Hypersensitive response elicitor fragments which are active but do not elicit a hypersensitive response

Information

  • Patent Grant
  • 6858707
  • Patent Number
    6,858,707
  • Date Filed
    Monday, October 4, 1999
    25 years ago
  • Date Issued
    Tuesday, February 22, 2005
    19 years ago
Abstract
The present invention is directed to isolated active fragments of a hypersensitive response elicitor protein or polypeptide which fragment does not elicit a hypersensitive response in plants. Also disclosed are isolated DNA molecules which encode such fragments. Isolated fragments of hypersensitive response elicitor proteins or polypeptides in accordance with the present invention and the isolated DNA molecules that encode them have the following activities: imparting disease resistance to plants, enhancing plant growth, and/or controlling insects on plants. This can be achieved by applying the fragments of a hypersensitive response elicitor in a non-infectious form to plants or plant seeds under conditions effective to impart disease resistance, to enhance plant growth, and/or to control insects on plants or plants grown from the plant seeds. Alternatively, transgenic plants or plant seeds transformed with a DNA molecule encoding the fragment can be provided and the transgenic plants or plants resulting from the trasgenic plant seeds are grown under conditions effective to impart disease resistance, to enhance plant growth, and/or to control insects on plants or plants grown from the plant seeds.
Description
FIELD OF THE INVENTION

The present invention relates to active fragments of a hypersensitive response elicitor which fragments do not elicit a hypersensitive response.


BACKGROUND OF THE INVENTION

Interactions between bacterial pathogens and their plant hosts generally fall into two categories: (1) compatible (pathogen-host), leading to intercellular bacterial growth, symptom development, and disease development in the host plant; and (2) incompatible (pathogen-nonhost), resulting in the hypersensitive response, a particular type of incompatible interaction occurring, without progressive disease symptoms. During compatible interactions on host plants, bacterial populations increase dramatically and progressive symptoms occur. During incompatible interactions, bacterial populations do not increase, and progressive symptoms do not occur.


The hypersensitive response is a rapid, localized necrosis that is associated with the active defense of plants against many pathogens (Kiraly, Z., “Defenses Triggered by the Invader: Hypersensitivity,” pages 201-224 in: Plant Disease: An Advanced Treatise, Vol. 5, J. G. Horsfall and E. B. Cowling, ed. Academic Press New York (1980); Klement, Z., “Hypersensitivity,” pages 149-177 in: Phypahogenic Prokaryotes, Vol. 2, M. S. Mount and G. H. Lacy, ed. Academic Press, New York (1982)). The hypersensitive response elicited by bacteria is readily observed as a tissue collapse if high concentrations (≧107 cells/ml) of a limited host-range pathogen like Pseudomonas syringae or Erwinia amylovora are infiltrated into the leaves of nonhost plants (necrosis occurs only in isolated plant cells at lower levels of inoculum) (Klement, Z., “Rapid Detection of Pathogenicity of Phytopathogenic Pseudomonads,” Nature 199:299-300; Klement, et al., “Hypersensitive Reaction Induced by Phytopathogenic Bacteria in the Tobacco Leaf,” Phytopatholgy 54:474-477 (1963); Turner, et al., “The Quantitative Relation Between Plant and Bacterial Cells Involved in the Hypersensitive Reaction,” Phytopathology 64:885-890 (1974); Klement, Z., “Hypersensitivity,” pages 149-177 in Phytopathogenic Prokaryotes, Vol. 2., M. S. Mount and G. H. Lacy, ed. Academic Press, New York (1982)). The capacities to elicit the hypersensitive response in a nonhost and be pathogenic in a host appear linked. As noted by Klement, Z., “Hypersensitivity,” pages 149-177 in Phytopathogenic Prokaryotes, Vol. 2., M. S. Mount and G. H. Lacy, ed. Academic Press, New York, these pathogens also cause physiologically similar, albeit delayed, necroses in their interactions with compatible hosts. Furthermore, the ability to produce the hypersensitive response or pathogenesis is dependent on a common set of genes, denoted hrp (Lindgren, P. B., et al., “Gene Cluster of Pseudomonas syringae pv. ‘phaseolicola’ Controls Pathogenicity of Bean Plants and Hypersensitivity on Nonhost Plants,” J. Bacteriol. 168:512-22 (1986); Willis, D. K., et al., “hrp Genes of Phytopathogenic Bacteria,” Mol. Plant-Microbe Interact. 4:132-138 (1991)). Consequently, the hypersensitive response may hold clues to both the nature of plant defense and the basis for bacterial pathogenicity.


The hrp genes are widespread in Grain-negative plant pathogens, where they are clustered, conserved, and in some cases interchangeable (Willis, D. K., et al., “hrp Genes of Phytopathogenic Bacteria,” Mol. Plant-Microbe Interact. 4:132-138 (1991); Bonas, U., “hrp Genes of Phytopathogenic Bacteria,” pages 79-98 in: Current Topics in Microbiology and Immunology: Bacterial Pathogenesis of Plants and Animals—Molecular and Cellular Mechanisms, J. L. Dangl, ed. Springer-Verlag, Berlin (1994)). Several hrp genes encode components of a protein secretion pathway similar to one used by Yersinia, Shigella, and Salmonella spp. to secrete proteins essential in animal diseases (Van Gijsegem, et al., “Evolutionary Conservation of Pathogenicity Determinants Among Plant and Animal Pathogenic Bacteria,” Trends Microbiol. 1 :175-180 (1993)). In E. amylovora, P. syringae, and P. solanacearum, hrp genes have been shown to control the production and secretion of glycine-rich, protein elicitors of the hypersensitive response (He, S. Y., et al. “Pseudomonas Syringae pv. Syringae HarpinPss: a Protein that is Secreted via the Hrp Pathway and Elicits the Hypersensitive Response in Plants,” Cell 73:1255-1266 (1993), Wei, Z.-H., et al., “HrpI of Erwinia amylovora Functions in Secretion of Harpin and is a Member of a New Protein Family,” J. Bacteriol. 175:7958-7967 (1993); Arlat, M. et al. “PopA1, a Protein Which Induces a Hypersensitive-like Response on Specific Petunia Genotypes, is Secreted via the Hrp Pathway of Pseudomonas solanacearum,” EMBO J. 13:543-553 (1994)).


The first of these proteins was discovered in E. amylovora Ea321, a bacterium that causes fire blight of rosaceous plants, and was designated harpin (Wei, Z.-M., et al, “Harpin, Elicitor of the Hypersensitive Response Produced by the Plant Pathogen Erwinia amylovora,” Science 257:85-88 (1992)). Mutations in the encoding hrpN gene revealed that harpin is required for E. amylovora to elicit a hypersensitive response in nonhost tobacco leaves and incite disease symptoms in highly susceptible pear fruit. The P. solanacearum GMI 1000 PopA1 protein has similar physical properties and also elicits the hypersensitive response in leaves of tobacco, which is not a host of that strain (Arlat, et al. “PopA1, a Protein Which Induces a Hypersensitive-like Response on Specific Petunia Genotypes, is Secreted via the Hrp Pathway of Pseudomonas solanacearum,” EMBO J. 13:543-53 (1994)). However, P. solanacearum popA mutants still elicit the hypersensitive response in tobacco and incite disease in tomato. Thus, the role of these glycine-rich hypersensitive response elicitors can vary widely among Gram-negative plant pathogens.


Other plant pathogenic hypersensitive response elicitors have been isolated, cloned, and sequenced. These include: Erwinia chrysanthemi (Bauer, et. al., “Erwinia chrysanthemi HarpinEch: Soft-Rot Pathogenesis,” MPMI 8(4): 484-91 (1995)); Erwinia carolovora (Cui, et al., “The RsmA Mutants of Erwinia carotovora subsp. carotovora Strain Ecc71 Overexpress hrpNEcc and Elicit a Hypersensitive Reaction-like Response in Tobacco Leaves,” MPMI 9(7): 565-73 (1996)); Erwinia stewartii (Ahmad, et. al., “Harpin is not Necessary for the Pathogenicity of Erwinia stewartii on Maize,” 8th Int'l Cong. Molec. Plant-Microb. Inter. Jul. 14-19, 1996 and Ahmad, et. al., “Harpin is not Necessary for the Pathogenicity of Erwinia stewartii on Maize,” Ann. Mtg. Am. Phytopath. Soc. Jul. 27-31, 1996); and Pseudomonas syringae pv. syringae (WO 94/26782 to Cornell Research Foundation, Inc.).


The present invention seeks to identify fragments of hypersensitive response elicitor proteins or polypeptides, which fragments do not elicit a hypersensitive response but are active when utilized in conjunction with plants.


SUMMARY OF THE INVENTION

The present invention is directed to isolated fragments of an Erwinia hypersensitive response elicitor protein or polypeptide which fragments do not elicit a hypersensitive response in plants but are otherwise active when utilized in conjunction with plants. Also disclosed are isolated DNA molecules which encode such fragments.


The fragments of hypersensitive response elicitors according to the present invention have the following activity when utilized in conjunction with plants: imparting disease resistance to plants, enhancing plant growth and/or controlling insects. This involves applying the fragments in a non-infectious form to plants or plant seeds under conditions effective to impart disease resistance, to enhance plant growth, and/or to control insects on plants or plants grown from the plant seeds.


As an alternative to applying the fragments to plants or plant seeds in order to impart disease resistance, to enhance plant growth, and/or to control insects on plants, transgenic plants or plant seeds can be utilized. When utilizing transgenic plants, this involves providing a transgenic plant transformed with a DNA molecule encoding a fragment of a hypersensitive response elicitor protein or polypeptide in accordance with the present invention and growing the plant under conditions effective to impart disease resistance, to enhance plant growth, and/or to control insects in the plants or plants grown from the plant seeds. Alternatively, a transgenic plant seed transformed with the DNA molecule encoding such a fragment can be provided and planted in soil. A plant is then propagated under conditions effective to impart disease resistance, to enhance plant growth, and/or to control insects on plants or plants grown from the plant seeds.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows truncated proteins of the hypersensitive response elicitor protein or polypeptide.



FIG. 2 shows a list of synthesized oligonucleotide primers for construction of truncated harpin proteins. N represents the N-terminus (5′ region), and C represents the C-terminus (3′ region). The primers correspond to the indicated sequence identification numbers for the present application: N1 (SEQ ID NO: 1), N76 (SEQ ID NO: 2), N99 (SEQ ID NO: 3), N105 (SEQ ID NO: 4), N110 (SEQ ID NO: 5), N137 (SEQ ID NO: 6),N150 (SEQ ID NO: 7), N169 (SEQ ID NO: 8), N210 (SEQ ID NO: 9), N267 (SEQ ID NO: 10), N343 (SEQ ID NO: 11), C75 (SEQ ID NO: 12), C104 (SEQ ID NO: 13), C168 (SEQ ID NO: 14), C180 (SEQ ID NO: 15), C204 (SEQ ID NO: 16), C209 (SEQ ID NO: 17), C266 (SEQ ID NO:. 18), C342 (SEQ ID NO: 19), and C403 (SEQ ID NO: 20).





DETAILED DESCRIPTION OF THE INVENTION

The present invention is directed to isolated fragments of a hypersensitive response elicitor protein or polypeptide where the fragments do not elicit a hypersensitive response but have other activity in plants. Also disclosed are DNA molecules encoding such fragments as well as expression systems, host cells, and plants containing such molecules. Uses of the fragments themselves and the DNA molecules encoding them are disclosed.


The fragments of hypersensitive response elicitor polypeptides or proteins according to the present invention are derived from hypersensitive response elicitor polypeptides or proteins of a wide variety of fungal and bacterial pathogens. Such polypeptides or proteins are able to elicit local necrosis in plant tissue contacted by the elicitor. Examples of suitable bacterial sources of polypeptide or protein elicitors include Erwinia, Pseudomonas, and Xanthomonas species (e.g., the following bacteria: Erwinia amylovora, Erwinia chrysanthemi, Erwinia stewartit, Erwinia carotovora, Pseudomonas syringae, Pseudomonas solancearum, Xanthomonas campestris, and mixtures thereof).


An example of a fungal source of a hypersensitive response elicitor protein or polypeptide is Phytophthora. Suitable species of Phytophthora include Phytophihora parasitica, Phytophthora cryptogea, Phytophthora cinnamomi, Phytophthora capsici, Phytophthora megasperma, and Phytophthora citrophihora.


The hypersensitive response elicitor polypeptide or protein from Erwinia chrysanthemi has an amino acid sequence corresponding to SEQ ID NO: 21 as follows:










Met Gln Ile Thr Ile Lys Ala His Ile Gly Gly Asp Leu Gly Val Ser



1               5               10              15


Gly Leu Gly Ala Gln Gly Leu Lys Gly Leu Asn Ser Ala Ala Ser Ser


            20                  25                  30


Leu Gly Ser Ser Val Asp Lys Leu Ser Ser Thr Ile Asp Lys Leu Thr


        35                  40                  45


Ser Ala Leu Thr Ser Met Met Phe Gly Gly Ala Leu Ala Gln Gly Leu


    50                  55                  60


Gly Ala Ser Ser Lys Gly Leu Gly Met Ser Asn Gln Leu Gly Gln Ser


65                  70                  75                  80


Phe Gly Asn Gly Ala Gln Gly Ala Ser Asn Leu Leu Ser Val Pro Lys


                85                  90                  95


Ser Gly Gly Asp Ala Leu Ser Lys Met Phe Asp Lys Ala Leu Asp Asp


            100                 105                 110


Leu Leu Gly His Asp Thr Val Thr Lys Leu Thr Asn Gln Ser Asn Gln


        115                 120                 125


Leu Ala Asn Ser Met Leu Asn Ala Ser Gln Met Thr Gln Gly Asn Met


    130                 135                 140


Asn Ala Phe Gly Ser Gly Val Asn Asn Ala Leu Ser Ser Ile Leu Gly


145                 150                 155                 160


Asn Gly Leu Gly Gln Ser Met Ser Gly Phe Ser Gln Pro Ser Leu Gly


                165                 170                 175


Ala Gly Gly Leu Gln Gly Leu Ser Gly Ala Gly Ala Phe Asn Gln Leu


            180                 185                 190


Gly Asn Ala Ile Gly Met Gly Val Gly Gln Asn Ala Ala Leu Ser Ala


        195                 200                 205


Leu Ser Asn Val Ser Thr His Val Asp Gly Asn Asn Arg His Phe Val


    210                 215                 220


Asp Lys Glu Asp Arg Gly Met Ala Lys Glu Ile Gly Gln Phe Met Asp


225                 230                 235                 240


Gln Tyr Pro Glu Ile Phe Gly Lys Pro Glu Tyr Gln Lys Asp Gly Trp


                245                 250                 255


Ser Ser Pro Lys Thr Asp Asp Lys Ser Trp Ala Lys Ala Leu Ser Lys


            260                 265                 270


Pro Asp Asp Asp Gly Met Thr Gly Ala Ser Met Asp Lys Phe Arg Gln


        275                 280                 285


Ala Met Gly Met Ile Lys Ser Ala Val Ala Gly Asp Thr Gly Asn Thr


    290                 295                 300


Asn Leu Asn Leu Arg Gly Ala Gly Gly Ala Ser Leu Gly Ile Asp Ala


305                 310                 315                 320


Ala Val Val Gly Asp Lys Ile Ala Asn Met Ser Leu Gly Lys Leu Ala


                325                 330                 335


Asn Ala







This hypersensitive response elicitor polypeptide or protein has a molecular weight of 34 kDa, is heat stable, has a glycine content of greater than 16%, and contains substantially no cysteine. The Erwinia chrysanthemi hypersensitive response elicitor polypeptide or protein is encoded by a DNA molecule having a nucleotide sequence corresponding to SEQ ID NO: 22 as follows:











