benzyloxy)carbonyl]-L-valinate (1.5 g, 2.5 mmol) followed by a mixture of methanol (30 mL), THF (15 mL) and water (5 mL) and conc HCl (5 mL). To this was added Pd/C (90 mg) and the reaction was hydrogenated at 40 psi (2.8×105 Pa) overnight. To the reaction mixture was added conc. HCl (5 mL) and Pd/C (90 mg) and the reaction was hydrogenated at 40 psi (2.8×105 Pa) for 18 hours. The reaction was filtered through CELITE filter aid and the filtrate was evaporated to afford a clear oil. The product was isolated by prep HPLC (ISCO Combiflash Separation System, Biotage Si 40+M column, eluted with a gradient of 0-8% methanol in dichloromethane with 1% ammonium hydroxide) to provide (4-amino-1-{4-[(methylsulfonyl)amino]butyl}-1H-imidazo[4,5-c]quinolin-2-yl)methyl L-valinate (0.495 g) as an off white solid, mp 161-163° C.; MS (ESI) m/z 463 (M+H)+; Anal. Calcd for C21H30N6O4S: C, 54.53; H, 6.54; N, 18.17; Found C, 53.96; H, 6.62; N, 17.85, delta C=0.57.


Example 150
[4-Amino-1-(tetrahydro-2H-pyran-4-ylmethyl)-1H-imidazo[4,5-c]quinolin-2-yl]methanol



embedded image



Part A


Under a nitrogen atmosphere THF (90 mL) and triethylamine (17.5 mL, 125.6 mmol) were added sequentially to a mixture of crude 4-chloro-3-nitroquinoline (13.10 g, 62.81 mmol) and 1-tetrahydro-2H-pyran-4-ylmethylamine hydrochloride (10.0 g, 65.95 mmol). The reaction mixture was placed in an oil bath at 45° C. for 1 hour and then concentrated under reduced pressure. The residue was diluted with THF (30 mL) and water (200 mL). The THF was removed under reduced pressure. A solid was isolated by filtration and dried to provide 16.10 g of 3-nitro-N-(tetrahydro-2H-pyran-4-ylmethyl)quinolin-4-amine as a light yellow solid.


Part B


A mixture of 3-nitro-N-(tetrahydro-2H-pyran-4-ylmethyl)quinolin-4-amine (2.50 g), 10% palladium on carbon (0.25 g), and ethanol (40 mL) was placed under hydrogen pressure on a Parr apparatus. When the reaction was complete, the mixture was filtered through a layer of CELITE filter agent. The filter cake was washed with ethanol. The filtrate was concentrated under reduced pressure to provide 2.23 g of N4-(tetrahydro-2H-pyran-4-ylmethyl)quinoline-3,4-diamine as a yellowish-orange oil.


Part C


Chloroacetyl chloride (12 mL, 151 mmol) was dissolved in dichloromethane (30 mL) and added via addition funnel, over 20 minutes, to a stirring solution of N4-(tetrahydro-2H-pyran-4-ylmethyl)quinoline-3,4-diamine (35.3 g, 137 mmol) in dichloromethane (300 mL). The resulting solution was stirred at ambient temperature under nitrogen for 24 hours at which point the solution was heated to 40° C. for an additional 24 hours. The mixture was cooled to ambient temperature, diluted with dichloromethane (150 mL) and transferred to a separatory funnel. The organic layer was washed with water (2×200 mL) and brine (2×200 mL), dried over magnesium sulfate, filtered and concentrated under reduced pressure to provide 38.3 g of 2-(chloromethyl)-1-(tetrahydro-2H-pyran-4-ylmethyl)-1H-imidazo[4,5-c]quinoline as a light brown solid.


Part D


3-Chloroperoxybenzoic acid (mCPBA) (3.8 g of 77% pure material, 14.2 mmol) was added to a stirring solution of 2-(chloromethyl)-1-(tetrahydro-2H-pyran-4-ylmethyl)-1H-imidazo[4,5-c]quinoline (3.0 g, 9.50 mmol) in dichloromethane (60 mL). After 15.5 hours, ammonium hydroxide (12 mL) and then p-toluenesulfonyl chloride (2.2 g, 11.4 mmol) were added to the stirring solution and the biphasic mixture was stirred at ambient temperature for 3 hours. The reaction was diluted with water (50 mL) and then transferred to a separatory funnel. The aqueous layer was extracted with dichloromethane (3×100 mL) and the combined organic fractions dried over magnesium sulfate, filtered and concentrated under reduced pressure. The residue was purified by column chromatography using a HORIZON HPFC system (silica cartridge, eluting with 3-20% methanol in dichloromethane) to provide 1.6 g of 2-(chloromethyl)-1-(tetrahydro-2H-pyran-4-ylmethyl)-1H-imidazo[4,5-c]quinolin-4-amine as a yellow solid.


Part E


Potassium acetate (0.41 g, 4.16 mmol) and potassium iodide (0.28 g, 1.66 mmol) were added to a stirring solution of 2-(chloromethyl)-1-(tetrahydro-2H-pyran-4-ylmethyl)-1H-imidazo[4,5-c]quinolin-4-amine (0.55 g, 1.66 mmol) and the resulting suspension was heated to 50° C. After 17 hours, the suspension was cooled to ambient temperature and concentrated under reduced pressure. The residue was suspended in methanol (10 mL) and water (5 mL) and lithium hydroxide monohydrate (0.35 g, 8.31 mmol) was added in one portion. The resulting solution was stirred at ambient temperature 18 hours and concentrated under reduced pressure. The residue was diluted with water (20 mL) and neutralized with hydrochloric acid (6 N in water). The aqueous layer was extracted with dichloromethane (2×50 mL) and ethyl acetate (50 mL). The combined organic fractions were concentrated to a yellow solid which was crystallized from acetonitrile. The crystals were isolated by filtration and dried in a vacuum oven at 65° C. to provide 0.20 g of [4-amino-1-(tetrahydro-2H-pyran-4-ylmethyl)-1H-imidazo[4,5-c]quinolin-2-yl]methanol as an off-white solid, mp 239-241° C.


Anal. calcd for C17H20N4O2.0.2H2O: C, 64.62; H, 6.51; N, 17.73. Found: C, 64.45; H, 6.69; N, 17.62.


Examples 151-229

Part A


A solution of 1-(4-aminobutyl)-2-methoxymethyl-1H-imidazo[4,5-c]quinoline-4-amine (30 mg, 1 eq, prepared according to the general method of Example 3 using methoxyacetyl chloride in lieu of 3-methoxypropionyl chloride) and N,N-diisopropylethylamine (2 eq) in N,N-dimethylacetamide (1 mL) was added to a tube containing a reagent (1.1 eq) from the table below. The reaction mixture was vortexed overnight and then quenched with water (100 μL). The solvents were removed by vacuum centrifugation. The residue was purified by solid-supported liquid-liquid extraction according to the following procedure. The sample was dissolved in chloroform (1 mL) then loaded onto diatomaceous earth that had been equilibrated with 1 M sodium hydroxide (600 μL) for about 20 minutes. After 10 minutes chloroform (500 μL) was added to elute the product from the diatomaceous earth into a well of a collection plate. After an additional 10 minutes the process was repeated with additional chloroform (500 μL). The solvent was then removed by vacuum centrifugation.


Part B


The residue (in a test tube) was combined with dichloromethane (500 μL) and the tube was vortexed to dissolve the solids. The solution was cooled (0° C.) and then combined with boron tribromide (400 μL of 1 M in dichloromethane). The mixture was vortexed for 5 minutes, chilled for 30 minutes, and then vortexed at ambient temperature for 64 hours. Additional dichloromethane (500 μL) and boron tribromide (400 μL of 1 M in dichloromethane) were added and the mixture was vortexed overnight. The solvent was then removed by vacuum centrifugation. The residue was diluted with methanol (500 μL) and hydrochloric acid (500 μL of 6 N). The solvents were removed by vacuum centrifugation. The compounds were purified according to the method described in Examples 8-72. The table below shows the reagent used for each example, the structure of the resulting compound, and the observed accurate mass for the isolated trifluoroacetate salt.














embedded image


















Measured Mass


Example
Reagent
R
(M + H)