CGATTTTACC CGGGTGAACG TGCTATGACC GACAGCATCA CGGTATTCGA CACCGTTACG
60



GCGTTTATGG CCGCGATGAA CCGGCATCAG GCGGCGCGCT GGTCGCCGCA ATCCGGCGTC
120


GATCTGGTAT TTCAGTTTGG GGACACCGGG CGTGAACTCA TGATGCAGAT TCAGCCGGGG
180


CAGCAATATC CCGGCATGTT GCGCACGCTG CTCGCTCGTC GTTATCAGCA GGCGGCAGAG
240


TGCGATGGCT GCCATCTGTG CCTGAACGGC AGCGATGTAT TGATCCTCTG GTGGCCGCTG
300


CCGTCGGATC CCGGCAGTTA TCCGCAGGTG ATCGAACGTT TGTTTGAACT GGCGGGAATG
360


ACGTTGCCGT CGCTATCCAT AGCACCGACG GCGCGTCCGC AGACAGGGAA CGGACGCGCC
420


CGATCATTAA GATAAAGGCG GCTTTTTTTA TTGCAAAACG GTAACGGTGA GGAACCGTTT
480


CACCGTCGGC GTCACTCAGT AACAAGTATC CATCATGATG CCTACATCGG GATCGGCGTG
540


GGCATCCGTT GCAGATACTT TTGCGAACAC CTGACATGAA TGAGGAAACG AAATTATGCA
600


AATTACGATC AAAGCGCACA TCGGCGGTGA TTTGGGCGTC TCCGGTCTGG GGCTGGGTGC
660


TCAGGGACTG AAAGGACTGA ATTCCGCGGC TTCATCGCTG GGTTCCAGCG TGGATAAACT
720


GAGCAGCACC ATCGATAAGT TGACCTCCGC GCTGACTTCG ATGATGTTTG GCGGCGCGCT
780


GGCGCAGGGG CTGGGCGCCA GCTCGAAGGG GCTGGGGATG AGCAATCAAC TGGGCCAGTC
840


TTTCGGCAAT GGCGCGCAGG GTGCGAGCAA CCTGCTATCC GTACCGAAAT CCGGCGGCGA
900


TGCGTTGTCA AAAATGTTTG ATAAAGCGCT GGACGATCTG CTGGGTCATG ACACCGTGAC
960


CAAGCTGACT AACCAGAGCA ACCAACTGGC TAATTCAATG CTGAACGCCA GCCAGATGAC
1020


CCAGGGTAAT ATGAATGCGT TCGGCAGCGG TGTGAACAAC GCACTGTCGT CCATTCTCGG
1080


CAACGGTCTC GGCCAGTCGA TGAGTGGCTT CTCTCAGCCT TCTCTGGGGG CAGGCGGCTT
1140


GCAGGGCCTG AGCGGCGCGG GTGCATTCAA CCAGTTGGGT AATGCCATCG GCATGGGCGT
1200


GGGGCAGAAT GCTGCGCTGA GTGCGTTGAG TAACGTCAGC ACCCACGTAG ACGGTAACAA
1260


CCGCCACTTT GTAGATAAAG AAGATCGCGG CATGGCGAAA GAGATCGGCC AGTTTATGGA
1320


TCAGTATCCG GAAATATTCG GTAAACCGGA ATACCAGAAA GATGGCTGGA GTTCGCCGAA
1380


GACGGACGAC AAATCCTGGG CTAAAGCGCT GAGTAAACCG GATGATGACG GTATGACCGG
1440


CGCCAGCATG GACAAATTCC GTCAGGCGAT GGGTATGATC AAAAGCGCGG TGGCGGGTGA
1500


TACCGGCAAT ACCAACCTGA ACCTGCGTGG CGCGGGCGGT GCATCGCTGG GTATCGATGC
1560


GGCTGTCGTC GGCGATAAAA TAGCCAACAT GTCGCTGGGT AAGCTGGCCA ACGCCTGATA
1620


ATCTGTGCTG GCCTGATAAA GCGGAAACGA AAAAAGAGAC GGGGAAGCCT GTCTCTTTTC
1680


TTATTATGCG GTTTATGCGG TTACCTGGAC CGGTTAATCA TCGTCATCGA TCTGGTACAA
1740


ACGCACATTT TCCCGTTCAT TCGCGTCGTT ACGCGCCACA ATCGCGATGG CATCTTCCTC
1800


GTCGCTCAGA TTGCGCGGCT GATGGGGAAC GCCGGGTGGA ATATAGAGAA ACTCGCCGGC
1860


CAGATGGAGA CACGTCTGCG ATAAATCTGT GCCGTAACGT GTTTCTATCC GCCCCTTTAG
1920


CAGATAGATT GCGGTTTCGT AATCAACATG GTAATGCGGT TCCGCCTGTG CGCCGGCCGG
1980


GATCACCACA ATATTCATAG AAAGCTGTCT TGCACCTACC GTATCGCGGG AGATACCGAC
2040


AAAATAGGGC AGTTTTTGCG TGGTATCCGT GGGGTGTTCC GGCCTGACAA TCTTGAGTTG
2100


GTTCGTCATC ATCTTTCTCC ATCTGGGCGA CCTGATCGGT T
2141






The hypersensitive response elicitor polypeptide or protein derived from Erwinia amylovora has an amino acid sequence corresponding to SEQ ID NO: 23 as follows:










Met Ser Leu Asn Thr Ser Gly Leu Gly Ala Ser Thr Met Gln Ile Ser



1               5                   10                  15


Ile Gly Gly Ala Gly Gly Asn Asn Gly Leu Leu Gly Thr Ser Arg Gln


            20                  25                  30


Asn Ala Gly Leu Gly Gly Asn Ser Ala Leu Gly Leu Gly Gly Gly Asn


        35                  40                  45


Gln Asn Asp Thr Val Asn Gln Leu Ala Gly Leu Leu Thr Gly Met Met


    50                  55                  60


Met Met Met Ser Met Met Gly Gly Gly Gly Leu Met Gly Gly Gly Leu


65                  70                  75                  80


Gly Gly Gly Leu Gly Asn Gly Leu Gly Gly Ser Gly Gly Leu Gly Glu


                85                  90                  95


Gly Leu Ser Asn Ala Leu Asn Asp Met Leu Gly Gly Ser Leu Asn Thr


            100                 105                 110


Leu Gly Ser Lys Gly Gly Asn Asn Thr Thr Ser Thr Thr Asn Ser Pro


        115                 120                 125


Leu Asp Gln Ala Leu Gly Ile Asn Ser Thr Ser Gln Asn Asp Asp Ser


    130                 135                 140


Thr Ser Gly Thr Asp Ser Thr Ser Asp Ser Ser Asp Pro Met Gln Gln


145                 150                 155                 160


Leu Leu Lys Met Phe Ser Glu Ile Met Gln Ser Leu Phe Gly Asp Gly


                165                 170                 175


Gln Asp Gly Thr Gln Gly Ser Ser Ser Gly Gly Lys Gln Pro Thr Glu


            180                 185                 190


Gly Glu Gln Asn Ala Tyr Lys Lys Gly Val Thr Asp Ala Leu Ser Gly


        195                 200                 205


Leu Met Gly Asn Gly Leu Ser Gln Leu Leu Gly Asn Gly Gly Leu Gly


    210                 215                 220


Gly Gly Gln Gly Gly Asn Ala Gly Thr Gly Leu Asp Gly Ser Ser Leu


225                 230                 235                 240


Gly Gly Lys Gly Leu Gln Asn Leu Ser Gly Pro Val Asp Tyr Gln Gln


                245                 250                 255


Leu Gly Asn Ala Val Gly Thr Gly Ile Gly Met Lys Ala Gly Ile Gln


            260                 265                 270


Ala Leu Asn Asp Ile Gly Thr His Arg His Ser Ser Thr Arg Ser Phe


        275                 280                 285


Val Asn Lys Gly Asp Arg Ala Met Ala Lys Glu Ile Gly Gln Phe Met


    290                 295                 300


Asp Gln Tyr Pro Glu Val Phe Gly Lys Pro Gln Tyr Gln Lys Gly Pro


305                 310                 315                 320


Gly Gln Glu Val Lys Thr Asp Asp Lys Ser Trp Ala Lys Ala Leu Ser


                325                 330                 335


Lys Pro Asp Asp Asp Gly Met Thr Pro Ala Ser Met Glu Gln Phe Asn


            340                 345                 350


Lys Ala Lys Gly Met Ile Lys Arg Pro Met Ala Gly Asp Thr Gly Asn


        355                 360                 365


Gly Asn Leu Gln Ala Arg Gly Ala Gly Gly Ser Ser Leu Gly Ile Asp


    370                 375                 380


Ala Met Met Ala Gly Asp Ala Ile Asn Asn Met Ala Leu Gly Lys Leu


385                 390                 395                 400


Gly Ala Ala







This hypersensitive response elicitor polypeptide or protein has a molecular weight of about 39 kDa, has a pI of approximately 4.3, and is heat stable at 100° C. for at least 10 minutes. This hypersensitive response elicitor polypeptide or protein has substantially no cysteine. The hypersensitive response elicitor polypeptide or protein derived from Erwinia amylovora is more fully described in Wei, Z.-M., R. J. Laby, C. H. Zumoff, D. W. Bauer, S.-Y. He, A. Collmer, and S. V. Beer, “Harpin, Elicitor of the Hypersensitive Response Produced by the Plant Pathogen Erwinia amylovora,” Science 257:85-88 (1992), which is hereby incorporated by reference. The DNA molecule encoding this polypeptide or protein has a nucleotide sequence corresponding to SEQ ID NO: 24 as follows:











AAGCTTCGGC ATGGCACGTT TGACCGTTGG GTCGGCAGGG TACGTTTGAA TTATTCATAA
60



GAGGAATACG TTATGAGTCT GAATACAAGT GGGCTGGGAG CGTCAACGAT GCAAATTTCT
120


ATCGGCGGTG CGGGCGGAAA TAACGGGTTG CTGGGTACCA GTCGCCAGAA TGCTGGGTTG
180


GGTGGCAATT CTGCACTGGG GCTGGGCGGC GGTAATCAAA ATGATACCGT CAATCAGCTG
240


GCTGGCTTAC TCACCGGCAT GATGATGATG ATGAGCATGA TGGGCGGTGG TGGGCTGATG
300


GGCGGTGGCT TAGGCGGTGG CTTAGGTAAT GGCTTGGGTG GCTCAGGTGG CCTGGGCGAA
360


GGACTGTCGA ACGCGCTGAA CGATATGTTA GGCGGTTCGC TGAACACGCT GGGCTCGAAA
420


GGCGGCAACA ATACCACTTC AACAACAAAT TCCCCGCTGG ACCAGGCGCT GGGTATTAAC
480


TCAACGTCCC AAAACGACGA TTCCACCTCC GGCACAGATT CCACCTCAGA CTCCAGCGAC
540


CCGATGCAGC AGCTGCTGAA GATGTTCAGC GAGATAATGC AAAGCCTGTT TGGTGATGGG
600


CAAGATGGCA CCCAGGGCAG TTCCTCTGGG GGCAAGCAGC CGACCGAAGG CGAGCAGAAC
660


GCCTATAAAA AAGGAGTCAC TGATGCGCTG TCGGGCCTGA TGGGTAATGG TCTGAGCCAG
720


CTCCTTGGCA ACGGGGGACT GGGAGGTGGT CAGGGCGGTA ATGCTGGCAC GGGTCTTGAC
780


GGTTCGTCGC TGGGCGGCAA AGGGCTGCAA AACCTGAGCG GGCCGGTGGA CTACCAGCAG
840


TTAGGTAACG CCGTGGGTAC CGGTATCGGT ATGAAAGCGG GCATTCAGGC GCTGAATGAT
900


ATCGGTACGC ACAGGCACAG TTCAACCCGT TCTTTCGTCA ATAAAGGCGA TCGGGCGATG
960


GCGAAGGAAA TCGGTCAGTT CATGGACCAG TATCCTGAGG TGTTTGGCAA GCCGCAGTAC
1020


CAGAAAGGCC CGGGTCAGGA GGTGAAAACC GATGACAAAT CATGGGCAAA AGCACTGAGC
1080


AAGCCAGATG ACGACGGAAT GACACCAGCC AGTATGGAGC AGTTCAACAA AGCCAAGGGC
1140


ATGATCAAAA GGCCCATGGC GGGTGATACC GGCAACGGCA ACCTGCAGGC ACGCGGTGCC
1200


GGTGGTTCTT CGCTGGGTAT TGATGCCATG ATGGCCGGTG ATGCCATTAA CAATATGGCA
1260


CTTGGCAAGC TGGGCGCGGC TTAAGCTT
1288






Another potentially suitable hypersensitive response elicitor from Erwinia amylovora is disclosed in U.S. patent application Ser. No. 09/120,927, which is hereby incorporated by reference. The protein is encoded by a DNA molecule having a nucleic acid sequence of SEQ ID NO: 25 as follows:











ATGTCAATTC TTACGCTTAA CAACAATACC TCGTCCTCGC CGGGTCTGTT CCAGTCCGGG
60



GGGGACAACG GGCTTGGTGG TCATAATGCA AATTCTGCGT TGGGGCAACA ACCCATCGAT
120


CGGCAAACCA TTGAGCAAAT GGCTCAATTA TTGGCGGAAC TGTTAAAGTC ACTGCTATCG
180


CCACAATCAG GTAATGCGGC AACCGGAGCC GGTGGCAATG ACCAGACTAC AGGAGTTGGT
240


AACGCTGGCG GCCTGAACGG ACGAAAAGGC ACAGCAGGAA CCACTCCGCA GTCTGACAGT
300


CAGAACATGC TGAGTGAGAT GGGCAACAAC GGGCTGGATC AGGCCATCAC GCCCGATGGC
360


CAGGGCGGCG GGCAGATCGG CGATAATCCT TTACTGAAAG CCATGCTGAA GCTTATTGCA
420


CGCATGATGG ACGGCCAAAG CGATCAGTTT GGCCAACCTG GTACGGGCAA CAACAGTGCC
480


TCTTCCGGTA CTTCTTCATC TGGCGGTTCC CCTTTTAACG ATCTATCAGG GGGGAAGGCC
540


CCTTCCGGCA ACTCCCCTTC CGGCAACTAC TCTCCCGTCA GTACCTTCTC ACCCCCATCC
600


ACGCCAACGT CCCCTACCTC ACCGCTTGAT TTCCCTTCTT CTCCCACCAA AGCAGCCGGG
660


GGCAGCACGC CGGTAACCGA TCATCCTGAC CCTGTTGGTA GCGCGGGCAT CGGGGCCGGA
720


AATTCGGTGG CCTTCACCAG CGCCGGCGCT AATCAGACGG TGCTGCATGA CACCATTACC
780


GTGAAAGCGG GTCAGGTGTT TGATGGCAAA GGACAAACCT TCACCGCCGG TTCAGAATTA
840


GGCGATGGCG GCCAGTCTGA AAACCAGAAA CCGCTGTTTA TACTGGAAGA CGGTGCCAGC
900


CTGAAAAACG TCACCATGGG CGACGACGGG GCGGATGGTA TTCATCTTTA CGGTGATGCC
960


AAAATAGACA ATCTGCACGT CACCAACGTG GGTGAGGACG CGATTACCGT TAAGCCAAAC
1020


AGCGCGGGCA AAAAATCCCA CGTTGAAATC ACTAACAGTT CCTTCGAGCA CGCCTCTGAC
1080


AAGATCCTGC AGCTGAATGC CGATACTAAC CTGAGCGTTG ACAACGTGAA GGCCAAAGAC
1140


TTTGGTACTT TTGTACGCAC TAACGGCGGT CAACAGGGTA ACTGGGATCT GAATCTGAGC
1200


CATATCAGCG CAGAAGACGG TAAGTTCTCG TTCGTTAAAA GCGATAGCGA GGGGCTAAAC
1260


GTCAATACCA GTGATATCTC ACTGGGTGAT GTTGAAAACC ACTACAAAGT GCCGATGTCC
1320


GCCAACCTGA AGGTGGCTGA ATGA
1344







See GenBank Accession No. U94513. The isolated DNA molecule of the present invention encodes a hypersensitive response elicitor protein or polypeptide having an amino acid sequence of SEQ ID NO: 26 as follows:










Met Ser Ile Leu Thr Leu Asn Asn Asn Thr Ser Ser Ser Pro Gly Leu



1               5                   10                  15


Phe Gln Ser Gly Gly Asp Asn Gly Leu Gly Gly His Asn Ala Asn Ser


            20                  25                  30


Ala Leu Gly Gln Gln Pro Ile Asp Arg Gln Thr Ile Glu Gln Met Ala


        35                  40                  45


Gln Leu Leu Ala Glu Leu Leu Lys Ser Leu Leu Ser Pro Gln Ser Gly


    50                  55                  60


Asn Ala Ala Thr Gly Ala Gly Gly Asn Asp Gln Thr Thr Gly Val Gly


65                  70                  75                  80


Asn Ala Gly Gly Leu Asn Gly Arg Lys Gly Thr Ala Gly Thr Thr Pro


                85                  90                  95


Gln Ser Asp Ser Gln Asn Met Leu Ser Glu Met Gly Asn Asn Gly Leu


            100                 105                 110


Asp Gln Ala Ile Thr Pro Asp Gly Gln Gly Gly Gly Gln Ile Gly Asp


        115                 120                 125


Asn Pro Leu Leu Lys Ala Met Leu Lys Leu Ile Ala Arg Met Met Asp


    130                 135                 140


Gly Gln Ser Asp Gln Phe Gly Gln Pro Gly Thr Gly Asn Asn Ser Ala


145                 150                 155                 160


Ser Ser Gly Thr Ser Ser Ser Gly Gly Ser Pro Phe Asn Asp Leu Ser


                165                 170                 175


Gly Gly Lys Ala Pro Ser Gly Asn Ser Pro Ser Gly Asn Tyr Ser Pro


            180                 185                 190


Val Ser Thr Phe Ser Pro Pro Ser Thr Pro Thr Ser Pro Thr Ser Pro


        195                 200                 205


Leu Asp Phe Pro Ser Ser Pro Thr Lys Ala Ala Gly Gly Ser Thr Pro


    210                 215                 220


Val Thr Asp His Pro Asp Pro Val Gly Ser Ala Gly Ile Gly Ala Gly


225                 230                 235                 240


Asn Ser Val Ala Phe Thr Ser Ala Gly Ala Asn Gln Thr Val Leu His


                245                 250                 255


Asp Thr Ile Thr Val Lys Ala Gly Gln Val Phe Asp Gly Lys Gly Gln


            260                 265                 270


Thr Phe Thr Ala Gly Ser Glu Leu Gly Asp Gly Gly Gln Ser Glu Asn


        275                 280                 285


Gln Lys Pro Leu Phe Ile Leu Glu Asp Gly Ala Ser Leu Lys Asn Val


    290                 295                 300


Thr Met Gly Asp Asp Gly Ala Asp Gly Ile His Leu Tyr Gly Asp Ala


305                 310                 315                 320


Lys Ile Asp Asn Leu His Val Thr Asn Val Gly Glu Asp Ala Ile Thr


                325                 330                 335


Val Lys Pro Asn Ser Ala Gly Lys Lys Ser His Val Glu Ile Thr Asn


            340                 345                 350


Ser Ser Phe Glu His Ala Ser Asp Lys Ile Leu Gln Leu Asn Ala Asp


        355                 360                 365


Thr Asn Leu Ser Val Asp Asn Val Lys Ala Lys Asp Phe Gly Thr Phe


    370                 375                 380


Val Arg Thr Asn Gly Gly Gln Gln Gly Asn Trp Asp Leu Asn Leu Ser


385                 390                 395                 400


His Ile Ser Ala Glu Asp Gly Lys Phe Ser Phe Val Lys Ser Asp Ser


                405                 410                 415


Glu Gly Leu Asn Val Asn Thr Ser Asp Ile Ser Leu Gly Asp Val Glu


            420                 425                 430


Asn His Tyr Lys Val Pro Met Ser Ala Asn Leu Lys Val Ala Glu


        435                 440                 445







This protein or polypeptide is acidic, rich in glycine and serine, and lacks cysteine. It is also heat stable, protease sensitive, and suppressed by inhibitors of plant metabolism. The protein or polypeptide of the present invention has a predicted molecular size of ca. 4.5 kDa.


Another potentially suitable hypersensitive response elicitor from Erwinia amylovora is disclosed in U.S. patent application Ser. No. 09/120,663 which is hereby incorporated by reference. The protein is encoded by a DNA molecule having a nucleic acid sequence of SEQ ID NO: 27 as follows:











ATGGAATTAA AATCACTGGG AACTGAACAC AAGGCGGCAG TACACACAGC GGCGCACAAC
60



CCTGTGGGGC ATGGTGTTGC CTTACAGCAG GGCAGCAGCA GCAGCAGCCC GCAAAATGCC
120


GCTGCATCAT TGGCGGCAGA AGGCAAAAAT CGTGGGAAAA TGCCGAGAAT TCACCAGCCA
180


TCTACTGCGG CTGATGGTAT CAGCGCTGCT CACCAGCAAA AGAAATCCTT CAGTCTCAGG
240


GGCTGTTTGG GGACGAAAAA ATTTTCCAGA TCGGCACCGC AGGGCCAGCC AGGTACCACC
300


CACAGCAAAG GGGCAACATT GCGCGATCTG CTGGCGCGGG ACGACGGCGA AACGCAGCAT
360


GAGGCGGCCG CGCCAGATGC GGCGCGTTTG ACCCGTTCGG GCGGCGTCAA ACGCCGCAAT
420


ATGGACGACA TGGCCGGGCG GCCAATGGTG AAAGGTGGCA GCGGCGAAGA TAAGGTACCA
480


ACGCAGCAAA AACGGCATCA GCTGAACAAT TTTGGCCAGA TGCGCCAAAC GATGTTGAGC
540


AAAATGGCTC ACCCGGCTTC AGCCAACGCC GGCGATCGCC TGCAGCATTC ACCGCCGCAC
600


ATCCCGGGTA GCCACCACGA AATCAAGGAA GAACCGGTTG GCTCCACCAG CAAGGCAACA
660


ACGGCCCACG CAGACAGAGT GGAAATCGCT CAGGAAGATG ACGACAGCGA ATTCCAGCAA
720


CTGCATCAAC AGCGGCTGGC GCGCGAACGG GAAAATCCAC CGCAGCCGCC CAAACTCGGC
780


GTTGCCACAC CGATTAGCGC CAGGTTTCAG CCCAAACTGA CTGCGGTTGC GGAAAGCGTC
840


CTTGAGGGGA CAGATACCAC GCAGTCACCC CTTAAGCCGC AATCAATGCT GAAAGGAAGT
900


GGAGCCGGGG TAACGCCGCT GGCGGTAACG CTGGATAAAG GCAAGTTGCA GCTGGCACCG
960


GATAATCCAC CCGCGCTCAA TACGTTGTTG AAGCAGACAT TGGGTAAAGA CACCCAGCAC
1020


TATCTGGCGC ACCATGCCAG CAGCGACGGT AGCCAGCATC TGCTGCTGGA CAACAAAGGC
1080


CACCTGTTTG ATATCAAAAG CACCGCCACC AGCTATAGCG TGCTGCACAA CAGCCACCCC
1140


GGTGAGATAA AGGGCAAGCT GGCGCAGGCG GGTACTGGCT CCGTCAGCGT AGACGGTAAA
1200


AGCGGCAAGA TCTCGCTGGG GAGCGGTACG CAAAGTCACA ACAAAACAAT GCTAAGCCAA
1260


CCGGGGGAAG CGCACCGTTC CTTATTAACC GGCATTTGGC AGCATCCTGC TGGCGCAGCG
1320


CGGCCGCAGG GCGAGTCAAT CCGCCTGCAT GACGACAAAA TTCATATCCT GCATCCGGAG
1380


CTGGGCGTAT GGCAATCTGC GGATAAAGAT ACCCACAGCC AGCTGTCTCG CCAGGCAGAC
1440


GGTAAGCTCT ATGCGCTGAA AGACAACCGT ACCCTGCAAA ACCTCTCCGA TAATAAATCC
1500


TCAGAAAAGC TGGTCGATAA AATCAAATCG TATTCCGTTG ATCAGCGGGG GCAGGTGGCG
1560


ATCCTGACGG ATACTCCCGG CCGCCATAAG ATGAGTATTA TGCCCTCGCT GGATGCTTCC
1620


CCGGAGAGCC ATATTTCCCT CAGCCTGCAT TTTGCCGATG CCCACCAGGG GTTATTGCAC
1680


GGGAAGTCGG AGCTTGAGGC ACAATCTGTC GCGATCAGCC ATGGGCGACT GGTTGTGGCC
1740


GATAGCGAAG GCAAGCTGTT TAGCGCCGCC ATTCCGAAGC AAGGGGATGG AAACGAACTG
1800


AAAATGAAAG CCATGCCTCA GCATGCGCTC GATGAACATT TTGGTCATGA CCACCAGATT
1860


TCTGGATTTT TCCATGACGA CCACGGCCAG CTTAATGCGC TGGTGAAAAA TAACTTCAGG
1920


CAGCAGCATG CCTGCCCGTT GGGTAACGAT CATCAGTTTC ACCCCGGCTG GAACCTGACT
1980


GATGCGCTGG TTATCGACAA TCAGCTGGGG CTGCATCATA CCAATCCTGA ACCGCATGAG
2040


ATTCTTGATA TGGGGCATTT AGGCAGCCTG GCGTTACAGG AGGGCAAGCT TCACTATTTT
2100


GACCAGCTGA CCAAAGGGTG GACTGGCGCG GAGTCAGATT GTAAGCAGCT GAAAAAAGGC
2160


CTGGATGGAG CAGCTTATCT ACTGAAAGAC GGTGAAGTGA AACGCCTGAA TATTAATCAG
2220


AGCACCTCCT CTATCAAGCA CGGAACGGAA AACGTTTTTT CGCTGCCGCA TGTGCGCAAT
2280


AAACCGGAGC CGGGAGATGC CCTGCAAGGG CTGAATAAAG ACGATAAGGC CCAGGCCATG
2340


GCGGTGATTG GGGTAAATAA ATACCTGGCG CTGACGGAAA AAGGGGACAT TCGCTCCTTC
2400


CAGATAAAAC CCGGCACCCA GCAGTTGGAG CGGCCGGCAC AAACTCTCAG CCGCGAAGGT
2460


ATCAGCGGCG AACTGAAAGA CATTCATGTC GACCACAAGC AGAACCTGTA TGCCTTGACC
2520


CACGAGGGAG AGGTGTTTCA TCAGCCGCGT GAAGCCTGGC AGAATGGTGC CGAAAGCAGC
2580


AGCTGGCACA AACTGGCGTT GCCACAGAGT GAAAGTAAGC TAAAAAGTCT GGACATGAGC
2640


CATGAGCACA AACCGATTGC CACCTTTGAA GACGGTAGCC AGCATCAGCT GAAGGCTGGC
2700


GGCTGGCACG CCTATGCGGC ACCTGAACGC GGGCCGCTGG CGGTGGGTAC CAGCGGTTCA
2760


CAAACCGTCT TTAACCGACT AATGCAGGGG GTGAAAGGCA AGGTGATCCC AGGCAGCGGG
2820


TTGACGGTTA AGCTCTCGGC TCAGACGGGG GGAATGACCG GCGCCGAAGG GCGCAAGGTC
2880


AGCAGTAAAT TTTCCGAAAG GATCCGCGCC TATGCGTTCA ACCCAACAAT GTCCACGCCG
2940


CGACCGATTA AAAATGCTGC TTATGCCACA CAGCACGGCT GGCAGGGGCG TGAGGGGTTG
3000


AAGCCGTTGT ACGAGATGCA GGGAGCGCTG ATTAAACAAC TGGATGCGCA TAACGTTCGT
3060


CATAACGCGC CACAGCCAGA TTTGCAGAGC AAACTGGAAA CTCTGGATTT AGGCGAACAT
3120


GGCGCAGAAT TGCTTAACGA CATGAAGCGC TTCCGCGACG AACTGGAGCA GAGTGCAACC
3180


CGTTCGGTGA CCGTTTTAGG TCAACATCAG GGAGTGCTAA AAAGCAACGG TGAAATAAAT
3240


AGCGAATTTA AGCCATCGCC CGGCAAGGCG TTGGTCCAGA GCTTTAACGT CAATCGCTCT
3300


GGTCAGGATC TAAGCAAGTC ACTGCAACAG GCAGTACATG CCACGCCGCC ATCCGCAGAG
3360


AGTAAACTGC AATCCATGCT GGGGCACTTT GTCAGTGCCG GGGTGGATAT GAGTCATCAG
3420


AAGGGCGAGA TCCCGCTGGG CCGCCAGCGC GATCCGAATG ATAAAACCGC ACTGACCAAA
3480


TCGCGTTTAA TTTTAGATAC CGTGACCATC GGTGAACTGC ATGAACTGGC CGATAAGGCG
3540


AAACTGGTAT CTGACCATAA ACCCGATGCC GATCAGATAA AACAGCTGCG CCAGCAGTTC
3600


GATACGCTGC GTGAAAAGCG GTATGAGAGC AATCCGGTGA AGCATTACAC CGATATGGGC
3660


TTCACCCATA ATAAGGCGCT GGAAGCAAAC TATGATGCGG TCAAAGCCTT TATCAATGCC
3720


TTTAAGAAAG AGCACCACGG CGTCAATCTG ACCACGCGTA CCGTACTGGA ATCACAGGGC
3780


AGTGCGGAGC TGGCGAAGAA GCTCAAGAAT ACGCTGTTGT CCCTGGACAG TGGTGAAAGT
3840


ATGAGCTTCA GCCGGTCATA TGGCGGGGGC GTCAGCACTG TCTTTGTGCC TACCCTTAGC
3900


AAGAAGGTGC CAGTTCCGGT GATCCCCGGA GCCGGCATCA CGCTGGATCG CGCCTATAAC
3960


CTGAGCTTCA GTCGTACCAG CGGCGGATTG AACGTCAGTT TTGGCCGCGA CGGCGGGGTG
4020


AGTGGTAACA TCATGGTCGC TACCGGCCAT GATGTGATGC CCTATATGAC CGGTAAGAAA
4080


ACCAGTGCAG GTAACGCCAG TGACTGGTTG AGCGCAAAAC ATAAAATCAG CCCGGACTTG
4140


CGTATCGGCG CTGCTGTGAG TGGCACCCTG CAAGGAACGC TACAAAACAG CCTGAAGTTT
4200


AAGCTGACAG AGGATGAGCT GCCTGGCTTT ATCCATGGCT TGACGCATGG CACGTTGACC
4260


CCGGCAGAAC TGTTGCAAAA GGGGATCGAA CATCAGATGA AGCAGGGCAG CAAACTGACG
4320


TTTAGCGTCG ATACCTCGGC AAATCTGGAT CTGCGTGCCG GTATCAATCT GAACGAAGAC
4380


GGCAGTAAAC CAAATGGTGT CACTGCCCGT GTTTCTGCCG GGCTAAGTGC ATCGGCAAAC
4440


CTGGCCGCCG GCTCGCGTGA ACGCAGCACC ACCTCTGGCC AGTTTGGCAG CACGACTTCG
4500


GCCAGCAATA ACCGCCCAAC CTTCCTCAAC GGGGTCGGCG CGGGTGCTAA CCTGACGGCT
4560


GCTTTAGGGG TTGCCCATTC ATCTACGCAT GAAGGGAAAC CGGTCGGGAT CTTCCCGGCA
4620


TTTACCTCGA CCAATGTTTC GGCAGCGCTG GCGCTGGATA ACCGTACCTC ACAGAGTATC
4680


AGCCTGGAAT TGAAGCGCGC GGAGCCGGTG ACCAGCAACG ATATCAGCGA GTTGACCTCC
4740


ACGCTGGGAA AACACTTTAA GGATAGCGCC ACAACGAAGA TGCTTGCCGC TCTCAAAGAG
4800


TTAGATGACG CTAAGCCCGC TGAACAACTG CATATTTTAC AGCAGCATTT CAGTGCAAAA
4860


GATGTCGTCG GTGATGAACG CTACGAGGCG GTGCGCAACC TGAAAAAACT GGTGATACGT
4920


CAACAGGCTG CGGACAGCCA CAGCATGGAA TTAGGATCTG CCAGTCACAG CACGACCTAC
4980


AATAATCTGT CGAGAATAAA TAATGACGGC ATTGTCGAGC TGCTACACAA ACATTTCGAT
5040


GCGGCATTAC CAGCAAGCAG TGCCAAACGT CTTGGTGAAA TGATGAATAA CGATCCGGCA
5100


CTGAAAGATA TTATTAAGCA GCTGCAAAGT ACGCCGTTCA GCAGCGCCAG CGTGTCGATG
5160


GAGCTGAAAG ATGGTCTGCG TGAGCAGACG GAAAAAGCAA TACTGGACGG TAAGGTCGGT
5220


CGTGAAGAAG TGGGAGTACT TTTCCAGGAT CGTAACAACT TGCGTGTTAA ATCGGTCAGC
5280


GTCAGTCAGT CCGTCAGCAA AAGCGAAGGC TTCAATACCC CAGCGCTGTT ACTGGGGACG
5340


AGCAACAGCG CTGCTATGAG CATGGAGCGC AACATCGGAA CCATTAATTT TAAATACGGC
5400


CAGGATCAGA ACACCCCACG GCGATTTACC CTGGAGGGTG GAATAGCTCA GGCTAATCCG
5460


CAGGTCGCAT CTGCGCTTAC TGATTTGAAG AAGGAAGGGC TGGAAATGAA GAGCTAA
5517







This DNA molecule is known as the dspE gene for Erwinia amylovora. This isolated DNA molecule of the present invention encodes a protein or polypeptide which elicits a plant pathogen's hypersensitive response having an amino acid sequence of SEQ ID NO: 28 as follows:










Met Glu Leu Lys Ser Leu Gly Thr Glu His Lys Ala Ala Val His Thr



1               5                   10                  15


Ala Ala His Asn Pro Val Gly His Gly Val Ala Leu Gln Gln Gly Ser


            20                  25                  30


Ser Ser Ser Ser Pro Gln Asn Ala Ala Ala Ser Leu Ala Ala Glu Gly


        35                  40                  45


Lys Asn Arg Gly Lys Met Pro Arg Ile His Gln Pro Ser Thr Ala Ala


    50                  55                  60


Asp Gly Ile Ser Ala Ala His Gln Gln Lys Lys Ser Phe Ser Leu Arg


65                  70                  75                  80


Gly Cys Leu Gly Thr Lys Lys Phe Ser Arg Ser Ala Pro Gln Gly Gln


                85                  90                  95


Pro Gly Thr Thr His Ser Lys Gly Ala Thr Leu Arg Asp Leu Leu Ala


            100                 105                 110


Arg Asp Asp Gly Glu Thr Gln His Glu Ala Ala Ala Pro Asp Ala Ala


        115                 120                 125


Arg Leu Thr Arg Ser Gly Gly Val Lys Arg Arg Asn Met Asp Asp Met


    130                 135                 140


Ala Gly Arg Pro Met Val Lys Gly Gly Ser Gly Glu Asp Lys Val Pro


145                 150                 155                 160


Thr Gln Gln Lys Arg His Gln Leu Asn Asn Phe Gly Gln Met Arg Gln


                165                 170                 175


Thr Met Leu Ser Lys Met Ala His Pro Ala Ser Ala Asn Ala Gly Asp


            180                 185                 190


Arg Leu Gln His Ser Pro Pro His Ile Pro Gly Ser His His Glu Ile


        195                 200                 205


Lys Glu Glu Pro Val Gly Ser Thr Ser Lys Ala Thr Thr Ala His Ala


    210                 215                 220


Asp Arg Val Glu Ile Ala Gln Glu Asp Asp Asp Ser Glu Phe Gln Gln


225                 230                 235                 240


Leu His Gln Gln Arg Leu Ala Arg Glu Arg Glu Asn Pro Pro Gln Pro


                245                 250                 255


Pro Lys Leu Gly Val Ala Thr Pro Ile Ser Ala Arg Phe Gln Pro Lys


            260                 265                 270


Leu Thr Ala Val Ala Glu Ser Val Leu Glu Gly Thr Asp Thr Thr Gln


        275                 280                 285


Ser Pro Leu Lys Pro Gln Ser Met Leu Lys Gly Ser Gly Ala Gly Val


    290                 295                 300


Thr Pro Leu Ala Val Thr Leu Asp Lys Gly Lys Leu Gln Leu Ala Pro


305                 310                 315                 320


Asp Asn Pro Pro Ala Leu Asn Thr Leu Leu Lys Gln Thr Leu Gly Lys


                325                 330                 335


Asp Thr Gln His Tyr Leu Ala His His Ala Ser Ser Asp Gly Ser Gln


            340                 345                 350


His Leu Leu Leu Asp Asn Lys Gly His Leu Phe Asp Ile Lys Ser Thr


        355                 360                 365


Ala Thr Ser Tyr Ser Val Leu His Asn Ser His Pro Gly Glu Ile Lys


    370                 375                 380


Gly Lys Leu Ala Gln Ala Gly Thr Gly Ser Val Ser Val Asp Gly Lys


385                 390                 395                 400


Ser Gly Lys Ile Ser Leu Gly Ser Gly Thr Gln Ser His Asn Lys Thr


                405                 410                 415


Met Leu Ser Gln Pro Gly Glu Ala His Arg Ser Leu Leu Thr Gly Ile


            420                 425                 430


Trp Gln His Pro Ala Gly Ala Ala Arg Pro Gln Gly Glu Ser Ile Arg


        435                 440                 445


Leu His Asp Asp Lys Ile His Ile Leu His Pro Glu Leu Gly Val Trp


    450                 455                 460


Gln Ser Ala Asp Lys Asp Thr His Ser Gln Leu Ser Arg Gln Ala Asp


465                 470                 475                 480


Gly Lys Leu Tyr Ala Leu Lys Asp Asn Arg Thr Leu Gln Asn Leu Ser


                485                 490                 495


Asp Asn Lys Ser Ser Glu Lys Leu Val Asp Lys Ile Lys Ser Tyr Ser


            500                 505                 510


Val Asp Gln Arg Gly Gln Val Ala Ile Leu Thr Asp Thr Pro Gly Arg


        515                 520                 525


His Lys Met Ser Ile Met Pro Ser Leu Asp Ala Ser Pro Glu Ser His


    530                 535                 540


Ile Ser Leu Ser Leu His Phe Ala Asp Ala His Gln Gly Leu Leu His


545                 550                 555                 560


Gly Lys Ser Glu Leu Glu Ala Gln Ser Val Ala Ile Ser His Gly Arg


                565                 570                 575


Leu Val Val Ala Asp Ser Glu Gly Lys Leu Phe Ser Ala Ala Ile Pro


            580                 585                 590


Lys Gln Gly Asp Gly Asn Glu Leu Lys Met Lys Ala Met Pro Gln His


        595                 600                 605


Ala Leu Asp Glu His Phe Gly His Asp His Gln Ile Ser Gly Phe Phe


    610                 615                 620


His Asp Asp His Gly Gln Leu Asn Ala Leu Val Lys Asn Asn Phe Arg


625                 630                 635                 640


Gln Gln His Ala Cys Pro Leu Gly Asn Asp His Gln Phe His Pro Gly


                645                 650                 655


Trp Asn Leu Thr Asp Ala Leu Val Ile Asp Asn Gln Leu Gly Leu His


            660                 665                 670


His Thr Asn Pro Glu Pro His Glu Ile Leu Asp Met Gly His Leu Gly


        675                 680                 685


Ser Leu Ala Leu Gln Glu Gly Lys Leu His Tyr Phe Asp Gln Leu Thr


    690                 695                 700


Lys Gly Trp Thr Gly Ala Glu Ser Asp Cys Lys Gln Leu Lys Lys Gly


705                 710                 715                 720


Leu Asp Gly Ala Ala Tyr Leu Leu Lys Asp Gly Glu Val Lys Arg Leu


                725                 730                 735


Asn Ile Asn Gln Ser Thr Ser Ser Ile Lys His Gly Thr Glu Asn Val


            740                 745                 750


Phe Ser Leu Pro His Val Arg Asn Lys Pro Glu Pro Gly Asp Ala Leu


        755                 760                 765


Gln Gly Leu Asn Lys Asp Asp Lys Ala Gln Ala Met Ala Val Ile Gly


    770                 775                 780


Val Asn Lys Tyr Leu Ala Leu Thr Glu Lys Gly Asp Ile Arg Ser Phe


785                 790                 795                 800


Gln Ile Lys Pro Gly Thr Gln Gln Leu Glu Arg Pro Ala Gln Thr Leu


                805                 810                 815


Ser Arg Glu Gly Ile Ser Gly Glu Leu Lys Asp Ile His Val Asp His


            820                 825                 830


Lys Gln Asn Leu Tyr Ala Leu Thr His Glu Gly Glu Val Phe His Gln


        835                 840                 845


Pro Arg Glu Ala Trp Gln Asn Gly Ala Glu Ser Ser Ser Trp His Lys


    850                 855                 860


Leu Ala Leu Pro Gln Ser Glu Ser Lys Leu Lys Ser Leu Asp Met Ser


865                 870                 875                 880


His Glu His Lys Pro Ile Ala Thr Phe Glu Asp Gly Ser Gln His Gln


                885                 890                 895


Leu Lys Ala Gly Gly Trp His Ala Tyr Ala Ala Pro Glu Arg Gly Pro


            900                 905                 910


Leu Ala Val Gly Thr Ser Gly Ser Gln Thr Val Phe Asn Arg Leu Met


        915                 920                 925


Gln Gly Val Lys Gly Lys Val Ile Pro Gly Ser Gly Leu Thr Val Lys


    930                 935                 940


Leu Ser Ala Gln Thr Gly Gly Met Thr Gly Ala Glu Gly Arg Lys Val


945                 950                 955                 960


Ser Ser Lys Phe Ser Glu Arg Ile Arg Ala Tyr Ala Phe Asn Pro Thr


                965                 970                 975


Met Ser Thr Pro Arg Pro Ile Lys Asn Ala Ala Tyr Ala Thr Gln His


            980                 985                 990


Gly Trp Gln Gly Arg Glu Gly Leu Lys Pro Leu Tyr Glu Met Gln Gly


        995                 1000                1005


Ala Leu Ile Lys Gln Leu Asp Ala His Asn Val Arg His Asn Ala Pro


    1010                1015                1020


Gln Pro Asp Leu Gln Ser Lys Leu Glu Thr Leu Asp Leu Gly Glu His


1025                1030                1035                1040


Gly Ala Glu Leu Leu Asn Asp Met Lys Arg Phe Arg Asp Glu Leu Glu


                1045                1050                1055


Gln Ser Ala Thr Arg Ser Val Thr Val Leu Gly Gln His Gln Gly Val


            1060                1065                1070


Leu Lys Ser Asn Gly Glu Ile Asn Ser Glu Phe Lys Pro Ser Pro Gly


        1075                1080                1085


Lys Ala Leu Val Gln Ser Phe Asn Val Asn Arg Ser Gly Gln Asp Leu


    1090                1095                1100


Ser Lys Ser Leu Gln Gln Ala Val His Ala Thr Pro Pro Ser Ala Glu


1105                1110                1115                1120


Ser Lys Leu Gln Ser Met Leu Gly His Phe Val Ser Ala Gly Val Asp


                1125                1130                1135


Met Ser His Gln Lys Gly Glu Ile Pro Leu Gly Arg Gln Arg Asp Pro


            1140                1145                1150


Asn Asp Lys Thr Ala Leu Thr Lys Ser Arg Leu Ile Leu Asp Thr val


        1155                1160                1165


Thr Ile Gly Glu Leu His Glu Leu Ala Asp Lys Ala Lys Leu Val Ser


    1170                1175                1180


Asp His Lys Pro Asp Ala Asp Gln Ile Lys Gln Leu Arg Gln Gln Phe


1185                1190                1195                1200


Asp Thr Leu Arg Glu Lys Arg Tyr Glu Ser Asn Pro Val Lys His Tyr


                1205                1210                1215


Thr Asp Met Gly Phe Thr His Asn Lys Ala Leu Glu Ala Asn Tyr Asp


            1220                1225                1230


Ala Val Lys Ala Phe Ile Asn Ala Phe Lys Lys Glu His His Gly Val


        1235                1240                1245


Asn Leu Thr Thr Arg Thr Val Leu Glu Ser Gln Gly Ser Ala Glu Leu


    1250                1255                1260


Ala Lys Lys Leu Lys Asn Thr Leu Leu Ser Leu Asp Ser Gly Glu Ser


1265                1270                1275                1280


Met Ser Phe Ser Arg Ser Tyr Gly Gly Gly Val Ser Thr Val Phe Val


                1285                1290                1295


Pro Thr Leu Ser Lys Lys Val Pro Val Pro Val Ile Pro Gly Ala Gly


            1300                1305                1310


Ile Thr Leu Asp Arg Ala Tyr Asn Leu Ser Phe Ser Arg Thr Ser Gly


        1315                1320                1325


Gly Leu Asn Val Ser Phe Gly Arg Asp Gly Gly Val Ser Gly Asn Ile


    1330                1335                1340


Met Val Ala Thr Gly His Asp Val Met Pro Tyr Met Thr Gly Lys Lys


1345                1350                1355                1360


Thr Ser Ala Gly Asn Ala Ser Asp Trp Leu Ser Ala Lys His Lys Ile


                1365                1370                1375


Ser Pro Asp Leu Arg Ile Gly Ala Ala Val Ser Gly Thr Leu Gln Gly


            1380                1385                1390


Thr Leu Gln Asn Ser Leu Lys Phe Lys Leu Thr Glu Asp Glu Leu Pro


        1395                1400                1405


Gly Phe Ile His Gly Leu Thr His Gly Thr Leu Thr Pro Ala Glu Leu


    1410                1415                1420


Leu Gln Lys Gly Ile Glu His Gln Met Lys Gln Gly Ser Lys Leu Thr


1425                1430                1435                1440


Phe Ser Val Asp Thr Ser Ala Asn Leu Asp Leu Arg Ala Gly Ile Asn


                1445                1450                1455


Leu Asn Glu Asp Gly Ser Lys Pro Asn Gly Val Thr Ala Arg Val Ser


            1460                1465                1470


Ala Gly Leu Ser Ala Ser Ala Asn Leu Ala Ala Gly Ser Arg Glu Arg


        1475                1480                1485


Ser Thr Thr Ser Gly Gln Phe Gly Ser Thr Thr Ser Ala Ser Asn Asn


    1490                1495                1500


Arg Pro Thr Phe Leu Asn Gly Val Gly Ala Gly Ala Asn Leu Thr Ala


1505                1510                1515                1520


Ala Leu Gly Val Ala His Ser Ser Thr His Glu Gly Lys Pro Val Gly


                1525                1530                1535


Ile Phe Pro Ala Phe Thr Ser Thr Asn Val Ser Ala Ala Leu Ala Leu


            1540                1545                1550


Asp Asn Arg Thr Ser Gln Ser Ile Ser Leu Glu Leu Lys Arg Ala Glu


        1555                1560                1565


Pro Val Thr Ser Asn Asp Ile Ser Glu Leu Thr Ser Thr Leu Gly Lys


    1570                1575                1580


His Phe Lys Asp Ser Ala Thr Thr Lys Met Leu Ala Ala Leu Lys Glu


1585                1590                1595                1600


Leu Asp Asp Ala Lys Pro Ala Glu Gln Leu His Ile Leu Gln Gln His


                1605                1610                1615


Phe Ser Ala Lys Asp Val Val Gly Asp Glu Arg Tyr Glu Ala Val Arg


            1620                1625                1630


Asn Leu Lys Lys Leu Val Ile Arg Gln Gln Ala Ala Asp Ser His Ser


        1635                1640                1645


Met Glu Leu Gly Ser Ala Ser His Ser Thr Thr Tyr Asn Asn Leu Ser


    1650                1655                1660


Arg Ile Asn Asn Asp Gly Ile Val Glu Leu Leu His Lys His Phe Asp


1665                1670                1675                1680


Ala Ala Leu Pro Ala Ser Ser Ala Lys Arg Leu Gly Glu Met Met Asn


                1685                1690                1695


Asn Asp Pro Ala Leu Lys Asp Ile Ile Lys Gln Leu Gln Ser Thr Pro


            1700                1705                1710


Phe Ser Ser Ala Ser Val Ser Met Glu Leu Lys Asp Gly Leu Arg Glu


        1715                1720                1725


Gln Thr Glu Lys Ala Ile Leu Asp Gly Lys Val Gly Arg Glu Glu val


    1730                1735                1740


Gly Val Leu Phe Gln Asp Arg Asn Asn Leu Arg Val Lys Ser Val Ser


1745                1750                1755                1760


Val Ser Gln Ser Val Ser Lys Ser Glu Gly Phe Asn Thr Pro Ala Leu


                1765                1770                1775


Leu Leu Gly Thr Ser Asn Ser Ala Ala Met Ser Met Glu Arg Asn Ile


            1780                1785                1790


Gly Thr Ile Asn Phe Lys Tyr Gly Gln Asp Gln Asn Thr Pro Arg Arg


        1795                1800                1805


Phe Thr Leu Glu Gly Gly Ile Ala Gln Ala Asn Pro Gln Val Ala Ser


    1810                1815                1820


Ala Leu Thr Asp Leu Lys Lys Glu Gly Leu Glu Met Lys Ser


1825                1830                1835







This protein or polypeptide is about 198 kDa and has a pI of 8.98.