151
None


embedded image


286.1658





152
Cyclopropanecarbonyl chloride


embedded image


354.1907





153
Methoxyacetyl chloride


embedded image


344.1699





154
Cyclobutanecarbonyl chloride


embedded image


368.2050





155
Isovaleryl chloride


embedded image


370.2206





156
Pentanoyl chloride


embedded image


370.2208





157
Benzoyl chloride


embedded image


390.1909





158
Cyclohexanecarbonyl chloride


embedded image


396.2412





159
Cyclopentylacetyl chloride


embedded image


396.2411





160
m-Toluoyl chloride


embedded image


404.2069





161
o-Toluoyl chloride


embedded image


404.2072





162
p-Toluoyl chloride


embedded image


404.2108





163
Phenylacetyl chloride


embedded image


404.2056





164
Dimethylaminoacetyl chloride hydrochloride


embedded image


371.2157





165
2-Fluorobenzoyl chloride


embedded image


408.1819





166
3-Fluorobenzoyl chloride


embedded image


408.1811





167
4-Fluorobenzoyl chloride


embedded image


408.1819





168
3-Cyanobenzoyl chloride


embedded image


415.1847





169
Hydrocinnamoyl chloride


embedded image


418.2200





170
2-Methoxybenzoyl chloride


embedded image


406.1880





171
3-Methoxybenzoyl chloride


embedded image


406.1876





172
p-Anisoyl chloride


embedded image


406.1860





173
3-Chlorobenzoyl chloride


embedded image


424.1517





174
4-Chlorobenzoyl chloride


embedded image


424.1525





175
Isonicotinoyl chloride hydrochloride


embedded image


391.1874





176
Nicotinoyl chloride hydrochloride


embedded image


391.1895





177
Picolinoyl chloride hydrochloride


embedded image


391.1846





178
trans-2-Phenyl-1- cyclopropanecarbonyl chloride


embedded image


430.2213





179
Methanesulfonyl chloride


embedded image


364.1421





180
Ethanesulfonyl chloride


embedded image


378.1595





181
1-Propanesulfonyl chloride


embedded image


392.1753





182
Dimethylsulfamoyl chloride


embedded image


393.1685





183
1-Butanesulfonyl chloride


embedded image


406.1881





184
Benzenesulfonyl chloride


embedded image


426.1591





185
1-Methylimidazole-4- sulfonyl chloride


embedded image


430.1668





186
2-Thiophenesulfonyl chloride


embedded image


432.1135





187
3-Methylbenzenesulfonyl chloride


embedded image


440.1728





188
o-Toluenesulfonyl chloride


embedded image


440.1758





189
p-Toluenesulfonyl chloride


embedded image


440.1766





190
2-Fluorobenzenesulfonyl chloride


embedded image


444.1479





191
3-Fluorobenzenesulfonyl chloride


embedded image


444.1517





192
4-Fluorobenzenesulfonyl chloride


embedded image


444.1496





193
3-Cyanobenzenesulfonyl chloride


embedded image


451.1568





194
4-Cyanobenzenesulfonyl chloride


embedded image


451.1579





195
beta-Styrenesulfonyl chloride


embedded image


452.1725





196
3- Methoxybenzenesulfonyl chloride


embedded image


442.1534





197
4- Methoxybenzenesulfonyl chloride


embedded image


442.1557





198
2-Chlorobenzenesulfonyl chloride


embedded image


460.1173





199
3-Chlorobenzenesulfonyl chloride


embedded image


460.1242





200
4-Chlorobenzenesulfonyl chloride


embedded image


460.1191





201
3-Pyridinesulfonyl chloride hydrochloride


embedded image


427.1530





202
3,4- Dimethoxybenzenesulfonyl chloride


embedded image


458.1452





203
3,4- Dichlorobenzenesulfonyl chloride


embedded image


494.0806





204
Methyl isocyanate


embedded image


343.1862





205
Ethyl isocyanate


embedded image


357.2018





206
Isopropyl isocyanate


embedded image


371.2181





207
n-Propyl isocyanate


embedded image


371.2187





208
n-Butyl isocyanate


embedded image


385.2314





209
Cyclopentyl isocyanate


embedded image


397.2312





210
Pentyl isocyanate


embedded image


399.2512





211
Phenyl isocyanate


embedded image


405.2047





212
Cyclohexyl isocyanate


embedded image


411.2473





213
2-Fluorophenyl isocyanate


embedded image


423.1959





214
3-Fluorophenyl isocyanate


embedded image


423.1924





215
4-Cyanophenyl isocyanate


embedded image


430.1979





216
(R)-(+)-alpha- Methylbenzyl isocyanate


embedded image


433.2370





217
(S)-(−)-alpha- Methylbenzyl isocyanate


embedded image


433.2327





218
2-Phenylethylisocyanate


embedded image


433.2333





219
2-Methoxyphenyl isocyanate


embedded image


421.2006





220
4-Methoxyphenyl isocyanate


embedded image


421.1958





221
2-Chlorophenyl isocyanate


embedded image


439.1650





222
4-Chlorophenyl isocyanate


embedded image


439.1656





223
trans-2- Phenylcyclopropyl isocyanate


embedded image


445.2328





224
N,N-Dimethylcarbamoyl chloride


embedded image


357.2005





225
1-Pyrrolidinecarbonyl chloride


embedded image


383.2168





226
1-Piperidinecarbonyl chloride


embedded image


397.2329





227
4-Morpholinylcarbonyl chloride


embedded image


399.2112





228
4-Methyl-1- Piperazinecarbonyl chloride


embedded image


412.2439





229
N-Methyl-N- phenylcarbamoyl chloride


embedded image


419.2167









Examples 230-245

Part A


A solution of 1-(2-amino-2-methylpropyl)-2-methoxymethyl-1H-imidazo[4,5-c]quinoline-4-amine (31 mg, 1 eq, prepared according to the general method of Example 3 using methoxyacetyl chloride in lieu of 3-methoxypropionyl chloride and tert-butyl N-{2-[(3-aminoquinolin-4-yl)amino]-1,1-dimethylethyl}carbamate in lieu of tert-butyl N-{4-[(3-aminoquinolin-4-yl)amino]butyl}carbamate) and N,N-diisopropylethylamine (2 eq) in N,N-dimethylacetamide (1 mL) was placed in a test tube. A reagent (1.1 eq) from the table below was added and the reaction mixture was vortexed overnight. The reaction was quenched with concentrated ammonium hydroxide (100 μL) and the solvents were removed by vacuum centrifugation.


Part B


The residue (in a test tube) was combined with dichloromethane (1 mL) and the tube was vortexed to dissolve the solids. The solution was cooled (0° C.) and then combined with boron tribromide (400 μL of 1 M in dichloromethane). The reaction was maintained at about 0° C. for 20 minutes. Methanol (1 mL) and hydrochloric acid (500 μL of 6 N) were added and the tube was vortexed for about 30 minutes. The solvents were removed by vacuum centrifugation. The compounds were purified according to the method described in Examples 8-72. The table below shows the reagent used for each example, the structure of the resulting compound, and the observed accurate mass for the isolated trifluoroacetate salt.














embedded image















Ex-


Measured Mass


ample
Reagent
R
(M + H)





230
None


embedded image


286.1687





231
Cyclopropanecarbonyl chloride


embedded image


354.1936





232
Butyryl chloride


embedded image


356.2094





233
Isobutyryl chloride


embedded image


356.2119





234
Cyclopentanecarbonyl chloride


embedded image


382.2259





235
Benzoyl chloride


embedded image


390.1908





236
Nicotinoyl chloride hydrochloride


embedded image


391.1844





237
Methanesulfonyl chloride


embedded image


364.1414





238
Benzenesulfonyl chloride


embedded image


426.1617





239
2,2,2- Tri- fluoroethanesulfonyl chloride


embedded image


432.1339





240
3- Fluorobenzenesulfonyl chloride


embedded image


444.1523





241
n-Propyl isocyanate


embedded image


371.2215





242
Cyclopentyl isocyanate


embedded image


397.2327





243
Phenyl isocyanate


embedded image


405.2063





244
Cyclohexyl isocyanate


embedded image


411.2515





245
3-Fluorophenyl isocyanate


embedded image


423.1955









Examples 246-257

Part A


To a round-bottomed flask containing 1-(4-aminobutyl)-2-methoxymethyl-1H-imidazo[4,5-c]quinolin-4-amine (10.0 g, 33.4 mmol) was added methanol (160 mL) followed by acetic acid (40 mL). The reaction was stirred for 5 minutes and pyridine 3-carboxaldehyde (5.4 g, 50.1 mmol) was added and the reaction was stirred overnight at ambient temperature. Sodium cyanoborohydride (1 M in THF, 33.4 mL, 33.4 mmol) was added to the resultant imine in portions over 10 minutes. After 45 minutes the solvent was evaporated to afford an oil. To the oil was added saturated aqueous sodium bicarbonate (200 mL) and the aqueous layer was washed with ethyl acetate (200 mL) and dichloromethane (200 mL). The product was extracted from the aqueous with 20% methanol (2×100 mL) in dichloromethane. The organic layers were combined and the solvent evaporated to afford crude 2-methoxymethyl-1-{4-[(pyridin-3-ylmethyl)amino]butyl}-1H-imidazo[4,5-c]quinolin-4-amine (about 2 g). The aqueous layer was again extracted with 20% dimethylformamide (2×100 mL) in dichloromethane. The organic layers were combined and the solvent evaporated to afford crude 2-methoxymethyl-1-{4-[(pyridin-3-ylmethyl)amino]butyl}-1H-imidazo[4,5-c]quinolin-4-amine (about 2 g).


Part B


A solution of 2-methoxymethyl-1-{4-[(pyridin-3-ylmethyl)amino]butyl}-1H-imidazo[4,5-c]quinolin-4-amine (40 mg, 1 eq) and N,N-diisopropylethylamine (2 eq) in N,N-dimethylacetamide (1 mL) was added to a tube containing a reagent (1.1 eq) from the table below. The reaction mixture was vortexed for 4 hours and then quenched with water (50 μL). The solvents were removed by vacuum centrifugation. The residue was purified by solid-supported liquid-liquid extraction according to the following procedure. The sample was dissolved in chloroform (1 mL) then loaded onto diatomaceous earth that had been equilibrated with 1 M sodium hydroxide (600 μL) for about 20 minutes. After 10 minutes chloroform (500 μL) was added to elute the product from the diatomaceous earth into a well of a collection plate. After an additional 10 minutes the process was repeated with additional chloroform (500 μL). The solvent was then removed by vacuum centrifugation.


Part C


The residue (in a test tube) was combined with dichloromethane (500 μL) and the tube was vortexed to dissolve the solids. The solution was cooled (0° C.) and then combined with boron tribromide (400 μL of 1 M in dichloromethane). The mixture was vortexed for 10 minutes, chilled for 30 minutes, and then vortexed at ambient temperature overnight. The solvent was then removed by vacuum centrifugation. The residue was diluted with methanol (500 μL) and hydrochloric acid (500 μL of 6 N) and the mixture was vortexed for about 30 minutes. The solvents were removed by vacuum centrifugation. The compounds were purified according to the method described in Examples 8-72. The table below shows the reagent used for each example, the structure of the resulting compound, and the observed accurate mass for the isolated trifluoroacetate salt.














embedded image















Ex-


Measured Mass


ample
Reagent
R
(M + H)





246
None


embedded image


377.2087





247
Isobutyryl chloride


embedded image


447.2468





248
Cyclohexanecarbonyl chloride


embedded image


487.2783





249
Phenylacetyl chloride


embedded image


495.2465





250
4-Fluorobenzoyl chloride


embedded image


499.2272





251
3-Methoxybenzoyl chloride


embedded image


497.2263





252
1-Methylimidazole-4- sulfonyl chloride


embedded image


521.2071





253
2,2,2- Trifluoroethanesulfonyl chloride


embedded image


523.1717





254
alpha-Toluenesulfonyl chloride


embedded image


531.2134





255
3- Methoxybenzenesulfonyl chloride


embedded image


533.1941





256
Isopropyl isocyanate


embedded image


462.2611





257
3-Fluorophenyl isocyanate


embedded image


514.2357









Examples 258-322

The compounds in the table below were prepared and purified according to the methods of Parts B and C of Examples 246-257 using 1-(4-benzylaminobutyl)-2-ethoxymethyl-1H-imidazo[4,5-c]quinolin-4-amine in lieu of 2-methoxymethyl-1-{4-[(pyridin-3-ylmethyl)amino]butyl}-1H-imidazo[4,5-c]quinolin-4-amine. 1-(4-Benzylaminobutyl)-2-ethoxymethyl-1H-imidazo[4,5-c]quinolin-4-amine was prepared according to the general method of Part A of Examples 246-257 using benzaldehyde in lieu of pyridine 3-carboxaldehyde and 1-(4-aminobutyl)-2-ethoxymethyl-1H-imidazo[4,5-c]quinolin-4-amine in lieu of 1-(4-aminobutyl)-2-methoxymethyl-1H-imidazo[4,5-c]quinolin-4-amine. The table below shows the reagent used for each example, the structure of the resulting compound, and the observed accurate mass for the isolated trifluoroacetate salt.














embedded image


















Measured Mass


Example
Reagent
R
(M + H)





258
Cyclobutanecarbonyl chloride


embedded image


458.2550





259
DL-2-Methylbutyryl chloride


embedded image


460.2707





260
Isovaleryl chloride


embedded image


460.2714





261
Pentanoyl chloride


embedded image


460.2730





262
Pivaloyl chloride


embedded image


460.2714





263
Cyclopentanecarbonyl chloride


embedded image


472.2712





264
tert-Butylacetyl chloride


embedded image


474.2879





265
Benzoyl chloride


embedded image


480.2398





266
Thiophene-2-carbonyl chloride


embedded image


486.1971





267
Cyclohexanecarbonyl chloride


embedded image


486.2893





268
Cyclopentylacetyl chloride


embedded image


486.2818





269
m-Toluoyl chloride


embedded image


494.2577





270
o-Toluoyl chloride


embedded image


494.2531





271
p-Toluoyl chloride


embedded image


494.2527





272
3-Fluorobenzoyl chloride


embedded image


498.2307





273
4-Fluorobenzoyl chloride


embedded image


498.2326





274
3-Cyanobenzoyl chloride


embedded image


505.2378





275
4-Cyanobenzoyl chloride


embedded image


505.2387





276
Hydrocinnamoyl chloride


embedded image


508.2715





277
2-Methoxybenzoyl chloride


embedded image


496.2311





278
3-Methoxybenzoyl chloride


embedded image


496.2314





279
p-Anisoyl chloride


embedded image


496.2365





280
3-Chlorobenzoyl chloride


embedded image


514.2026





281
4-Chlorobenzoyl chloride


embedded image


514.2041





282
Picolinoyl chloride hydrochloride


embedded image


481.2361





283
trans-2-Phenyl-1- cyclopropanecarbonyl chloride


embedded image


520.2695





284
4-Dimethylaminobenzoyl chloride


embedded image


523.2802





285
1-Propanesulfonyl chloride


embedded image


482.2232





286
Dimethylsulfamoyl chloride


embedded image


483.2196





287
2-Thiophenesulfonyl chloride


embedded image


522.1613





288
alpha-Toluenesulfonyl chloride


embedded image


530.2239





289
o-Toluenesulfonyl chloride


embedded image


530.2197





290
4-Fluorobenzenesulfonyl chloride


embedded image


534.2028





291
3,5-Dimethylisoxazole-4- sulfonyl chloride


embedded image


535.2106





292
2-Cyanobenzenesulfonyl chloride


embedded image


541.1968





293
3-Cyanobenzenesulfonyl chloride


embedded image


541.2035





294
beta-Styrene sulfonyl chloride


embedded image


542.2234





295
3-Methoxybenzenesulfonyl chloride


embedded image


532.2052





296
4-Methoxybenzenesulfonyl chloride


embedded image


532.2037





297
3-Pyridine sulfonyl chloride hydrochloride


embedded image


517.2015





298
2,5- Dimethoxybenzene- sulfonyl chloride


embedded image


548.1964





299
2,3- Dichlorobenzenesulfonyl chloride


embedded image


584.1294





300
3,5- Dichlorobenzenesulfonyl chloride


embedded image


584.1282





301
Methyl isocyanate


embedded image


433.2361





302
Ethyl isocyanate


embedded image


447.2538





303
Isopropyl isocyanate


embedded image


461.2663





304
n-Propyl isocyanate


embedded image


461.2691





305
n-Butyl isocyanate


embedded image


475.2860





306
sec-Butyl isocyanate


embedded image


475.2849





307
Pentyl isocyanate


embedded image


489.3005





308
Phenyl isocyanate


embedded image


495.2511





309
Cyclohexyl isocyanate


embedded image


501.2978





310
Benzyl isocyanate


embedded image


509.2675





311
3-Fluorophenyl isocyanate


embedded image


513.2467





312
4-Fluorophenyl isocyanate


embedded image


513.2388





313
Cycloheptyl isocyanate


embedded image


515.3081





314
Cyclohexanemethyl isocyanate


embedded image


515.3163





315
4-Cyanophenyl isocyanate


embedded image


520.2483





316
3,4-Dimethylphenyl isocyanate


embedded image


523.2786





317
(S)-(−)-alpha- Methylbenzyl isocyanate


embedded image


523.2786





318
2-Methylbenzyl isocyanate


embedded image


523.2860





319
N,N-Dimethylcarbamoyl chloride


embedded image


447.2511





320
Diethylcarbamyl chloride


embedded image


475.2828





321
1-Piperidinecarbonyl chloride


embedded image


487.2839





322
N-(4-Chlorobutyl)-N- methylcarbamyl chloride


embedded image


523.2588









Examples 323-329

The compounds in the table below were prepared according to the general method of Examples 111-140. The table shows a reference for the ether starting material, the structure of the resulting compound, and the observed accurate mass for the isolated trifluoroacetate salt.














embedded image




















Measured



Reference


Mass


Example
(ether)
R1
R2
(M + H)





323
U.S. Pat. No 6,667,312*


embedded image




embedded image


335.1158





324
U.S. Pat. No. 6,677,349*


embedded image




embedded image


336.1098





325
U.S. Pat. No. 6,677,349*


embedded image




embedded image


364.1454





326
U.S. Pat. No.  6,677,347 Example 57


embedded image




embedded image


380.1391





327
U.S. Pat. No. 6,756,382*


embedded image




embedded image


444.0999





328
U.S. Pat. No.  6,683,088 Example 1


embedded image




embedded image


394.1588





329
U.S. Pat. No.  6,677,349 Example 242


embedded image




embedded image


496.2401





*Although not specifically exemplified, the compound is readily prepared using the disclosed synthetic methods.







Exemplary Compounds


Certain exemplary compounds, including some of those described above in the Examples, have the following Formula Ib and the following substituents n and R1 wherein each line of the table is matched to Formula Ib to represent a specific embodiment of the invention.