The present invention relates to an isolated DNA molecule having a nucleotide sequence of SEQ ID NO: 29 as follows:











ATGACATCGT CACAGCAGCG GGTTGAAAGG TTTTTACAGT ATTTCTCCGC CGGGTGTAAA
60



ACGCCCATAC ATCTGAAAGA CGGGGTGTGC GCCCTGTATA ACGAACAAGA TGAGGAGGCG
120


GCGGTGCTGG AAGTACCGCA ACACAGCGAC AGCCTGTTAC TACACTGCCG AATCATTGAG
180


GCTGACCCAC AAACTTCAAT AACCCTGTAT TCGATGCTAT TACAGCTGAA TTTTGAAATG
240


GCGGCCATGC GCGGCTGTTG GCTGGCGCTG GATGAACTGC ACAACGTGCG TTTATGTTTT
300


CAGCAGTCGC TGGAGCATCT GGATGAAGCA AGTTTTAGCG ATATCGTTAG CGGCTTCATC
360


GAACATGCGG CAGAAGTGCG TGAGTATATA GCGCAATTAG ACGAGAGTAG CGCGGCATAA
420







This is known as the dspF gene. This isolated DNA molecule of the present invention encodes a hypersensitive response elicitor protein or polypeptide having an amino acid sequence of SEQ ID NO: 30 as follows:










Met Thr Ser Ser Gln Gln Arg Val Glu Arg Phe Leu Gln Tyr Phe Ser



1               5                   10                  15


Ala Gly Cys Lys Thr Pro Ile His Leu Lys Asp Gly Val Cys Ala Leu


            20                  25                  30


Tyr Asn Glu Gln Asp Glu Glu Ala Ala Val Leu Glu Val Pro Gln His


        35                  40                  45


Ser Asp Ser Leu Leu Leu His Cys Arg Ile Ile Glu Ala Asp Pro Gln


    50                  55                  60


Thr Ser Ile Thr Leu Tyr Ser Met Leu Leu Gln Leu Asn Phe Glu Met


65                  70                  75                  80


Ala Ala Met Arg Gly Cys Trp Leu Ala Leu Asp Glu Leu His Asn Val


                85                  90                  95


Arg Leu Cys Phe Gln Gln Ser Leu Glu His Leu Asp Glu Ala Ser Phe


            100                 105                 110


Ser Asp Ile Val Ser Gly Phe Ile Glu His Ala Ala Glu Val Arg Glu


        115                 120                 125


Tyr Ile Ala Gln Leu Asp Glu Ser Ser Ala Ala


    130                 135







This protein or polypeptide is about 16 kDa and has a pI of 4.45.


The hypersensitive response elicitor polypeptide or protein derived from Pseudomonas syringae has an amino acid sequence corresponding to SEQ ID NO: 31 as follows:










Met Gln Ser Leu Ser Leu Asn Ser Ser Ser Leu Gln Thr Pro Ala Met



1               5                   10                  15


Ala Leu Val Leu Val Arg Pro Glu Ala Glu Thr Thr Gly Ser Thr Ser


            20                  25                  30


Ser Lys Ala Leu Gln Glu Val Val Val Lys Leu Ala Glu Glu Leu Met


        35                  40                  45


Arg Asn Gly Gln Leu Asp Asp Ser Ser Pro Leu Gly Lys Leu Leu Ala


    50                  55                  60


Lys Ser Met Ala Ala Asp Gly Lys Ala Gly Gly Gly Ile Glu Asp Val


65                  70                  75                  80


Ile Ala Ala Leu Asp Lys Leu Ile His Glu Lys Leu Gly Asp Asn Phe


                85                  90                  95


Gly Ala Ser Ala Asp Ser Ala Ser Gly Thr Gly Gln Gln Asp Leu Met


            100                 105                 110


Thr Gln Val Leu Asn Gly Leu Ala Lys Ser Met Leu Asp Asp Leu Leu


        115                 120                 125


Thr Lys Gln Asp Gly Gly Thr Ser Phe Ser Glu Asp Asp Met Pro Met


    130                 135                 140


Leu Asn Lys Ile Ala Gln Phe Met Asp Asp Asn Pro Ala Gln Phe Pro


145                 150                 155                 160


Lys Pro Asp Ser Gly Ser Trp Val Asn Glu Leu Lys Glu Asp Asn Phe


                165                 170                 175


Leu Asp Gly Asp Glu Thr Ala Ala Phe Arg Ser Ala Leu Asp Ile Ile


            180                 185                 190


Gly Gln Gln Leu Gly Asn Gln Gln Ser Asp Ala Gly Ser Leu Ala Gly


        195                 200                 205


Thr Gly Gly Gly Leu Gly Thr Pro Ser Ser Phe Ser Asn Asn Ser Ser


    210                 215                 220


Val Met Gly Asp Pro Leu Ile Asp Ala Asn Thr Gly Pro Gly Asp Ser


225                 230                 235                 240


Gly Asn Thr Arg Gly Glu Ala Gly Gln Leu Ile Gly Glu Leu Ile Asp


                245                 250                 255


Arg Gly Leu Gln Ser Val Leu Ala Gly Gly Gly Leu Gly Thr Pro Val


            260                 265                 270


Asn Thr Pro Gln Thr Gly Thr Ser Ala Asn Gly Gly Gln Ser Ala Gln


        275                 280                 285


Asp Leu Asp Gln Leu Leu Gly Gly Leu Leu Leu Lys Gly Leu Glu Ala


    290                 295                 300


Thr Leu Lys Asp Ala Gly Gln Thr Gly Thr Asp Val Gln Ser Ser Ala


305                 310                 315                 320


Ala Gln Ile Ala Thr Leu Leu Val Ser Thr Leu Leu Gln Gly Thr Arg


                325                 330                 335


Asn Gln Ala Ala Ala


            340







This hypersensitive response elicitor polypeptide or protein has a molecular weight of 34-35 kDa It is rich in glycine (about 13.5%) and lacks cysteine and tyrosine. Further information about the hypersensitive response elicitor derived from Pseudomonas syringae is found in He, S. Y., H. C. Huang, and A. Collmer, “Pseudomonas syringae pv. syringae HarpinPss: a Protein that is Secreted via the Hrp Pathway and Elicits the Hypersensitive Response in Plants,” Cell 73:1255-1266 (1993), which is hereby incorporated by reference. The DNA molecule encoding the hypersensitive response elicitor from Pseudomonas syringae has a nucleotide sequence corresponding to SEQ ID NO: 32 as follows:











ATGCAGAGTC TCAGTCTTAA CAGCAGCTCG CTGCAAACCC CGGCAATGGC CCTTGTCCTG
60



GTACGTCCTG AAGCCGAGAC GACTGGCAGT ACGTCGAGCA AGGCGCTTCA GGAAGTTGTC
120


GTGAAGCTGG CCGAGGAACT GATGCGCAAT GGTCAACTCG ACGACAGCTC GCCATTGGGA
180


AAACTGTTGG CCAAGTCGAT GGCCGCAGAT GGCAAGGCGG GCGGCGGTAT TGAGGATGTC
240


ATCGCTGCGC TGGACAAGCT GATCCATGAA AAGCTCGGTG ACAACTTCGG CGCGTCTGCG
300


GACAGCGCCT CGGGTACCGG ACAGCAGGAC CTGATGACTC AGGTGCTCAA TGGCCTGGCC
360


AAGTCGATGC TCGATGATCT TCTGACCAAG CAGGATGGCG GGACAAGCTT CTCCGAAGAC
420


GATATGCCGA TGCTGAACAA GATCGCGCAG TTCATGGATG ACAATCCCGC ACAGTTTCCC
480


AAGCCGGACT CGGGCTCCTG GGTGAACGAA CTCAAGGAAG ACAACTTCCT TGATGGCGAC
540


GAAACGGCTG CGTTCCGTTC GGCACTCGAC ATCATTGGCC AGCAACTGGG TAATCAGCAG
600


AGTGACGCTG GCAGTCTGGC AGGGACGGGT GGAGGTCTGG GCACTCCGAG CAGTTTTTCC
660


AACAACTCGT CCGTGATGGG TGATCCGCTG ATCGACGCCA ATACCGGTCC CGGTGACAGC
720


GGCAATACCC GTGGTGAAGC GGGGCAACTG ATCGGCGAGC TTATCGACCG TGGCCTGCAA
780


TCGGTATTGG CCGGTGGTGG ACTGGGCACA CCCGTAAACA CCCCGCAGAC CGGTACGTCG
840


GCGAATGGCG GACAGTCCGC TCAGGATCTT GATCAGTTGC TGGGCGGCTT GCTGCTCAAG
900


GGCCTGGAGG CAACGCTCAA GGATGCCGGG CAAACAGGCA CCGACGTGCA GTCGAGCGCT
960


GCGCAAATCG CCACCTTGCT GGTCAGTACG CTGCTGCAAG GCACCCGCAA TCAGGCTGCA
1020


GCCTGA
1026






Another potentially suitable hypersensitive response elicitor from Pseudomonas syningae is disclosed in U.S. patent application Ser. No. 09/120,817, which is hereby incorporated by reference. The protein has a nucleotide sequence of SEQ ID NO: 33 as follows:











TCCACTTCGC TGATTTTGAA ATTGGCAGAT TCATAGAAAC GTCCAGGTGT GGAAATCAGG
60



CTGAGTGCGC AGATTTCGTT GATAAGGGTG TGGTACTGGT CATTGTTGGT CATTTCAAGG
120


CCTCTGAGTG CGGTGCGGAG CAATACCAGT CTTCCTGCTG GCGTGTGCAC ACTGAGTCGC
180


AGGCATAGGC ATTTCAGTTC CTTGCGTTGG TTGGGCATAT AAAAAAAGGA ACTTTTAAAA
240


ACAGTGCAAT GAGATGCCGG CAAAACGGGA ACCGGTCGCT GCGCTTTGCC ACTCACTTCG
300


AGCAAGCTCA ACCCCAAACA TCCACATCCC TATCGAACGG ACAGCGATAC GGCCACTTGC
360


TCTGGTAAAC CCTGGAGCTG GCGTCGGTCC AATTGCCCAC TTAGCGAGGT AACGCAGCAT
420


GAGCATCGGC ATCACACCCC GGCCGCAACA GACCACCACG CCACTCGATT TTTCGGCGCT
480


AAGCGGCAAG AGTCCTCAAC CAAACACGTT CGGCGAGCAG AACACTCAGC AAGCGATCGA
540


CCCGAGTGCA CTGTTGTTCG GCAGCGACAC ACAGAAAGAC GTCAACTTCG GCACGCCCGA
600


CAGCACCGTC CAGAATCCGC AGGACGCCAG CAAGCCCAAC GACAGCCAGT CCAACATCGC
660


TAAATTGATC AGTGCATTGA TCATGTCGTT GCTGCAGATG CTCACCAACT CCAATAAAAA
720


GCAGGACACC AATCAGGAAC AGCCTGATAG CCAGGCTCCT TTCCAGAACA ACGGCGGGCT
780


CGGTACACCG TCGGCCGATA GCGGGGGCGG CGGTACACCG GATGCGACAG GTGGCGGCGG
840


CGGTGATACG CCAAGCGCAA CAGGCGGTGG CGGCGGTGAT ACTCCGACCG CAACAGGCGG
900


TGGCGGCAGC GGTGGCGGCG GCACACCCAC TGCAACAGGT GGCGGCAGCG GTGGCACACC
960


CACTGCAACA GGCGGTGGCG AGGGTGGCGT AACACCGCAA ATCACTCCGC AGTTGGCCAA
1020


CCCTAACCGT ACCTCAGGTA CTGGCTCGGT GTCGGACACC GCAGGTTCTA CCGAGCAAGC
1080


CGGCAAGATC AATGTGGTGA AAGACACCAT CAAGGTCGGC GCTGGCGAAG TCTTTGACGG
1140


CCACGGCGCA ACCTTCACTG CCGACAAATC TATGGGTAAC GGAGACCAGG GCGAAAATCA
1200


GAAGCCCATG TTCGAGCTGG CTGAAGGCGC TACGTTGAAG AATGTGAACC TGGGTGAGAA
1260


CGAGGTCGAT GGCATCCACG TGAAAGCCAA AAACGCTCAG GAAGTCACCA TTGACAACGT
1320


GCATGCCCAG AACGTCGGTG AAGACCTGAT TACGGTCAAA GGCGAGGGAG GCGCAGCGGT
1380


CACTAATCTG AACATCAAGA ACAGCAGTGC CAAAGGTGCA GACGACAAGG TTGTCCAGCT
1440


CAACGCCAAC ACTCACTTGA AAATCGACAA CTTCAAGGCC GACGATTTCG GCACGATGGT
1500


TCGCACCAAC GGTGGCAAGC AGTTTGATGA CATGAGCATC GAGCTGAACG GCATCGAAGC
1560


TAACCACGGC AAGTTCGCCC TGGTGAAAAG CGACAGTGAC GATCTGAAGC TGGCAACGGG
1620


CAACATCGCC ATGACCGACG TCAAACACGC CTACGATAAA ACCCAGGCAT CGACCCAACA
1680


CACCGAGCTT TGAATCCAGA CAAGTAGCTT GAAAAAAGGG GGTGGACTC
1729







This DNA molecule is known as the dspE gene for Pseudomonas syringae. This isolated DNA molecule of the present invention encodes a protein or polypeptide which elicits a plant pathogen's hypersensitive response having an amino acid sequence of SEQ ID NO: 34 as follows:










Met Ser Ile Gly Ile Thr Pro Arg Pro Gln Gln Thr Thr Thr Pro Leu



1               5                   10                  15


Asp Phe Ser Ala Leu Ser Gly Lys Ser Pro Gln Pro Asn Thr Phe Gly


            20                  25                  30


Glu Gln Asn Thr Gln Gln Ala Ile Asp Pro Ser Ala Leu Leu Phe Gly


        35                  40                  45


Ser Asp Thr Gln Lys Asp Val Asn Phe Gly Thr Pro Asp Ser Thr Val


    50                  55                  60


Gln Asn Pro Gln Asp Ala Ser Lys Pro Asn Asp Ser Gln Ser Asn Ile


65                  70                  75                  80


Ala Lys Leu Ile Ser Ala Leu Ile Met Ser Leu Leu Gln Met Leu Thr


                85                  90                  95


Asn Ser Asn Lys Lys Gln Asp Thr Asn Gln Glu Gln Pro Asp Ser Gln


            100                 105                 110


Ala Pro Phe Gln Asn Asn Gly Gly Leu Gly Thr Pro Ser Ala Asp Ser


        115                 120                 125


Gly Gly Gly Gly Thr Pro Asp Ala Thr Gly Gly Gly Gly Gly Asp Thr


    130                 135                 140


Pro Ser Ala Thr Gly Gly Gly Gly Gly Asp Thr Pro Thr Ala Thr Gly


145                 150                 155                 160


Gly Gly Gly Ser Gly Gly Gly Gly Thr Pro Thr Ala Thr Gly Gly Gly


                165                 170                 175


Ser Gly Gly Thr Pro Thr Ala Thr Gly Gly Gly Glu Gly Gly Val Thr


            180                 185                 190


Pro Gln Ile Thr Pro Gln Leu Ala Asn Pro Asn Arg Thr Ser Gly Thr


        195                 200                 205


Gly Ser Val Ser Asp Thr Ala Gly Ser Thr Glu Gln Ala Gly Lys Ile


    210                 215                 220


Asn Val Val Lys Asp Thr Ile Lys Val Gly Ala Gly Glu Val Phe Asp


225                 230                 235                 240


Gly His Gly Ala Thr Phe Thr Ala Asp Lys Ser Met Gly Asn Gly Asp


                245                 250                 255


Gln Gly Glu Asn Gln Lys Pro Met Phe Glu Leu Ala Glu Gly Ala Thr


            260                 265                 270


Leu Lys Asn Val Asn Leu Gly Glu Asn Glu Val Asp Gly Ile His Val


        275                 280                 285


Lys Ala Lys Asn Ala Gln Glu Val Thr Ile Asp Asn Val His Ala Gln


    290                 295                 300


Asn Val Gly Glu Asp Leu Ile Thr Val Lys Gly Glu Gly Gly Ala Ala


305                 310                 315                 320


Val Thr Asn Leu Asn Ile Lys Asn Ser Ser Ala Lys Gly Ala Asp Asp


                325                 330                 335


Lys Val Val Gln Leu Asn Ala Asn Thr His Leu Lys Ile Asp Asn Phe


            340                 345                 350


Lys Ala Asp Asp Phe Gly Thr Met Val Arg Thr Asn Gly Gly Lys Gln


        355                 360                 365


Phe Asp Asp Met Ser Ile Glu Leu Asn Gly Ile Glu Ala Asn His Gly


    370                 375                 380


Lys Phe Ala Leu Val Lys Ser Asp Ser Asp Asp Leu Lys Leu Ala Thr


385                 390                 395                 400


Gly Asn Ile Ala Met Thr Asp Val Lys His Ala Tyr Asp Lys Thr Gln


                405                 410                 415


Ala Ser Thr Gln His Thr Glu Leu


            420







This protein or polypeptide is about 43.9 kDa.