Ib




embedded image














n
R1





1
2-[(cyclohexylcarbonyl)amino]-2-methylpropyl


1
2-[(cyclopropylcarbonyl)amino]ethyl


1
4-[(cyclopropylcarbonyl)amino]butyl


1
2-{[(1-methylethyl)carbonyl]amino}ethyl


1
4-{[(1-methylethyl)carbonyl]amino}butyl


1
2,2-dimethyl-3-(methylsulfonyl)propyl


1
2-methyl-2-({[(1-methylethyl)amino]carbonyl}amino)propyl


1
2-methyl-2-[(methylsulfonyl)amino]propyl


1
4-[(methylsulfonyl)amino]butyl


1
2-[(methylsulfonyl)amino]ethyl


1
4-[(4-morpholinecarbonyl)amino]butyl


1
2-[(4-morpholinecarbonyl)amino]ethyl


1
tetrahydro-2H-pyran-4-ylmethyl


2
2-[(cyclohexylcarbonyl)amino]-2-methylprpoyl


2
2-[(cyclopropylcarbonyl)amino]ethyl


2
4-[(cyclopropylcarbonyl)amino]butyl


2
2-{[(1-methylethyl)carbonyl]amino}ethyl


2
4-{[(1-methylethyl)carbonyl]amino}butyl


2
2,2-dimethyl-3-(methylsulfonyl)propyl


2
2-methyl-2-({((1-methylethyl)amino]carbonyl}amino)propyl


2
2-methyl-2-[(methylsulfonyl)amino]propyl


2
4-[(methylsulfonyl)amino]butyl


2
2-[(methylsulfonyl)amino]ethyl


2
4-[(4-morpholinecarbonyl)amino]butyl


2
2-[(4-morpholinecarbonyl)amino]ethyl


2
tetrahydro-2H-pyran-4-ylmethyl









Cytokine Induction in Human Cells

An in vitro human blood cell system is used to assess cytokine induction. Activity is based on the measurement of interferon (α) and tumor necrosis factor (α) (IFN-α and TNF-α, respectively) secreted into culture media as described by Testerman et. al. in “Cytokine Induction by the Immunomodulators Imiquimod and S-27609”, Journal of Leukocyte Biology, 58, 365-372 (September, 1995).


Blood Cell Preparation for Culture


Whole blood from healthy human donors is collected by venipuncture into vacutainer tubes or syringes containing EDTA. Peripheral blood mononuclear cells (PBMC) are separated from whole blood by density gradient centrifugation using HISTOPAQUE-1077 (Sigma, St. Louis, Mo.) or Ficoll-Paque Plus (Amersham Biosciences Piscataway, N.J.). Blood is diluted 1:1 with Dulbecco's Phosphate Buffered Saline (DPBS) or Hank's Balanced Salts Solution (HBSS). Alternately, whole blood is placed in Accuspin (Sigma) or LeucoSep (Greiner Bio-One, Inc., Longwood, Fla.) centrifuge frit tubes containing density gradient medium. The PBMC layer is collected and washed twice with DPBS or HBSS and re-suspended at 4×106 cells/mL in RPMI complete. The PBMC suspension is added to 96 well flat bottom sterile tissue culture plates containing an equal volume of RPMI complete media containing test compound.


Compound Preparation


The compounds are solubilized in dimethyl sulfoxide (DMSO). The DMSO concentration should not exceed a final concentration of 1% for addition to the culture wells. The compounds are generally tested at concentrations ranging from 30-0.014 μM. Controls include cell samples with media only, cell samples with DMSO only (no compound), and cell samples with reference compound.


Incubation


The solution of test compound is added at 60 μM to the first well containing RPMI complete and serial 3 fold dilutions are made in the wells. The PBMC suspension is then added to the wells in an equal volume, bringing the test compound concentrations to the desired range (usually 30-0.014 μM). The final concentration of PBMC suspension is 2×106 cells/mL. The plates are covered with sterile plastic lids, mixed gently and then incubated for 18 to 24 hours at 37° C. in a 5% carbon dioxide atmosphere.


Separation


Following incubation the plates are centrifuged for 10 minutes at 1000 rpm (approximately 200×g) at 4° C. The cell-free culture supernatant is removed and transferred to sterile polypropylene tubes. Samples are maintained at −30 to −70° C. until analysis. The samples are analyzed for IFN-α by ELISA and for TNF-α by IGEN/BioVeris Assay.


Interferon (α) and Tumor Necrosis Factor (α) Analysis


IFN-α concentration is determined with a human multi-subtype calorimetric sandwich ELISA (Catalog Number 41105) from PBL Biomedical Laboratories, Piscataway, N.J. Results are expressed in pg/mL.


The TNF-α concentration is determined by ORIGEN M-Series Immunoassay and read on an IGEN M-8 analyzer from BioVeris Corporation, formerly known as IGEN International, Gaithersburg, Md. The immunoassay uses a human TNF-α capture and detection antibody pair (Catalog Numbers AHC3419 and AHC3712) from Biosource International, Camarillo, Calif. Results are expressed in pg/mL.


Assay Data and Analysis


In total, the data output of the assay consists of concentration values of TNF-α and IFN-α (y-axis) as a function of compound concentration (x-axis).


Analysis of the data has two steps. First, the greater of the mean DMSO (DMSO control wells) or the experimental background (usually 20 pg/mL for IFN-α and 40 pg/mL for TNF-α) is subtracted from each reading. If any negative values result from background subtraction, the reading is reported as “*”, and is noted as not reliably detectable. In subsequent calculations and statistics, “*”, is treated as a zero. Second, all background subtracted values are multiplied by a single adjustment ratio to decrease experiment to experiment variability. The adjustment ratio is the area of the reference compound in the new experiment divided by the expected area of the reference compound based on the past 61 experiments (unadjusted readings). This results in the scaling of the reading (y-axis) for the new data without changing the shape of the dose-response curve. The reference compound used is 2-[4-amino-2-ethoxymethyl-6,7,8,9-tetrahydro-α,α-dimethyl-1H-imidazo[4,5-c]quinolin-1-yl]ethanol hydrate (U.S. Pat. No. 5,352,784; Example 91) and the expected area is the sum of the median dose values from the past 61 experiments.


The minimum effective concentration is calculated based on the background-subtracted, reference-adjusted results for a given experiment and compound. The minimum effective concentration (μmolar) is the lowest of the tested compound concentrations that induces a response over a fixed cytokine concentration for the tested cytokine (usually 20 pg/mL for IFN-α and 40 pg/mL for TNF-α). The maximal response (pg/mL) is the maximal response attained in the dose response curve.


Compounds of the invention and close analogs were tested for their ability to induce cytokine biosynthesis using the test method described above. The analogs used are shown in the table below.














Analog
Chemical Name
Reference







1
N-[2-(4-Amino-2-methyl-1H-imidazo[4,5-
U.S. Pat. No.



c]quinolin-1-yl)-1,1-
6,677,349#



dimethylethyl]methanesulfonamide



2
N-[2-(4-Amino-2-ethyl-1H-imidazo[4,5-c]quinolin-
U.S. Pat. No.



1-yl)-1,1-dimethylethyl]methanesulfonamide
6,677,349#


3
N-[2-(4-Amino-2-propyl-1H-imidazo[4,5-
U.S. Pat. No.



c]quinolin-1-yl)-1,1-
6,677,349#



dimethylethyl]methanesulfonamide



4
N-[2-(4-Amino-2-ethoxymethyl-1H-imidazo[4,5-
U.S. Pat. No.



c]quinolin-1-yl)-1,1-
6,677,349



dimethylethyl]methanesulfonamide
Example 268


5
N-{2-[4-Amino-2-(2-methoxyethyl)-1H-
Example 6



imidazo[4,5-c]quinolin-1-yl]-1,1-
Part D



dimethylethyl}methanesulfonamide






#This compound is not specifically exemplified but can be readily prepare using the synthetic methods disclosed in the cited reference







The compounds of Examples 6 and 7 and several closely related analogs were tested using the test method described above. The IFN-α dose response curves for Example 6, Analog 2, Analog 3 and Analog 5 are shown in FIG. 1. The TNF-α dose response curves for Example 6, Analog 2, Analog 3 and Analog 5 are shown in FIG. 2. The IFN-α dose response curves for Example 7, Analog 1, Analog 2 and Analog 4 are shown in FIG. 3. The TNF-α dose response curves for Example 7, Analog 1, Analog 2 and Analog 4 are shown in FIG. 4. The minimum effective concentration for the induction of IFN-α, minimum effective concentration for the induction of TNF-α, the maximal response for IFN-α, and the maximal response for TNF-α are shown in Table 5 below where # is the number of separate experiments in which the compound was tested. When a compound was tested in more than one experiment the values shown are the median values.









TABLE 5









embedded image
















Minimum





Effective
Maximal




Concentration
Response



Com-
(μM)
(pg/mL)














pound
R2
IFN
TNF
IFN
TNF
#
















Exam-
—CH2OH
3.330
30.00
2250
 121
5


ple 7








Exam-
—(CH2)2OH
1.11 
>30
7521
*
3


ple 6








Analog
—CH3
0.370
3.330
1846
 1518
7


1








Analog
—CH2CH3
0.120
1.110
 831
 3670
4


2








Analog
—(CH2)2CH3
0.120
0.370
 832
 7245
9


3








Analog
—CH2OCH2CH3
0.040
0.370
 889
10125
22


4








Analog
—(CH2)2OCH3
0.014
0.12 
 825
12518
6


5





*TNF below experimental background of 40 pg/mL.






Compounds of the invention and close analogs were tested for their ability to induce cytokine biosynthesis using the test method described above. The minimum effective concentration for the induction of IFN-α, minimum effective concentration for the induction of TNF-α, the maximal response for IFN-α, and the maximal response for TNF-α are shown in Table 6 below where # is the number of separate experiments in which the compound was tested. When a compound was tested in more than one experiment the values shown are the median values.









TABLE 6









embedded image
















Minimum Effective
Maximal Response




Concentration (μM)
(pg/mL)















Compound
R1
R2
IFN
TNF
IFN
TNF
#

















Example 7
—CH2C(CH3)2NHS(O)2CH3
—CH2OH
3.33
30
1670
 154
6


Example 6
—CH2C(CH3)2NHS(O)2CH3
—(CH2)2OH
1.11
30
6527
*
4


Analog 1
—CH2C(CH3)2NHS(O)2CH3
—CH3
0.37
3.33
1846
1518
9


Analog 2
—CH2C(CH3)2NHS(O)2CH3
—CH2CH3
0.12
1.11
1096
9675
6


Analog 3
—CH2C(CH3)2NHS(O)2CH3
—CH2CH2CH3
0.12
0.37
 832
9780
11


Analog 4
—CH2C(CH3)2NHS(O)2CH3
—CH2OCH2CH3
0.04
0.37
1138
10665 
33


Analog 5
—CH2C(CH3)2NHS(O)2CH3
—(CH2)2OCH3
0.014
0.12
1308
13908 
8


Analog 6
—CH2C(CH3)2NHS(O)2CH3
—CH2OCH3
0.37
3.33
1638
7151
1


Example 147
—(CH2)4NHS(O)2CH3
—CH2OH
0.37
>30
7220
*
3


Example 3
—(CH2)4NHS(O)2CH3
—(CH2)2OH
0.37
>30
2340
*
4


Analog 7
—(CH2)4NHS(O)2CH3
—CH3
0.12
10
7293
 526
13


Analog 8
—(CH2)4NHS(O)2CH3
—CH2CH3
0.04
3.33
2712
 679
79


Analog 9
—(CH2)4NHS(O)2CH3
—CH2CH2CH3
0.12
1.11
2184
 850
22


Analog 10
—(CH2)4NHS(O)2CH3
—CH2OCH2CH3
0.04
1.11
2581
1439
10


Analog 11
—(CH2)4NHS(O)2CH3
—(CH2)2OCH3
0.014
0.37
7594
1931
13





Example 115


embedded image


—(CH2)2OH
1.11
>30
8361
*
1





Analog 12


embedded image


—CH3
0.12
10
1538
1400
1





Analog 13


embedded image


—CH2CH3
0.37
3.33
4975
2570
1





Analog 14


embedded image


—CH2CH2CH3
0.12
1.11
11255 
1298
3





Analog 15


embedded image


—CH2OCH2CH3
0.12
1.11
3433
1580
2





Analog 16


embedded image


—(CH2)2OCH3
0.014
0.04
8889
3494
8





Example 122
—(CH2)3NHS(O)2CH3
—(CH2)2OH
3.33
>30
9651
*
3


Analog 17
—(CH2)3NHS(O)2CH3
—CH3
1.11
30
2778
*
11


Analog 18
—(CH2)3NHS(O)2CH3
—CH2CH3
1.11
30
1912
 238
2


Analog 19
—(CH2)3NHS(O)2CH3
—CH2CH2CH3
1.11
10
2148
 109
3


Analog 20
—(CH2)3NHS(O)2CH3
—CH2OCH2CH3
0.37
10
1338
 463
9


Analog 21
—(CH2)3NHS(O)2CH3
—(CH2)2OCH3
0.014
1.11
3995
 954
9


Example 131
—CH2C(CH3)2CH2NHS(O)2CH3
—(CH2)2OH
0.37
>30
8361
*
1


Analog 22
—CH2C(CH3)2CH2NHS(O)2CH3
—CH3
0.37
10
1019
 805
2


Analog 23
—CH2C(CH3)2CH2NHS(O)2CH3
—CH2CH3
0.12
3.33
1431
1453
3


Analog 24
—CH2C(CH3)2CH2NHS(O)2CH3
—CH2CH2CH3
0.12
10
1711
1929
2


Analog 25
—CH2C(CH3)2CH2NHS(O)2CH3
—CH2OCH2CH3
0.12
0.37
 561
3768
5


Analog 26
—CH2C(CH3)2CH2NHS(O)2CH3
—(CH2)2OCH3
0.014
0.04
1805
5467
10


Example 36
—(CH2)2NHS(O)2CH3
—(CH2)2OH
10
>30
3316
*
1


Analog 27
—(CH2)2NHS(O)2CH3
—CH3
0.12
10
1610
820
3


Analog 28
—(CH2)2NHS(O)2CH3
—CH2CH3
0.12
10
3800
2401
6


Analog 29
—(CH2)2NHS(O)2CH3
—CH2CH2CH3
30
10
2003
11432 
2


Analog 30
—(CH2)2NHS(O)2CH3
—CH2OCH2CH3
0.12
3.33
1465
4918
9


Analog 31
—(CH2)2NHS(O)2CH3
—(CH2)2OCH3
0.014
0.04
5858
8547
6


Example 125
—(CH2)5S(O)2CH3
—(CH2)2OH
0.37
>30
8361
*
1


Analog 32
—(CH2)5S(O)2CH3
—CH3
0.37
3.33
1294
 771
21


Analog 33
—(CH2)5S(O)2CH3
—CH2CH3
0.12
1.11
1062
1545
7


Analog 34
—(CH2)5S(O)2CH3
—CH2CH2CH3
0.12
1.11
 828
 848
3


Analog 35
—(CH2)5S(O)2CH3
—(CH2)2OCH3
0.014
1.11
2695
6169
2


Example 133
—(CH2)2O(CH2)2N(CH3)S(O)2CH3
—(CH2)2OH
0.37
>30
8361
*
1


Analog 36
—(CH2)2O(CH2)2N(CH3)S(O)2CH3
—CH3
0.12
1.11
1001
3571
1


Analog 37
—(CH2)2O(CH2)2N(CH3)S(O)2CH3
—CH2CH3
0.12
1.11
1803
2525
1


Analog 38
—(CH2)2O(CH2)2N(CH3)S(O)2CH3
—CH2CH2CH3
0.37
3.33
1055
1312
2


Analog 39
—(CH2)2O(CH2)2N(CH3)S(O)2CH3
—(CH2)2OCH3
0.014
0.37
1630
2191
4


Example 99
—(CH2)3NHC(O)NHCH(CH3)2
—(CH2)2OH
0.37
>30
21829 
*
1


Analog 40
—(CH2)3NHC(O)NHCH(CH3)2
—CH3
3.33
10
1134
 490
1


Analog 41
—(CH2)3NHC(O)NHCH(CH3)2
—CH2CH2CH3
0.12
1.11
6571
3740
2


Analog 42
—(CH2)3NHC(O)NHCH(CH3)2
—(CH2)2OCH3
0.12
1.11
1289
1259
1


Example 120
—(CH2)3NH2
—(CH2)2OH
3.33
>30
5636
*



Analog 43
—(CH2)3NH2
—CH3
3.33
>30
 421
*



Analog 44
—(CH2)3NH2
—CH2OCH2CH3
0.12
30
1325
 411
1


Analog 45
—(CH2)3NH2
—(CH2)2OCH3
0.04
1.11
3433
1674
1





Example 128


embedded image


—(CH2)2OH
30
>30
 75
*
3





Analog 46


embedded image


—CH3
0.37
30
4843
 463
2





Analog 47


embedded image


—CH2OCH2CH3
0.12
1.11
6670
1379
2





Analog 48


embedded image


—(CH2)2OCH3
0.014
0.014
5915
6169
2





Example 130


embedded image


—(CH2)2OH
0.014
3.33
8361
2001
1





Analog 49


embedded image


—CH2CH3
0.014
0.12
 922
2098
2





Analog 50


embedded image


—CH2OCH2CH3
0.014
0.04
1133
3618
2





Analog 51


embedded image


—(CH2)2OCH3
0.014
0.04
 570
6449
2





Example 5


embedded image


—CH2OH
0.37
10
17274 
1130
1





Analog 52


embedded image


—CH2OCH2CH3
0.37
0.37
1052
12173 
13





Analog 53


embedded image


—CH2OCH3
1.11
3.33
2518
9721
1





Example 124


embedded image


—(CH2)2OH
0.12
3.33
3980
1446
1





Analog 54


embedded image


—CH2OCH2CH3
0.04
0.37
 832
1820
5





Analog 55


embedded image


—(CH2)2OCH3
0.014
0.014
2133
1812
1





Example 126
—(CH2)3NHC(O)NH(CH2)3CH3
—(CH2)2OH
1.11
>30
8361
*
1


Analog 56