The hypersensitive response elicitor polypeptide or protein derived from Pseudomonas solanacearum has an amino acid sequence corresponding to SEQ ID NO: 35 as follows:










Met Ser Val Gly Asn Ile Gln Ser Pro Ser Asn Leu Pro Gly Leu Gln



1               5                   10                  15


Asn Leu Asn Leu Asn Thr Asn Thr Asn Ser Gln Gln Ser Gly Gln Ser


            20                  25                  30


Val Gln Asp Leu Ile Lys Gln Val Glu Lys Asp Ile Leu Asn Ile Ile


        35                  40                  45


Ala Ala Leu Val Gln Lys Ala Ala Gln Ser Ala Gly Gly Asn Thr Gly


    50                  55                  60


Asn Thr Gly Asn Ala Pro Ala Lys Asp Gly Asn Ala Asn Ala Gly Ala


65                  70                  75                  80


Asn Asp Pro Ser Lys Asn Asp Pro Ser Lys Ser Gln Ala Pro Gln Ser


                85                  90                  95


Ala Asn Lys Thr Gly Asn Val Asp Asp Ala Asn Asn Gln Asp Pro Met


            100                 105                 110


Gln Ala Leu Met Gln Leu Leu Glu Asp Leu Val Lys Leu Leu Lys Ala


        115                 120                 125


Ala Leu His Met Gln Gln Pro Gly Gly Asn Asp Lys Gly Asn Gly Val


    130                 135                 140


Gly Gly Ala Asn Gly Ala Lys Gly Ala Gly Gly Gln Gly Gly Leu Ala


145                 150                 155                 160


Glu Ala Leu Gln Glu Ile Glu Gln Ile Leu Ala Gln Leu Gly Gly Gly


                165                 170                 175


Gly Ala Gly Ala Gly Gly Ala Gly Gly Gly Val Gly Gly Ala Gly Gly


            180                 185                 190


Ala Asp Gly Gly Ser Gly Ala Gly Gly Ala Gly Gly Ala Asn Gly Ala


        195                 200                 205


Asp Gly Gly Asn Gly Val Asn Gly Asn Gln Ala Asn Gly Pro Gln Asn


    210                 215                 220


Ala Gly Asp Val Asn Gly Ala Asn Gly Ala Asp Asp Gly Ser Glu Asp


225                 230                 235                 240


Gln Gly Gly Leu Thr Gly Val Leu Gln Lys Leu Met Lys Ile Leu Asn


                245                 250                 255


Ala Leu Val Gln Met Met Gln Gln Gly Gly Leu Gly Gly Gly Asn Gln


            260                 265                 270


Ala Gln Gly Gly Ser Lys Gly Ala Gly Asn Ala Ser Pro Ala Ser Gly


        275                 280                 285


Ala Asn Pro Gly Ala Asn Gln Pro Gly Ser Ala Asp Asp Gln Ser Ser


    290                 295                 300


Gly Gln Asn Asn Leu Gln Ser Gln Ile Met Asp Val Val Lys Glu Val


305                 310                 315                 320


Val Gln Ile Leu Gln Gln Met Leu Ala Ala Gln Asn Gly Gly Ser Gln


                325                 330                 335


Gln Ser Thr Ser Thr Gln Pro Met


            340







It is encoded by a DNA molecule having a nucleotide sequence corresponding to SEQ ID NO: 36 as follows:











ATGTCAGTCG GAAACATCCA GAGCCCGTCG AACCTCCCGG GTCTGCAGAA CCTGAACCTC
60



AACACCAACA CCAACAGCCA GCAATCGGGC CAGTCCGTGC AAGACCTGAT CAAGCAGGTC
120


GAGAAGGACA TCCTCAACAT CATCGCAGCC CTCGTGCAGA AGGCCGCACA GTCGGCGGGC
180


GGCAACACCG GTAACACCGG CAACGCGCCG GCGAAGGACG GCAATGCCAA CGCGGGCGCC
240


AACGACCCGA GCAAGAACGA CCCGAGCAAG AGCCAGGCTC CGCAGTCGGC CAACAAGACC
300


GGCAACGTCG ACGACGCCAA CAACCAGGAT CCGATGCAAG CGCTGATGCA GCTGCTGGAA
360


GACCTGGTGA AGCTGCTGAA GGCGGCCCTG CACATGCAGC AGCCCGGCGG CAATGACAAG
420


GGCAACGGCG TGGGCGGTGC CAACGGCGCC AAGGGTGCCG GCGGCCAGGG CGGCCTGGCC
480


GAAGCGCTGC AGGAGATCGA GCAGATCCTC GCCCAGCTCG GCGGCGGCGG TGCTGGCGCC
540


GGCGGCGCGG GTGGCGGTGT CGGCGGTGCT GGTGGCGCGG ATGGCGGCTC CGGTGCGGGT
600


GGCGCAGGCG GTGCGAACGG CGCCGACGGC GGCAATGGCG TGAACGGCAA CCAGGCGAAC
660


GGCCCGCAGA ACGCAGGCGA TGTCAACGGT GCCAACGGCG CGGATGACGG CAGCGAAGAC
720


CAGGGCGGCC TCACCGGCGT GCTGCAAAAG CTGATGAAGA TCCTGAACGC GCTGGTGCAG
780


ATGATGCAGC AAGGCGGCCT CGGCGGCGGC AACCAGGCGC AGGGCGGCTC GAAGGGTGCC
840


GGCAACGCCT CGCCGGCTTC CGGCGCGAAC CCGGGCGCGA ACCAGCCCGG TTCGGCGGAT
900


GATCAATCGT CCGGCCAGAA CAATCTGCAA TCCCAGATCA TGGATGTGGT GAAGGAGGTC
960


GTCCAGATCC TGCAGCAGAT GCTGGCGGCG CAGAACGGCG GCAGCCAGCA GTCCACCTCG
1020


ACGCAGCCGA TGTAA
1035







Further information regarding the hypersensitive response elicitor polypeptide or protein derived from Pseudomonas solanacearum is set forth in Arlat, M., F. Van Gijsegem, J. C. Huet, J. C. Pemollet, and C. A. Boucher, “PopA I, a Protein which Induces a Hypersensitive-like Response in Specific Petunia Genotypes, is Secreted via the Hrp Pathway of Pseudomonas solanacearum,” EMBO J. 13:543-533 (1994), which is hereby incorporated by reference.


The hypersensitive response elicitor polypeptide or protein from Xanthomonas campestris pv. glycines has an amino acid sequence corresponding to SEQ ID NO: 37 as follows:










Thr Leu Ile Glu Leu Met Ile Val Val Ala Ile Ile Ala Ile Leu Ala



1               5                   10                  15


Ala Ile Ala Leu Pro Ala Tyr Gln Asp Tyr


            20                  25







This sequence is an amino terminal sequence having only 26 residues from the hypersensitive response elicitor polypeptide or protein of Xanthomonas campestris pv. glycines. It matches with fimbrial subunit proteins determined in other Xanthomonas campestris pathovars.


The hypersensitive response elicitor polypeptide or protein from Xanthomonas campestris pv. pelargonii is heat stable, protease sensitive, and has a molecular weight of 20 kDa. It includes an amino acid sequence corresponding to SEQ ID NO: 38 as follows:










Ser Ser Gln Gln Ser Pro Ser Ala Gly Ser Glu Gln Gln Leu Asp Gln



1               5                   10                  15


Leu Leu Ala Met


            20






Isolation of Erwinia carotovora hypersensitve response elictor protein or polypeptide is described in Cui et al., “The Rsm Mutants of Erwinia carotovora subsp. carotovora Strain Ecc71 Overexpress hro NEcc and Elicit a Hypersensitive Reason-like Response is Tobacco Leaves, ” MPMI, 9(7):563‥73)1996), which is hereby incorporated by reference. The hypersensitve response elicitor protein or polypeptide of Erwinia stewartii is set forth in Ahmad et al., “Harpin is Not Necessary for the Pathogenicity of Erwinia stewartii on Maize,” 8th Int'l. Cong. Molec. Plant-Microbe Interact., Jul. 14-19, 1996 and Ahmad, et al., “Harpin is Not Necessary for the Pathogenicity of Erwinia stewartii on Maize,” Ann. Mtg. Am. Phytopath. Soc., Jul. 27-31, 1996, which are hereby incorporated by reference.


Hypersensitive response elicitor proteins or polypeptides from Phytophthoraparasitica, Phytophthora cryptogea, Phytophihora cinnamoni, Phytophthora capsici, Phytophthora megasperma, and Phytophora citrophthora are described in Karnan, et al., “Extracellular Protein Elicitors from Phytophthora: Most Specificity and Induction of Resistance to Bacterial and Fungal Phytopathogens,” Molec. Plant-Microbe Interact., 6(1):15-25 (1993), Ricci et al., “Structure and Activity of Proteins from Pathogenic Fungi Phytophthora Eliciting Necrosis and Acquired Resistance in Tobacco,” Eur. J. Biochem., 183:555-63 (1989), Ricci et al., “Differential Production of Parasiticein, and Elicitor of Necrosis and Resistance in Tobacco, by Isolates of Phytophthora parasitica,” Plant Path. 41:298-307 (1992), Baillreul et al, “A New Elicitor of the Hypersensitive Response in Tobacco: A Fungal Glycoprotein Elicits Cell Death, Expression of Defence Genes, Production of Salicylic Acid, and Induction of Systemic Acquired Resistance,” Plant J., 8(4):551-60 (1995), and Bonnet et al., “Acquired Resistance Triggered by Elicitors in Tobacco and Other Plants,” Eur. J. Plant Path., 102:181-92 (1996), which are hereby incorporated by reference.


Another hypersensitive response elicitor in accordance with the present invention is from Clavibacter michiganensis subsp. sepedonicus which is fully described in U.S. patent application Ser. No. 09/136,625, which is hereby incorporated by reference.


The above elicitors are exemplary. Other elicitors can be identified by growing fungi or bacteria that elicit a hypersensitive response under conditions which genes encoding an elicitor are expressed. Cell-free preparations from culture supernatants can be tested for elicitor activity (i.e. local necrosis) by using them to infiltrate appropriate plant tissues.


Fragments of the above hypersensitive response elicitor polypeptides or proteins as well as fragments of full length elicitors from other pathogens are encompassed by the present invention.


Suitable fragments can be produced by several means. In the first, subclones of the gene encoding a known elicitor protein are produced by conventional molecular genetic manipulation by subcloning gene fragments. The subclones then are expressed in vitro or in vivo in bacterial cells to yield a smaller protein or peptide that can be tested for elicitor activity according to the procedure described below.


As an alternative, fragments of an elicitor protein can be produced by digestion of a full-length elicitor protein with proteolytic enzymes like chymotrypsin or Staphylococcus proteinase A, or trypsin. Different proteolytic enzymes are likely to cleave elicitor proteins at different sites based on the amino acid sequence of the elicitor protein. Some of the fragments that result from proteolysis may be active elicitors of resistance.


In another approach, based on knowledge of the primary structure of the protein, fragments of the elicitor protein gene may be synthesized by using the PCR technique together with specific sets of primers chosen to represent particular portions of the protein. These then would be cloned into an appropriate vector for expression of a truncated peptide or protein.


Chemical synthesis can also be used to make suitable fragments. Such a synthesis is carried out using known amino acid sequences for the elicitor being produced. Alternatively, subjecting a full length elicitor to high temperatures and pressures will produce fragments. These fragments can then be separated by conventional procedures (e.g., chromatography, SDS-PAGE).


An example of suitable fragments of a hypersensitive response elicitor which do not elicit a hypersensitive response include fragments of the Erwinia amylovora hypersensitive response elicitor. Suitable fragments include a C-terminal fragment of the amino acid sequence of SEQ ID NO: 23, an N-terminal fragment of the amino acid sequence of SEQ ID NO: 23, or an internal fragment of the amino acid sequence of SEQ ID NO: 23. The C-terminal fragment of the amino acid sequence of SEQ ID NO: 23 can span the Following amino acids of SEQ ID NO: 23: 169 and 403, 210 and 403, 267 and 403, or 343 and 403. The internal fragment of the amino acid sequence of SEQ ID NO: 23 can span the following amino acids of SEQ ID NO: 23: 150 and 179, 137 and 166, 121 and 150, 76 and 168, 105 and 168, or 137 and 156. Other suitable fragments can be identified in accordance with the present invention.


Another example of a useful fragment of a hypersensitive response elicitor which fragment does not itself elicit a hypersensitive response is the protein fragment containing amino acids 190 to 294 of the amino acid sequence (SEQ ID NO: 31) for the Pseudomonas syringae pv. syringae hypersensitive response elicitor. This fragment is useful in imparting disease resistance and enhancing plant growth.


Yet another example of a useful fragment of a hypersensitive response elicitor is the peptide having an amino acid sequence corresponding to SEQ ID NO: 39. This peptide is derived from the hypersensitive response eliciting glycoprotein of Phytophthora megasperma and enhances plant growth.


Variants may be made by, for example, the deletion or addition of amino acids that have minimal influence on the properties, secondary structure, and hydropathic nature of the polypeptide. For example, a polypeptide may be conjugated to a signal (or leader) sequence at the N-terminal end of the protein which co-translationally or post-translationally directs transfer of the protein. The polypeptide may also be conjugated to a linker or other sequence for ease of synthesis, purification, or identification of the polypeptide.


The fragment of the present invention is preferably in isolated form (i.e. separated from its host organism) and more preferably produced in purified form (preferably at least about 60%, more preferably 80%, pure) by conventional techniques. Typically, the fragment of the present invention is produced but not secreted into the growth medium of recombinant host cells. Alternatively, the protein or polypeptide of the present invention is secreted into growth medium. In the case of unsecreted protein, to isolate the protein fragment, the host cell (e.g., E. coli) carrying a recombinant plasmid is propagated, lysed by sonication, heat, or chemical treatment, and the homogenate is centrifuged to remove bacterial debris. The supernatant is then subjected to heat treatment and the fragment is separated by centriugation. The supernatant fraction containing the fragment is subjected to gel filtration in an appropriately sized dextran or polyacrylamide column to separate the fragment. If necessary, the protein fraction may be further purified by ion exchange or HPLC.


The DNA molecule encoding the fragment of the hypersensitive response elicitor polypeptide or protein can be incorporated in cells using conventional recombinant DNA technology. Generally, this involves inserting the DNA molecule into an expression system to which the DNA molecule is heterologous (i.e. not normally present). The heterologous DNA molecule is inserted into the expression system or vector in proper sense orientation and correct reading frame. The vector contains the necessary elements for the transcription and translation of the inserted protein-coding sequences.


U.S. Pat. No. 4,237,224 to Cohen and Boyer, which is hereby incorporated by reference, describes the production of expression systems in the form of recombinant plasmids using restriction enzyme cleavage and ligation with DNA ligase. These recombinant plasmids are then introduced by means of transformation and replicated in unicellular cultures including procaryotic organisms and eucaryotic cells grown in tissue culture.


Recombinant genes may also be introduced into viruses, such as vaccina virus. Recombinant viruses can be generated by transfection of plasmids into cells infected with virus.


Suitable vectors include, but are not limited to, the following viral vectors such as lambda vector system gt11, gt WES.tB, Charon 4, and plasmid vectors such as pBR322, pBR325, pACYC177, pACYC1084, pUC8, pUC9, pUC18, pUC19, pLG339, pR290, pKC37, pKC101, SV 40, pBluescript II SK +/− or KS +/− (see “Stratagene Cloning Systems” Catalog (1993) from Stratagene, La Jolla, Calif., which is hereby incorporated by reference), pQE, pIH821, pGEX, pET series (see F. W. Studier et. al., “Use of T7 RNA Polymerase to Direct Expression of Cloned Genes,” Gene Expression Technology vol. 185 (1990), which is hereby incorporated by reference), and any derivatives thereof. Recombinant molecules can be introduced into cells via transformation, particularly transduction, conjugation, mobilization, or electroporation. The DNA sequences are cloned into the vector using standard cloning procedures in the art, as described by Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Springs Laboratory, Cold Springs Harbor, N.Y. (1989), which is hereby incorporated by reference.