—(CH2)3NHC(O)NH(CH2)3CH3
—CH2OCH2CH3
0.37
3.33
 827
 963
5


Analog 57
—(CH2)3NHC(O)NH(CH2)3CH3
—(CH2)2OCH3
0.014
0.04
5915
6169
2


Example 129
—CH2C(CH3)2CH2NH2
—(CH2)2OH
0.37
30
2702
 85
1


Analog 58
—CH2C(CH3)2CH2NH2
—CH2CH3
0.04
0.37
 405
13846 
1


Analog 59
—CH2C(CH3)2CH2NH2
—(CH2)2OCH3
0.014
0.04
 571
17626 
1





Example 132


embedded image


—(CH2)2OH
0.37
>30
8361
*
1





Analog 60


embedded image


—CH3
1.11
3.33
 571
 156
3





Analog 61


embedded image


—(CH2)2OCH3
0.014
1.11
1504
3080
2





Example 137
—(CH2)2NHC(O)NHCH2CH3
—(CH2)2OH
30
30
 801
 73
1


Analog 62
—(CH2)2NHC(O)NHCH2CH3
—CH2CH3
3.33
10
1031
3250
2


Analog 63
—(CH2)2NHC(O)NHCH2CH3
—(CH2)2OCH3
0.014
0.12
2587
7719
4


Example 138
—(CH2)2NHC(O)CH2CH(CH3)2
—(CH2)2OH
3.33
>30
 36
*
1


Analog 64
—(CH2)2NHC(O)CH2CH(CH3)2
—CH2CH3
3.33
30
 851
 587
2


Analog 65
—(CH2)2NHC(O)CH2CH(CH3)2
—(CH2)2OCH3
0.12
3.33
1204
5694
5


Example 142
—CH2C(CH3)2NHC(O)NHCH(CH3)2
—CH2OH
1.11
>30
1554
*
1


Analog 66
—CH2C(CH3)2NHC(O)NHCH(CH3)2
—CH2CH2CH3
1.11
3.33
1428
6363
3


Analog 67
—CH2C(CH3)2NHC(O)NHCH(CH3)2
—CH2OCH2CH3
0.37
1.11
 966
10587 
4





Example 1


embedded image


—(CH2)2OH
0.37
10
1072
 143
1





Analog 68


embedded image


—(CH2)2OCH3
0.04
0.37
 638
6169
2





Example 2


embedded image


—(CH2)2OH
3.33
3.33
 507
 45
1





Analog 69


embedded image


—(CH2)2OCH3
0.12
1.11
 647
6169
2





Example 4
—CH2C(CH3)2NH2
—CH2OH
0.37
3.33
1893
 41
2


Analog 70
—CH2C(CH3)2NH2
—CH2OCH2CH3
0.12
0.37
 656
11475 
7





Example 111


embedded image


—(CH2)2OH
0.12
1.11
7753
 983
1





Analog 71


embedded image


—(CH2)2OCH3
0.014
0.04
2127
1462
7





Example 112


embedded image


—(CH2)2OH
1.11
30
8361
 76
1





Analog 72


embedded image


—(CH2)2OCH3
0.014
0.04
6032
3786
4





Example 114
—(CH2)4NH2
—(CH2)2OH
30
>30
 23
*
1





Analog 73
—(CH2)4NH2
—(CH2)2OCH3
0.04
0.37
127231 
 724
1





Example 116


embedded image


—(CH2)2OH
0.37
30
8361
1112
1





Analog 74


embedded image


—(CH2)2OCH3
0.014
0.04
7545
9340
2





Example 117


embedded image


—(CH2)2OH
0.37
3.33
5520
1938
1





Analog 75


embedded image


—(CH2)2OCH3
0.014
0.04
1129
7261
3





Example 118


embedded image


—(CH2)2OH
0.37
>30
5177
*
1





Analog 76


embedded image


—(CH2)2OCH3
0.014
0.12
1257
1372
1





Example 119
—(CH2)8NHS(O)2CH3
—(CH2)2OH
0.04
3.33
8361
 693
1





Analog 77
—(CH2)8NHS(O)2CH3
—(CH2)2OCH3
0.014
0.014
1914
1853
2





Example 121


embedded image


—(CH2)2OH
0.37
3.33
2441
 180
1





Analog 78


embedded image


—(CH2)2OCH3
0.014
0.014
1584
1995
1





Example 134


embedded image


—(CH2)2OH
3.33
30
8361
 315
1





Analog 79


embedded image


—(CH2)2OCH3
0.04
0.37
1394
3317
1





Example 135


embedded image


—(CH2)2OH
3.33
30
2464
 146
1





Analog 80


embedded image


—(CH2)2OCH3
0.37
1.11
1234
4849
2





Example 140
—(CH2)2O(CH2)2NHC(O)(CH2)14CH3
—(CH2)2OH
1.11
>30
 673
*
1


Analog 81
—(CH2)2O(CH2)2NHC(O)(CH2)14CH3
—(CH2)2OCH3
0.014
0.014
2556
11033 
9


Example 141
—(CH2)3NHC(O)CH(CH3)2
—(CH2)2OH
0.04
30
14046 
 243
1


Analog 82
—(CH2)3NHC(O)CH(CH3)2
—CH3
1.11
10
3011
 405
2


Example 143
—CH2C(CH3)2CH2S(O)2CH3
—CH2OH
1.11
30
5343
 164
1


Analog 83
—CH2C(CH3)2CH2S(O)2CH3
—CH2OCH2CH3
0.12
0.37
1924
9513
4


Example 144
—(CH2)2NHC(O)NHCH(CH3)2
—CH2OH
0.37
3.33
1488
 74
1


Analog 84
—(CH2)2NHC(O)NHCH(CH3)2
—CH2OCH2CH3
0.37
10
2045
7512
7





*TNF below experimental background of 40 pg/mL


Analogs 1-11, 17-33, 68, 72, and 77 are either specifically exemplified in or are readily prepared using the synthetic methods disclosed in U.S. Pat. Nos. 6,331,539 and 6,677,349.


Analogs 12-16, 40-42, 46-50, 56, 57, 62, 63, 66, and 67 are either specifically exemplified in or are readily prepared using the synthetic methods disclosed in U.S. Pat. Nos. 6,541,485 and 6,573,273.


Analogs 32-35 and 83 are either specifically exemplified in or are readily prepared using the synthetic methods disclosed in U.S. Pat. No. 6,664,264.


Analogs 36-39 are either specifically exemplified in or are readily prepared using the synthetic methods disclosed in U.S. Pat. No. 6,683,088.


Analogs 43-45, 58, 59, 70, and 73 are either specifically exemplified in or are readily prepared using the synthetic methods disclosed in U.S. Pat. Nos. 6,069,149 and 6,677,349.


Analogs 52-55, 60, 61, 64, 65, 69, 71, 74, 75, 78, and 82 are either specifically exemplified in or are readily prepared using the synthetic methods disclosed in U.S. Pat. Nos. 6,451,810 and 6,756,382.


Analogs 79-81 are either specifically exemplified in or are readily prepared using the synthetic methods disclosed in U.S. Pat. No. 6,664,265.






The complete disclosures of the patents, patent documents, and publications cited herein are incorporated by reference in their entirety as if each were individually incorporated. Various modifications and alterations to this invention will become apparent to those skilled in the art without departing from the scope and spirit of this invention. It should be understood that this invention is not intended to be unduly limited by the illustrative embodiments and examples set forth herein and that such examples and embodiments are presented by way of example only with the scope of the invention intended to be limited only by the claims set forth herein as follows.

Claims
  • 1. A compound of the Formula I:
  • 2. The compound or salt of claim 1, wherein n is 1.
  • 3. The compound or salt of claim 1, wherein n is 2.
  • 4. The compound or salt of claim 1, wherein m is 0.
  • 5. The compound or salt of claim 1, wherein R1 is —X—Y—R4 wherein X is straight chain or branched chain C1-6 alkylene which may be interrupted by one —O— group; Y is selected from the group consisting of —N(R8)—C(O)—, —N(R8)—S(O)2—, —N(R8)—C(O)—N(R8)—, and —S(O)2— wherein R8 is selected from hydrogen and methyl; and R4 is selected from the group consisting of C1-6 alkyl, isoquinolinyl, N-methylimidazolyl, pyridinyl, quinolinyl, phenyl, and phenyl substituted by a substituent selected from the group consisting of chloro, cyano, fluoro, hydroxy, and methyl.
  • 6. The compound or salt of claim 1, wherein R1 is selected from the group consisting of 2-[(cyclopropylcarbonyl)amino]ethyl, 4-[(cyclopropylcarbonyl)amino]butyl, 2-[(cyclohexylcarbonyl)amino]-2-methylpropyl, 2-{[(1-methylethyl)carbonyl]amino}ethyl, 4-{[(1-methylethyl)carbonyl]amino}butyl, 2-methyl-2-{[(1-methylethyl)carbonyl]amino}propyl, 2-[(methylsulfonyl)amino]ethyl, 4-[(methylsulfonyl)amino]butyl, 2-methyl-2-[(methylsulfonyl)amino]propyl, 2-methyl-2-({[(1-methylethyl)amino]carbonyl}amino)propyl, and 2,2-dimethyl-3-(methylsulfonyl)propyl.
  • 7. The compound or salt of claim 1, wherein R1 is —X—Y—R4 wherein X is straight chain or branched chain C1-8alkylene which may be interrupted by one —O— group; Y is selected from the group consisting of —N(R8)—C(O)—, —N(R8)—S(O)2—, —N(R8)—C(O)—N(R8a)-, and —S(O)2— wherein R8 is hydrogen, methyl, benzyl, or pyridin-3-ylmethyl; R8a is hydrogen, methyl, or ethyl, and R4 is selected from the group consisting of C1-7 alkyl, haloC1-4 alkyl, hydroxyC1-4alkyl, phenyl, benzyl, 1-phenylethyl, 2-phenylethyl, 2-phenylethenyl, phenylcyclopropyl, pyridinyl, thienyl, N-methylimidazolyl, 3,5-dimethylisoxazolyl, wherein benzyl is unsubstituted or substituted by a methyl group, and phenyl is unsubstituted or substituted by one or two substituents independently selected from the group consisting of methyl, fluoro, chloro, cyano, hydroxy, and dimethylamino.
  • 8. The compound or salt of claim 1, wherein R1 is —X—R5 wherein X is C1-6 alkylene, and R5 is
  • 9. The compound or salt of claim 1, wherein R1 is selected from the group consisting of 4-(1,1-dioxidoisothiazolidin-2-yl)butyl, 4-[(4-morpholinecarbonyl)amino]butyl, and 2-[(4-morpholinecarbonyl)amino]ethyl.
  • 10. The compound or salt of claim 1, wherein R1 is —C1-4alkylenyl-Het.
  • 11. The compound or salt of claim 1, wherein R1 is tetrahydro-2H-pyran-4-ylmethyl.
  • 12. The compound of claim 1, selected from the group consisting of N-[4-(4-amino-2-hydroxymethyl-1H-imidazo[4,5-c]quinolin-1-yl)butyl]methanesulfonamide and N-{4-[4-amino-2-(2-hydroxyethyl)-1H-imidazo[4,5-c]quinolin-1-yl]butyl]}methanesulfonamide, or a pharmaceutically acceptable salt thereof.
  • 13. The compound of claim 1, wherein the compound is N-{2-[4-amino-2-(hydroxymethyl)-1H-imidazo[4,5-c]quinolin-1-yl]-1,1-dimethylethyl}methanesulfonamide or a pharmaceutically acceptable salt thereof.
  • 14. A pharmaceutical composition comprising a therapeutically effective amount of a compound or salt of claim 1 and a pharmaceutically acceptable carrier.
  • 15. A method of preferentially inducing the biosynthesis of IFN-α in an animal comprising administering an effective amount of a compound or salt of claim 1 to the animal.
  • 16. A method of treating a viral disease in an animal in need thereof comprising administering a therapeutically effective amount of a compound or salt of claim 1 to the animal.
  • 17. A method of treating a neoplastic disease in an animal in need thereof comprising administering a therapeutically effective amount of a compound or salt of claim 1 to the animal.
  • 18. The method of claim 15, wherein the compound or salt is administered systemically.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a national stage filing under 35 U.S.C. §371 of PCT International application PCT/US2006/006223 designating the United States of America, and filed Feb. 22, 2006. This application claims the benefit under 35 U.S.C. §119(e) of U.S. provisional application Ser. No. 60/655,380, filed Feb. 23, 2005, which is incorporated herein by reference.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2006/006223 2/22/2006 WO 00 7/25/2008
Publishing Document Publishing Date Country Kind
WO2006/098852 9/21/2006 WO A
US Referenced Citations (267)
Number Name Date Kind
3314941 Littell et al. Apr 1967 A
4689338 Gerster Aug 1987 A
4698348 Gerster Oct 1987 A
4929624 Gerster et al. May 1990 A
4988815 Andre et al. Jan 1991 A
5037986 Gerster Aug 1991 A
5175296 Gerster Dec 1992 A
5238944 Wick et al. Aug 1993 A
5266575 Gerster Nov 1993 A
5268376 Gester Dec 1993 A
5346905 Gerster Sep 1994 A
5352784 Nikolaides et al. Oct 1994 A
5367076 Gerster Nov 1994 A
5389640 Gerster et al. Feb 1995 A
5395937 Nikolaides et al. Mar 1995 A
5444065 Nikolaides et al. Aug 1995 A
5446153 Lindstrom et al. Aug 1995 A
5482936 Lindstrom Jan 1996 A
5494916 Lindstrom et al. Feb 1996 A
5525612 Gerster Jun 1996 A
5605899 Gerster et al. Feb 1997 A
5627281 Nikolaides et al. May 1997 A
5644063 Lindstrom et al. Jul 1997 A
5648516 Nikolaides et al. Jul 1997 A
5693811 Lindstrom Dec 1997 A
5714608 Gerster Feb 1998 A
5741908 Gerster et al. Apr 1998 A
5756747 Gerster et al. May 1998 A
5886006 Nikolaides et al. Mar 1999 A
5939090 Beaurline et al. Aug 1999 A
6039969 Tomai et al. Mar 2000 A
6069149 Nanba et al. May 2000 A
6083505 Miller et al. Jul 2000 A
6110929 Gerster et al. Aug 2000 A
6194425 Gerster et al. Feb 2001 B1
6200592 Tomai et al. Mar 2001 B1
6245776 Skwierczynski et al. Jun 2001 B1
6331539 Crooks et al. Dec 2001 B1
6365166 Beaurline et al. Apr 2002 B2
6376669 Rice et al. Apr 2002 B1
6440992 Gerster et al. Aug 2002 B1
6451810 Coleman et al. Sep 2002 B1
6465654 Gerster et al. Oct 2002 B2
6486168 Skwierczynski et al. Nov 2002 B1
6514985 Gerster et al. Feb 2003 B1
6518265 Kato et al. Feb 2003 B1
6525064 Dellaria et al. Feb 2003 B1
6541485 Crooks et al. Apr 2003 B1
6545016 Dellaria et al. Apr 2003 B1
6545017 Dellaria et al. Apr 2003 B1
6558951 Tomai et al. May 2003 B1
6573273 Crooks et al. Jun 2003 B1
6610319 Tomai et al. Aug 2003 B2
6627638 Gerster et al. Sep 2003 B2
6627640 Gerster et al. Sep 2003 B2
6630588 Rice et al. Oct 2003 B2
6656938 Crooks et al. Dec 2003 B2
6660735 Crooks et al. Dec 2003 B2
6660747 Crooks et al. Dec 2003 B2
6664260 Charles et al. Dec 2003 B2
6664264 Dellaria et al. Dec 2003 B2
6664265 Crooks et al. Dec 2003 B2
6667312 Bonk et al. Dec 2003 B2
6670372 Charles et al. Dec 2003 B2
6677347 Crooks et al. Jan 2004 B2
6677348 Heppner et al. Jan 2004 B2
6677349 Griesgraber Jan 2004 B1
6683088 Crooks et al. Jan 2004 B2
6696076 Tomai et al. Feb 2004 B2
6696465 Dellaria et al. Feb 2004 B2
6703402 Gerster et al. Mar 2004 B2
6706728 Hedenstrom et al. Mar 2004 B2
6716988 Dellaria et al. Apr 2004 B2
6720333 Dellaria et al. Apr 2004 B2
6720334 Dellaria et al. Apr 2004 B2
6720422 Dellaria et al. Apr 2004 B2
6743920 Lindstrom et al. Jun 2004 B2
6756382 Coleman et al. Jun 2004 B2
6790961 Gerster et al. Sep 2004 B2
6797718 Dellaria et al. Sep 2004 B2
6800624 Crooks et al. Oct 2004 B2
6809203 Gerster et al. Oct 2004 B2