A variety of host-vector systems may be utilized to express the protein-encoding sequence(s). Primarily, the vector system must be compatible with the host cell used. Host-vector systems include but are not limited to the following: bacteria transformed with bacteriophage DNA, plasmid DNA, or cosmid DNA; microorganisms such as yeast containing yeast vectors; mammalian cell systems infected with virus (e.g., vaccinia virus, adenovirus, etc.); insect cell systems infected with virus (e.g., baculovirus); and plant cells infected by bacteria. The expression elements of these vectors vary in their strength and specificities. Depending upon the host-vector system utilized, any one of a number of suitable transcription and translation elements can be used.


Different genetic signals and processing events control many levels of gene expression (e.g., DNA transcription and messenger RNA (mRNA) translation).


Transcription of DNA is dependent upon the presence of a promotor which is a DNA sequence that directs the binding of RNA polymerase and thereby promotes mRNA synthesis. The DNA sequences of eucaryotic promotors differ from those of procaryotic promotors. Furthermore, eucaryotic promotors and accompanying genetic signals may not be recognized in or may not function in a procaryotic system, and, further, procaryotic promotors are not recognized and do not function in eucaryotic cells.


Similarly, translation of mRNA in procaryotes depends upon the presence of the proper procaryotic signals which differ from those of eucaryotes. Efficient translation of mRNA in procaryotes requires a ribosome binding site called the Shine-Dalgarno (“SD”) sequence on the mRNA. This sequence is a short nucleotide sequence of mRNA that is located before the start codon, usually AUG, which encodes the amino-terminal methionine of the protein. The SD sequences are complementary to the 3′-end of the 16S rRNA (ribosomal RNA) and probably promote binding of mRNA to ribosomes by duplexing with the rRNA to allow correct positioning of the ribosome. For a review on maximizing gene expression, see Roberts and Lauer, Methods in Enzymology, 68:473 (1979), which is hereby incorporated by reference.


Promotors vary in their “strength” (i.e. their ability to promote transcription). For the purposes of expressing a cloned gene, it is desirable to use strong promotors in order to obtain a high level of transcription and, hence, expression of the gene. Depending upon the host cell system utilized, any one of a number of suitable promotors may be used. For instance, when cloning in E. coli, its bacteriophages, or plasmids, promoters such as the T7 phage promotor, lac promotor, trp promotor, recA promotor, ribosomal RNA promotor, the PR and PL promoters of coliphage lambda and others, including but not limited, to lacUV5, ompF, bla, lpp, and the like, may be used to direct high levels of transcription of adjacent DNA segments. Additionally, a hybrid trp-lacUV5 (tac) promotor or other E. coil promotors produced by recombinant DNA or other synthetic DNA techniques may be used to provide for transcription of the inserted gene.


Bacterial host cell strains and expression vectors may be chosen which inhibit the action of the promotor unless specifically induced. In certain operations, the addition of specific inducers is necessary for efficient transcription of the inserted DNA. For example, the lac operon is induced by the addition of lactose or IPTG (isopropylthio-beta-D-galactoside). A variety of other operons, such as trp, pro, etc., are under different controls.


Specific initiation signals are also required for efficient gene transcription and translation in procaryotic cells. These transcription and translation initiation signals may vary in “strength” as measured by the quantity of gene specific messenger RNA and protein synthesized, respectively. The DNA expression vector, which contains a promotor, may also contain any combination of various “strong” transcription and/or translation initiation signals. For instance, efficient translation in E. coli requires an SD sequence about 7-9 bases 5′ to the initiation codon (“ATG”) to provide a ribosome binding site. Thus, any SD-ATG combination that can be utilized by host cell ribosomes may be employed. Such combinations include but are not limited to the SD-ATG combination from the cro gene or the N gene of coliphage lambda, or from the E. coil tryptophan E, D, C, B or A genes. Additionally, any SD-ATG combination produced by recombinant DNA or other techniques involving incorporation of synthetic nucleotides may be used.


Once the isolated DNA molecule encoding the fragment of a hypersensitive response elicitor polypeptide or protein has been cloned into an expression system, it is ready to be incorporated into a host cell. Such incorporation can be carried out by the various forms of transformation noted above, depending upon the vector/host cell system. Suitable host cells include, but are not limited to, bacteria, virus, yeast, mammalian cells, insect, plant, and the like.


The present invention further relates to methods of imparting disease resistance to plants, enhancing plant growth, and/or effecting insect control for plants These methods involve applying the fragment of a hypersensitive response elicitor polypeptide or protein which does not elicit a hypersensitive response in a non-infectious form to all or part of a plant or a plant seed under conditions effective for the fragment to impart disease resistance, enhance growth, and/or control insects. Alternatively, these fragments of a hypersensitive response elicitor protein or polypeptide can be applied to plants such that seeds recovered from such plants themselves are able to impart disease resistance in plants, to enhance plant growth, and/or to effect insect control.


As an alternative to applying a fragment of a hypersensitive response elicitor polypeptide or protein to plants or plant seeds in order to impart disease resistance in plants, to effect plant growth, and/,or to control insects on the plants or plants grown from the seeds, transgenic plants or plant seeds can be utilized. When utilizing transgenic plants, this involves providing a transgenic plant transformed with a DNA molecule encoding a fragment of a hypersensitive response elicitor polypeptide or protein, which fragment does not elicit a hypersensitive response, and growing the plant under conditions effective to permit that DNA molecule to impart disease resistance to plants, to enhance plant growth, and/or to control insects. Alternatively, a transgenic plant seed transformed with a DNA molecule encoding a fragment of a hypersensitive response elicitor polypeptide or protein which fragment does not elicit a hypersensitive response can be provided and planted in soil. A plant is then propagated from the planted seed under conditions effective to permit that DNA molecule to impart disease resistance to plants, to enhance plant growth, and/or to control insects.


The embodiment of the present invention where the hypersensitive response elicitor polypeptide or protein is applied to the plant or plant seed can be carried out in a number of ways, including: 1) application of an isolated fragment or 2) application of bacteria which do not cause disease and are transformed with a gene encoding the fragment. In the latter embodiment, the fragment can be applied to plants or plant seeds by applying bacteria containing the DNA molecule encoding the fragment of the hypersensitive response elicitor polypeptide or protein which fragment does not elicit a hypersensitive response. Such bacteria must be capable of secreting or exporting the fragment so that the fragment can contact plant or plant seed cells. In these embodiments, the fragment is produced by the bacteria in plants or on seeds or just prior to introduction of the bacteria to the plants or plant seeds.


The methods of the present invention can be utilized to treat a wide variety of plants or their seeds to impart disease resistance, enhance growth, and/or control insects. Suitable plants include dicots and monocots. More particularly, useful crop plants can include: alfalfa, rice, wheat, barley, rye, cotton, sunflower, peanut, corn, potato, sweet potato, bean, pea, chicory, lettuce, endive, cabbage, brussel sprout, beet, parsnip, turnip, cauliflower, broccoli, radish, spinach, onion, garlic, eggplant, pepper, celery, carrot, squash, pumpkin, zucchini, cucumber, apple, pear, melon, citrus, strawberry, grape, raspberry, pineapple, soybean, tobacco, tomato, sorghum, and sugarcane. Examples of suitable ornamental plants are: Arabidopsis thaliana, Sainipaulia, petunia, pelargonium, poinsettia, chrysanthemum, carnation, and zinnia.


With regard to the use of the fragments of the hypersensitive response elicitor protein or polypeptide of the present invention in imparting disease resistance, absolute immunity against infection may not be conferred, but the severity of the disease is reduced and symptom development is delayed. Lesion number, lesion size, and extent of sporulation of fungal pathogens are all decreased. This method of imparting disease resistance has the potential for treating previously untreatable diseases, treating diseases systemically which might not be treated separately due to cost, and avoiding the use of infectious agents or environmentally harmful materials.


The method of imparting pathogen resistance to plants in accordance with the present invention is useful in imparting resistance to a wide variety of pathogens including viruses, bacteria, and fungi. Resistance, inter alia, to the following viruses can be achieved by the method of the present invention: Tobacco mosaic virus and Tomato mosaic virus. Resistance, inter alia, to the following bacteria can also be imparted to plants in accordance with present invention: Pseudomonas solanacearum, Pseudomonas syringae pv. tabaci, and Xanthamonas campestris pv. pelargonil. Plants can be made resistant, inter alia, to the following fungi by use of the method of the present invention: Fusarium oxysporum and Phytophthora infestans.


With regard to the use of the fragments of the hypersensitive response elicitor protein or polypeptide of the present invention to enhance plant growth, various forms of plant growth enhancement or promotion can be achieved. This can occur as early as when plant growth begins from seeds or later in the life of a plant. For example, plant growth according to the present invention encompasses greater yield, increased quantity of seeds produced, increased percentage of seeds germinated, increased plant size, greater biomass, more and bigger fruit, earlier fruit coloration, and earlier fruit and plant maturation. As a result, the present invention provides significant economic benefit to growers. For example, early germination and early maturation permit crops to be grown in areas where short growing seasons would otherwise preclude their growth in that locale. Increased percentage of seed germination results in improved crop stands and more efficient seed use. Greater yield, increased size, and enhanced biomass production allow greater revenue generation from a given plot of land.


Another aspect of the present invention is directed to effecting any form of insect control for plants. For example, insect control according to the present invention encompasses preventing insects from contacting plants to which the hypersensitive response elicitor has been applied, preventing direct insect damage to plants by feeding injury, causing insects to depart from such plants, killing insects proximate to such plants, interfering with insect larval feeding on such plants, preventing insects from colonizing host plants, preventing colonizing insects from releasing phytotoxins, etc. The present invention also prevents subsequent disease damage to plants resulting from insect infection.


The present invention is effective against a wide variety of insects. European corn borer is a major pest of corn (dent and sweet corn) but also feeds on over 200 plant species including green, wax, and lima beans and edible soybeans, peppers, potato, and tomato plus many weed species. Additional insect larval feeding pests which damage a wide variety of vegetable crops include the following: beet armyworm, cabbage looper, corn ear worm, fall armyworm, diamondback moth, cabbage root maggot, onion maggot, seed corn maggot, pickleworm (melonworm), pepper maggot, tomato pinworm, and maggots. Collectively, this group of insect pests represents the most economically important group of pests for vegetable production worldwide.


The method of the present invention involving application of the fragment of a hypersensitive response elicitor polypeptide or protein, which fragment does not elicit a hypersensitive response, can be carried out through a variety of procedures when all or part of the plant is treated, including leaves, stems, roots, propagules (e.g., cuttings), etc. This may (but need not) involve infiltration of the fragment of the hypersensitive response elicitor polypeptide or protein into the plant. Suitable application methods include high or low pressure spraying, injection, and leaf abrasion proximate to when elicitor application takes place. When treating plant seeds or propagules (e.g., cuttings), in accordance with the application embodiment of the present invention, the fragment of the hypersensitive response elicitor protein or polypeptide, in accordance with present invention, can be applied by low or high pressure spraying, coating, immersion, or injection. Other suitable application procedures can be envisioned by those skilled in the art provided they are able to effect contact of the fragment with cells of the plant or plant seed. Once treated with the fragment of the hypersensitive response elicitor of the present invention, the seeds can be planted in natural or artificial soil and cultivated using conventional procedures to produce plants. After plants have been propagated from seeds treated in accordance with the present invention, the plants may be treated with one or more applications of the fragment of the hypersensitive response elicitor protein or polypeptide or whole elicitors to impart disease resistance to plants, to enhance plant growth, and/or to control insects on the plants.


The fragment of the hypersensitive response elicitor polypeptide or protein, in accordance with the present invention, can be applied to plants or plant seeds alone or in a mixture with other materials. Alternatively, the fragment can be applied separately to plants with other materials being applied at different times.


A composition suitable for treating plants or plant seeds in accordance with the application embodiment of the present invention contains a fragment of a hypersensitive response elicitor polypeptide or protein which fragment does not elicit a hypersensitive response in a carrier. Suitable carriers include water, aqueous solutions, slurries, or dry powders. In this embodiment, the composition contains greater than 500 nM of the fragment.


Although not required, this composition may contain additional additives including fertilizer, insecticide, fungicide, nematacide, and mixtures thereof. Suitable fertilizers include (NH4)2NO3. An example of a suitable insecticide is Malathion. Useful fungicides include Captan.


Other suitable additives include buffering agents, wetting agents, coating agents, and abrading agents. These materials can be used to facilitate the process of the present invention. In addition, the hypersensitive response eliciting fragment can be applied to plant seeds with other conventional seed formulation and treatment materials, including clays and polysaccharides.


In the alternative embodiment of the present invention involving the use of transgenic plants and transgenic seeds, a fragment of a hypersensitive response elicitor need not be applied topically to the plants or seeds. Instead, transgenic plants transformed with a DNA molecule encoding such a fragment are produced according to procedures well known in the art. The vector described above can be microinjected directly into plant cells by use of micropipettes to transfer mechanically the recombinant DNA. Crossway, Mol. Gen. Genetics, 202:179-85 (1985), which is hereby incorporated by reference. The genetic material may also be transferred into the plant cell using polyethylene glycol. Krens, et al., Nature, 296:72-74 (1982), which is hereby incorporated by reference.


Another approach to transforming plant cells with a gene which imparts resistance to pathogens is particle bombardment (also known as biolistic transformation) of the host cell. This can be accomplished in one of several ways. The first involves propelling inert or biologically active particles at cells. This technique is disclosed in U.S. Pat. Nos. 4,945,050, 5,036,006, and 5,100,792, all to Sanford et al., which are hereby incorporated by reference. Generally, this procedure involves propelling inert or biologically active particles at the cells under conditions effective to penetrate the outer surface of the cell and to be incorporated within the interior thereof. When inert particles are utilized, the vector can be introduced into the cell by coating the particles with the vector containing the heterologous DNA. Alternatively, the target cell can be surrounded by the vector so that the vector is carried into the cell by the wake of the particle. Biologically active particles (e.g., dried bacterial cells containing the vector and heterologous DNA) can also be propelled into plant cells.


Yet another method of introduction is fusion of protoplasts with other entities, either minicells, cells, lysosomes, or other fusible lipid-surfaced bodies. Fraley, et al., Proc. Natl. Acad. Sci. USA, 79:1859-63 (1982), which is hereby incorporated by reference.


The DNA molecule may also be introduced into the plant cells by electroporation. From et al., Proc. Natl. Acad. Sci. USA, 82:5824 (1985), which is hereby incorporated by reference. In this technique, plant protoplasts are electroporated in the presence of plasmids containing the expression cassette. Electrical impulses of high field strength reversibly permeabilize biomembranes allowing the introduction of the plasmids. Electroporated plant protoplasts reform the cell wall, divide, and regenerate.


Another method of introducing the DNA molecule into plant cells is to infect a plant cell with Agrobacterium tumefaciens or A. rhizogenes previously transformed with the gene. Under appropriate conditions known in the art, the transformed plant cells are grown to form shoots or roots, and develop further into plants. Generally, this procedure involves inoculating the plant tissue with a suspension of bacteria and incubating the tissue for 48 to 72 hours on regeneration medium without antibiotics at 25-28° C.


Agrobacterium is a representative genus of the Gram-negative family Rhizobiaceae. Its species are responsible for crown gall (A. tumefaciens) and hairy root disease (A. rhizogenes). The plant cells in crown gall tumors and hairy roots are induced to produce amino acid derivatives known as opines, which are catabolized only by the bacteria. The bacterial genes responsible for expression of opines are a convenient source of control elements for chimeric expression cassettes. In addition, assaying for the presence of opines can be used to identify transformed tissue.


Heterologous genetic sequences can be introduced into appropriate plant cells, by means of the Ti plasmid of A. lumefaciens or the Ri plasmid of A. rhizogenes. The Ti or Ri plasmid is transmitted to plant cells on infection by Agrobacterium and is stably integrated into the plant genome. J. Schell, Science, 237:1176-83 (1987), which is hereby incorporated by reference.


After transformation, the transformed plant cells must be regenerated.


Plant regeneration from cultured protoplasts is described in Evans et al., Handbook of Plant Cell Cultures. Vol. 1: (MacMillan Publishing Co., New York, 1983); and Vasil I. R. (ed.), Cell Culture and Somatic Cell Genetics of Plants, Acad. Press, Orlando, Vol. I, 1984, and Vol. III (1986), which are hereby incorporated by reference.