6818650 Griesgraber Nov 2004 B2
6825350 Crooks et al. Nov 2004 B2
6841678 Merli et al. Jan 2005 B2
6852861 Merli et al. Feb 2005 B2
6878719 Lindstrom et al. Apr 2005 B2
6888000 Crooks et al. May 2005 B2
6894060 Slade May 2005 B2
6897221 Crooks et al. May 2005 B2
6903113 Heppner et al. Jun 2005 B2
6916925 Rice et al. Jul 2005 B1
6921826 Dellaria et al. Jul 2005 B2
6924293 Lindstrom Aug 2005 B2
6943225 Lee et al. Sep 2005 B2
6949649 Bonk et al. Sep 2005 B2
6953804 Dellaria et al. Oct 2005 B2
6969722 Heppner et al. Nov 2005 B2
6989389 Heppner et al. Jan 2006 B2
7030129 Miller et al. Apr 2006 B2
7030131 Crooks et al. Apr 2006 B2
7038053 Lindstrom et al. May 2006 B2
7049439 Crooks et al. May 2006 B2
7078523 Crooks et al. Jul 2006 B2
7091214 Hays et al. Aug 2006 B2
7098221 Heppner et al. Aug 2006 B2
7112677 Griesgraber Sep 2006 B2
7115622 Crooks et al. Oct 2006 B2
7125890 Dellaria et al. Oct 2006 B2
7132429 Griesgraber et al. Nov 2006 B2
7132438 Frenkel et al. Nov 2006 B2
7148232 Gerster et al. Dec 2006 B2
7157453 Crooks et al. Jan 2007 B2
7163947 Griesgraber et al. Jan 2007 B2
7179253 Graham et al. Feb 2007 B2
7199131 Lindstrom Apr 2007 B2
7214675 Griesgraber May 2007 B2
7220758 Dellaria et al. May 2007 B2
7226928 Mitra et al. Jun 2007 B2
7276515 Dellaria et al. Oct 2007 B2
7288550 Dellaria et al. Oct 2007 B2
7301027 Colombo et al. Nov 2007 B2
7375180 Gorden et al. May 2008 B2
7387271 Noelle et al. Jun 2008 B2
7393859 Coleman et al. Jul 2008 B2
7427629 Kedl et al. Sep 2008 B2
7485432 Fink et al. Feb 2009 B2
7544697 Hays et al. Jun 2009 B2
7576068 Averett Aug 2009 B2
7578170 Mayer et al. Aug 2009 B2
7579359 Krepski et al. Aug 2009 B2
7598382 Hays et al. Oct 2009 B2
7612083 Griesgraber Nov 2009 B2
7648997 Kshirsagar et al. Jan 2010 B2
7655672 Statham et al. Feb 2010 B2
7687628 Gutman et al. Mar 2010 B2
7696159 Owens et al. Apr 2010 B2
7699057 Miller et al. Apr 2010 B2
7731967 O'Hagan et al. Jun 2010 B2
7799800 Wightman Sep 2010 B2
7879849 Hays et al. Feb 2011 B2
7884207 Stoermer et al. Feb 2011 B2
7888349 Kshirsagar et al. Feb 2011 B2
7897597 Lindstrom et al. Mar 2011 B2
7897609 Niwas et al. Mar 2011 B2
7897767 Kshirsagar et al. Mar 2011 B2
7902209 Statham et al. Mar 2011 B2
7902210 Statham et al. Mar 2011 B2
7902211 Statham et al. Mar 2011 B2
7902212 Statham et al. Mar 2011 B2
7902213 Statham et al. Mar 2011 B2
7902214 Statham et al. Mar 2011 B2
7902215 Statham et al. Mar 2011 B2
7902216 Statham et al. Mar 2011 B2
7902242 Statham et al. Mar 2011 B2
7902243 Statham et al. Mar 2011 B2
7902244 Statham et al. Mar 2011 B2
7902245 Statham et al. Mar 2011 B2
7902246 Statham et al. Mar 2011 B2
7968562 Skwierczynski et al. Jun 2011 B2
7968563 Kshirsager et al. Jun 2011 B2
7993659 Noelle et al. Aug 2011 B2
8017779 Merrill et al. Sep 2011 B2
8026366 Prince et al. Sep 2011 B2
20020055517 Smith May 2002 A1
20020058674 Hedenstrom et al. May 2002 A1
20020107262 Lindstrom Aug 2002 A1
20030133913 Tomai et al. Jul 2003 A1
20030139364 Krieg et al. Jul 2003 A1
20040014779 Gorden et al. Jan 2004 A1
20040132079 Gupta et al. Jul 2004 A1
20040175336 Egging et al. Sep 2004 A1
20040180919 Lee et al. Sep 2004 A1
20040191833 Fink et al. Sep 2004 A1
20040197865 Gupta et al. Oct 2004 A1
20040202720 Wightman et al. Oct 2004 A1
20040214851 Birmachu et al. Oct 2004 A1
20040258698 Wightman et al. Dec 2004 A1
20040265351 Miller et al. Dec 2004 A1
20050048072 Kedl et al. Mar 2005 A1
20050059072 Birmachu et al. Mar 2005 A1
20050070460 Hammerbeck et al. Mar 2005 A1
20050096259 Tomai et al. May 2005 A1
20050106300 Chen et al. May 2005 A1
20050158325 Hammerbeck et al. Jul 2005 A1
20050165043 Miller et al. Jul 2005 A1
20050171072 Tomai et al. Aug 2005 A1
20050239735 Miller et al. Oct 2005 A1
20050245562 Garcia-Echeverria et al. Nov 2005 A1
20060045885 Kedl et al. Mar 2006 A1
20060045886 Kedl Mar 2006 A1
20060051374 Miller et al. Mar 2006 A1
20060088542 Braun Apr 2006 A1
20060142202 Alkan et al. Jun 2006 A1
20060142235 Miller et al. Jun 2006 A1
20060195067 Wolter et al. Aug 2006 A1
20060216333 Miller et al. Sep 2006 A1
20070060754 Lindstrom et al. Mar 2007 A1
20070066639 Kshirsagar et al. Mar 2007 A1
20070072893 Krepski et al. Mar 2007 A1
20070099901 Krepski et al. May 2007 A1
20070123559 Statham et al. May 2007 A1
20070155767 Radmer et al. Jul 2007 A1
20070166384 Zarraga et al. Jul 2007 A1
20070167479 Busch et al. Jul 2007 A1
20070213355 Capraro et al. Sep 2007 A1
20070219196 Krepski et al. Sep 2007 A1
20070243215 Miller et al. Oct 2007 A1
20070259881 Dellaria et al. Nov 2007 A1
20070259907 Prince Nov 2007 A1
20070287725 Miser et al. Dec 2007 A1
20070292456 Hammerbeck et al. Dec 2007 A1
20080015184 Kshirsagar et al. Jan 2008 A1
20080039533 Sahouani et al. Feb 2008 A1
20080063714 Sahouani et al. Mar 2008 A1
20080070907 Griesgraber et al. Mar 2008 A1
20080085895 Griesgraber et al. Apr 2008 A1
20080119508 Slade et al. May 2008 A1
20080188513 Skwierczynski et al. Aug 2008 A1
20080193468 Levy et al. Aug 2008 A1
20080193474 Griesgraber et al. Aug 2008 A1
20080207674 Stoesz et al. Aug 2008 A1
20080213308 Valiante et al. Sep 2008 A1
20080262021 Capraro et al. Oct 2008 A1
20080262022 Lee et al. Oct 2008 A1
20080269192 Griesgraber et al. Oct 2008 A1
20080306252 Crooks et al. Dec 2008 A1
20080306266 Martin et al. Dec 2008 A1
20080312434 Lindstrom et al. Dec 2008 A1
20080318998 Prince et al. Dec 2008 A1
20090005371 Rice et al. Jan 2009 A1
20090017076 Miller et al. Jan 2009 A1
20090023720 Kshirsagar et al. Jan 2009 A1
20090023722 Coleman et al. Jan 2009 A1
20090029988 Kshirsagar et al. Jan 2009 A1
20090030030 Bonk et al. Jan 2009 A1
20090030031 Kshirsagar et al. Jan 2009 A1
20090035323 Stoermer et al. Feb 2009 A1
20090062272 Bonk et al. Mar 2009 A1
20090069299 Merrill et al. Mar 2009 A1
20090069314 Kshirsagar et al. Mar 2009 A1
20090075980 Hays et al. Mar 2009 A1
20090099161 Rice et al. Apr 2009 A1
20090105295 Kshirsagar et al. Apr 2009 A1
20090124611 Hays et al. May 2009 A1
20090124652 Ach et al. May 2009 A1
20090163532 Perman et al. Jun 2009 A1
20090163533 Hays et al. Jun 2009 A1
20090176821 Kshirsagar et al. Jul 2009 A1
20090202443 Miller et al. Aug 2009 A1
20090221551 Kshirsagar et al. Sep 2009 A1
20090221556 Kshirsagar et al. Sep 2009 A1
20090240055 Krepski et al. Sep 2009 A1
20090246174 Rook et al. Oct 2009 A1
20090253695 Kshirsagar et al. Oct 2009 A1
20090270443 Stoermer et al. Oct 2009 A1
20090298821 Kshirsagar et al. Dec 2009 A1
20090306388 Zimmerman et al. Dec 2009 A1
20100028381 Gorski et al. Feb 2010 A1
20100056557 Benninghoff et al. Mar 2010 A1
20100096287 Stoesz et al. Apr 2010 A1
20100113565 Gorden et al. May 2010 A1
20100152230 Dellaria et al. Jun 2010 A1
20100158928 Stoermer et al. Jun 2010 A1
20100173906 Griesgraber Jul 2010 A1
20100180902 Miller et al. Jul 2010 A1
20100240693 Lundquist et al. Sep 2010 A1
Foreign Referenced Citations (14)
Number Date Country
0 394 026 Oct 1990 EP
1 104 764 Jun 2001 EP
9-208584 Aug 1997 JP
11-080156 Mar 1999 JP
11-222432 Aug 1999 JP
2000-247884 Sep 2000 JP
WO 9215581 Sep 1992 WO
WO 9215582 Sep 1992 WO
WO 0236592 May 2002 WO
WO 03009852 Feb 2003 WO
WO 2006028451 Mar 2006 WO
WO 2006063072 Jun 2006 WO
WO 2006121528 Nov 2006 WO
WO 2007030775 Mar 2007 WO
Related Publications (1)
Number Date Country
20090029988 A1 Jan 2009 US
Provisional Applications (1)
Number Date Country
60655380 Feb 2005 US