It is known that practically all plants can be regenerated from cultured cells or tissues, including but not limited to, all major species of sugarcane, sugar beets, cotton, fruit trees, and legumes.


Means for regeneration vary from species to species of plants, but generally a suspension of transformed protoplasts or a petri plate containing transformed explants is first provided. Callus tissue is formed and shoots may be induced from callus and subsequently rooted. Alternatively, embryo formation can be induced in the callus tissue. These embryos germinate as natural embryos to form plants. The culture media will generally contain various amino acids and hormones, such as auxin and cytokinins. It is also advantageous to add glutamic acid and proline to the medium, especially for such species as corn and alfalfa. Efficient regeneration will depend on the medium, on the genotype, and on the history of the culture. If these three variables are controlled, then regeneration is usually reproducible and repeatable.


After the expression cassette is stably incorporated in transgenic plants, it can be transferred to other plants by sexual crossing. Any of a number of standard breeding techniques can be used, depending upon the species to be crossed.


Once transgenic plants of this type are produced, the plants themselves can be cultivated in accordance with conventional procedure with the presence of the gene encoding the fragment of the hypersensitive response elicitor resulting in disease resistance, enhanced plant growth, and/or control of insects on the plant. Alternatively, transgenic seeds or propagules (e.g., cuttings) are recovered from the transgenic plants. The seeds can then be planted in the soil and cultivated using conventional procedures to produce transgenic plants. The transgenic plants are propagated from the planted transgenic seeds under conditions effective to impart disease resistance to plants, to enhance plant growth, and/or to control insects. While not wishing to be bound by theory, such disease resistance, growth enhancement, and/or insect control may be RNA mediated or may result from expression of the polypeptide or protein fragment.


When transgenic plants and plant seeds are used in accordance with the present invention, they additionally can be treated with the same materials as are used to treat the plants and seeds to which a fragment of a hypersensitive response elicitor in accordance with the present invention is applied. These other materials, including a fragment of a hypersensitive response elicitor in accordance with the present invention, can be applied to the transgenic plants and plant seeds by the above-noted procedures, including high or low pressure spraying, injection, coating, and immersion. Similarly, after plants have been propagated from the transgenic plant seeds, the plants may be treated with one or more applications of the fragment of a hypersensitive response elicitor in accordance with the present invention to impart disease resistance, enhance growth, and/or control insects. Such plants may also be treated with conventional plant treatment agents (e.g., insecticides, fertilizers, etc.).


EXAMPLES
Example 1
Bacterial Strains and Plasmids


Escherichia coli strains used in the following examples include DH5α and BL21(DE3) purchased from Gibco BRL (Grand Island, N.Y.) and Stratagene (La Jolla, Calif.), respectively. The pET28(b) vector was purchased from Novagen (Madison, Wis.). Eco DH5α/2139 contained the complete hrpN gene. The 2139 construct was produced by D. Bauer at Cornell University. The hrpN gene was cleaved from the 2139 plasmid by restriction enzyme digestion with HindIII, then purified from an agarose gel to serve as the DNA template for PCR synthesis of truncated hrpN clones. These clones were subsequently inserted into the (His)6 vector pET28(b) which contained a Kanr gene for selection of transformants.


Example 2
DNA Manipulation

Restriction enzymes were obtained from Boehringer Mannheim (Indianapolis, Ind.) or Gibco BRL. T4 DNA ligase, Calf Intestinal Alkaline Phosphatase (CIAP), and PCR Supermix198 were obtained from Gibco BRL. The QIAprep Spin Miniprep Kit, the Qiagen Plasmid Mini Kit, and the QIAquick PCR Purification Kit were purchased from Qiagen (Hilden, Germany). The PCR primers were synthesized by Lofstnd Labs Limited (Gaithersburg, Md.). The oligopeptides were synthesized by Bio-Synthesis, Inc. (Lewisville, Tex.). All DNA manipulations such as plasmid isolation, restriction enzyme digestion, DNA ligation, and PCR were performed according to standard techniques (Sambrook, et al., Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1989)) or protocols provided by the manufacturer.


Example 3
Fragmentation of hrpN Gene

A series of N-terminal and C-terminal truncated hrpN genes and internal fragments were generated via PCR (FIG. 1). The full length hrpN gene was used as the DNA template and 3′ and 5′ primers were designed for each truncated clone (FIG. 2). The 3′ primers contained an NdeI enzyme cutting site which contained the start codon ATG (methionine) and the 5′ primers contained the stop codon TAA and a HindIII enzyme cutting site for ligation into the pET28(b) vector. PCR was carried out in 0.5 ml tubes in a GeneAmp™ 9700 (Perkin-Elmer, Foster City, Calif.). 45 μl of Supermix™ (Life Technology, Gaithersburg, Md.) were mixed with 20 pmoles of each pair of DNA primers, 10 ng of full length harpin DNA, and deionized H2O to a final volume of 50 μl. After heating the mixture at 95° C. for 2 min, the PCR was performed for 30 cycles at 94° C. for 1 min, 58° C. for 1 min and 72° C. for 1.5 min. The PCR products were verified on a 6% TBE gel (Novex, San Diego, Calif.). Amplified DNA was purified with the QIAquick PCR purification kit, digested with Nde I and Hind III at 37° C. for 5 hours, extracted once with phenol:chloroform:isoamylalcohol (25:25:1) and precipitated with ethanol. 5 μg of pET28(b) vector DNA were digested with 15 units of NdeI and 20 units of Hind III at 37° C. for 3 hours followed with CIAP treatment to reduce the background resulting from incomplete single enzyme digestion. Digested vector DNA was purified with the QIAquick PCR purification kit and directly used for ligation. Ligation was carried out at 14-16° C. for 5-12 hours in a 15 μl mixture containing ca. 200 ng of digested pET28(b), 30 ng of targeted PCR fragment, and 1 unit T4 DNA ligase. 5-7.5 μl of ligation solution were added to 100 μl of DH5α competent cells in a 15 ml Falcon tube and incubated on ice for 30 min. After a heat shock at 42° C. for 45 seconds, 0.9 ml SOC solution or 0.45 ml LB media were added to each tube and incubated at 37° C. for 1 hour. 20, 100, and 200 μl of transformed cells were placed onto LB agar with 30 μg/ml of kanamycin and incubated at 37° C. overnight. Single colonies were transferred to 3 ml LB-media and incubated overnight at 37° C. Plasmid DNA was prepared from 2 ml of culture with the QIAprep Miniprep kit (QIAGEN, Hilden, Germany). The DNA from the transformed cells was analyzed by restriction enzyme digestion or partial sequencing to verify the success of the transformations. Plasmids with the desired DNA sequence were transferred into the BL21 strain using the standard chemical transformation method as indicated above. A clone containing the fill length harpin protein in the pET28(b) vector was generated as a positive control, and a clone with only the pET28(b) vector was generated as a negative control.


Example 4
Expression of Hypersensitive Response Elicitor Truncated Proteins


Escherichia coli BL21 (DE3) strains containing the hrpN clones were grown in Luria broth medium (5 g/L Difco Yeast extract, 10 g/L Difco Tryptone, 5 g/L NaCl, and 1 mM NaOH) containing 30 μg/ml of kanamycin at 37° C. overnight. The bacteria were then inoculated into 100 volumes of the same medium and grown at 37° C. to an OD620 of 0.6-0.8. The bacteria were then inoculated into 250 volumes of the same medium and grown at 37° C. to an OD620 of ca. 0.3 or 0.6-0.8. One milli molar IPTG was then added and the cultures grown at 19° C. overnight (ca. 18 hours). Not all of the clones were successfully expressed using this strategy. Several of the clones had to be grown in Terrific broth (12 g/L Bacto Tryptone, 24 g/L Bacto yeast, 0.4% glycerol, 0.17 M KH2PO4, and 0.72 K2HPO4), and/or grown at 37° C. after IPTG induction, and/or harvested earlier than overnight (Table 1).









TABLE 1







Expression of hypersensitive response elicitor truncated proteins













amino acids







(SEQ ID
Growth
Induction
Expres-


Fragment
NO: 23)
medium
O.D.
sion temp.
Harvest time





 1
 1-403
LB
ca. 0.3 or
19° C. or
16-18 hr


(+ control)


0.6-0.8
25° C.


 2

LB and
ca. 0.3 or
19° C. and
16-18 hr


(+ control)

TB
0.6-0.8
37° C.


 3
105-403
LB
0.6-0.8
19° C.
16-18 hr


 4
169-403
TB
ca. 0.3
19° C.
16-18 hr


 5
210-403
LB or
0.6-0.8
19° C.
16-18 hr




M9ZB


 6
257-403
LB or
0.6-0.8
19° C.
16-18 hr




M9ZB


 7
343-403
LB
ca. 0.3
19° C.
5 hr


 8
 1-75
TB
ca. 0.3
37° C.
16-18 hr


 9
 1-104
TB
ca. 0.3
37° C.
16-18 hr


10
 1-168
TB
ca. 0.3
37° C.
16-18 hr


11
 1-266
LB
ca. 0.3
37° C.
4 hr


12
 1-342
LB
0.6-0.8
19° C.
16-18 hr


13
 76-209
LB
ca. 0.3
37° C.
5 hr


14
 76-168
TB or
ca. 0.3
37° C.
3 hr or




LB


16-18 hr


15
105-209
M9ZB
ca. 0.3
37° C.
3 hr









16
169-209
no expression












17
105-168
LB
ca. 0.3
37° C.
3-5 hr


18
 99-209
LB
ca. 0.3
37° C.
3 hr


19
137-204
LB
ca. 0.3
37° C.
3 hr


20
137-180
LB
ca. 0.3
37° C.
16-18 hr.


21
105-180
LB
ca. 0.3
37° C.
3 hr









22
150-209
no expression


23
150-180
no expression









Example 5
Small Scale Purification of Hypersensitive Response Elicitor Truncated Proteins (Verification of Expression)

A 50 ml culture of a hrpN clone was grown as above to induce expression of the truncated protein. Upon harvesting of the culture, 1.5 ml of the cell suspension were centrifuged at 14,000 rpm for 5 minutes, re-suspended in urea lysis buffer (8 M urea, 0.1 M Na2HPO4, and 0.01 M Tris—pH 8.0), incubated at room temperature for 10 minutes, then centrifuged again at 14,000 rpm for 10 minutes, and the supernatant saved. A 50 μl aliquot of a 50% slurry of an equilibrated (His)6-binding nickel agarose resin was added to the supernatant and mixed at 4° C. for one hour. The nickel agarose was then washed three times with urea washing buffer (8 M urea, 0.1 M Na2HPO4, and 0.01 M Tris—pH 6.3), centrifuging at 5,000 rpm for five minutes between washings. The protein was eluted from the resin with 50 μl of urea elution buffer (8 M urea, 0.1 M Na2HPO4, 0.01 M Tris, and 0.1 M EDTA—pH 6.3). The eluate was run on a 4-20%, a 16%, or a 10-20% Tris-Glycine pre-cast gel depending upon the size of the truncated protein to verify the expression.


Example 6
Induction of HR in Tobacco

A 1.5 ml aliquot from the 50 ml cultures grown for small scale purification of the truncated proteins was centrifuged at 14,000 rpm for four minutes and re-suspended in an equal volume of 5 mM potassium phosphate buffer, pH 6.8. The cell suspension was sonicated for ca. 30 seconds then diluted 1:2 and 1:10 with phosphate buffer. Both dilutions plus the neat cell lysate were infiltrated into the fourth to ninth leaves of 10-15 leaf tobacco plants by making a hole in single leaf panes and infiltrating the bacterial lysate into the intercellular leaf space using a syringe without a needle. The HR response was recorded 24-48 hr post infiltration. Tobacco (Nicotiana tabacum v. Xanthi) seedlings were grown in an environmental chamber at 20-25° C. with a photoperiod of 12-h light/12-h dark and ca. 40% RH. Cell lysate was used for the initial HR assays (in order to screen the truncated proteins for HR activity) as the small scale urea purification yielded very little protein which was denatured due to the purification process.


Example 7
Large Scale Native Purification of Hypersensitive Response Elicitor Truncated Proteins for Comprehensive Biological Activity Assays

Six 500 ml cultures of a hrpN clone were grown as described earlier to induce expression of the truncated protein. Upon harvesting of the culture, the cells were centrifuged at 7,000 rpm for 5 minutes, re-suspended in imidazole lysis buffer (5 mM imidazole, 0.5 M NaCl, 20 mM Tris) plus Triton X-100 at 0.05% and lysozyme at 0.1 mg/ml, incubated at 30° C. for 15 minutes, sonicated for two minutes, centrifuged again at 15,000 rpm for 20 minutes, and the supernatant was saved. A 4 ml aliquot of a 50% slurry of an equilibrated (His)6-binding nickel agarose resin was added to the supernatant and mixed at 4° C. for ca. four hours. The nickel agarose was then washed three times with imidazole washing buffer (20 mM imidazole, 0.5 M NaCl, and 20 mM Tris), centrifuging at 5,000 rpm for five minutes between washings, then placed in a disposable chromatography column. The column was centrifuged at 1100 rpm for one minute to remove any residual wash buffer and then the protein was eluted from the resin with 4 ml of imidazole elution buffer (1 M imidazole, 0.5 M NaCl, and 20 mM Tris) by incubating the column with the elution buffer for ten minutes at room temperature and then centrifuging the column at 1100 rpm for one minute. The eluate was run on a 4-20%, a 16%, or a 10-20% Tris-Glycine pre-cast gel depending upon the size of the truncated protein to verify the expression. The concentration of the proteins was determined by comparison of the protein bands with a standard protein in the Mark 12 molecular weight marker.


Example 8
Large Scale Urea Purification of Hypersensitive Response Elicitor Truncated Proteins For Comprehensive Biological Activity Assay

The procedure was the same as the large scale native purification except that urea lysis buffer, washing buffer, and elution buffer were used, and the cells were not sonicated as in the native purification. After purification, the protein was renatured by dialyzing against lower and lower concentrations of urea over an eight hour period, then dialyzing overnight against 10 mM Tris/20 mM NaCl. The renaturing process caused the N-terminal proteins to precipitate. The precipitated 1-168 protein was solubilized by the addition of 100 mM Tris-HCl at pH 10.4 then heating the protein at 30° C. for ca. one hour. The concentration of the protein was determined by comparison of the protein bands with a standard protein in the Mark 12 molecular weight marker. The 1-75 and 1-104 protein fragments were not successfully solubilized using this strategy so they were sonicated in 100 mM Tris-HCl at pH 10.4 to solubilize as much of the protein as possible and expose the active sites of the protein for the biological activity assays.


Example 9
Induction of Growth Enhancement (GE)

Sixty tomato (Lycopersicon spp. cv. Marglobe) seeds were soaked overnight in 10 and 20 μg/ml of the truncated protein diluted with 5mM potassium phosphate buffer, pH 6.8. The next morning, the sixty seeds were sewn in three pots and 12-15 days later and again 18-20 days later the heights of the 10 tallest tomato plants per pot were measured and compared with the heights of the control plants treated only with phosphate buffer. Analyses were done on the heights to determine if there was a significant difference in the height of the plants treated with the truncated proteins compared with the buffer control, and thereby determine whether the proteins induced growth enhancement.


Example 10
Induction of Systemic Acquired Resistance (SAR)

Three tobacco (Nicotiana tabacum cv. Xanthi) plants with 8-12 leaves (ca. 75 day old plants) were used in the assay. One leaf of the tobacco plants was covered up and the rest of the leaves were sprayed with ca. 50 ml of a 20 μg/ml solution of the truncated proteins diluted with 5 mM potassium phosphate buffer. Five to seven days later two leaves (the unsprayed leaf and the sprayed leaf opposite and just above the unsprayed leaf) were inoculated with 20 μl of a 1.8 μg/ml solution of TMV along with a pinch of diatomaceous earth by rubbing the mixture along the top surface of the leaves. The TMV entered the plants through tiny lesions made by the diatomaceous earth. Ca. 3-4 days post TMV inolucation, the number of TMV lesions was counted on both leaves compared with the number of lesions on the negative control buffer treated leaves. Analyses were done to determine the efficacy of reducing the number of TWV lesions by the protein fragents compared to the buffer control. Percentage of efficacy was calculated as: Reduction in TMV lesions (% efficacy)=100×(1−mean # of lesions on treated leaves/mean # of lesions on buffer control leaves).


Example 11
Expression of Hypersensitive Response Elicitor Truncated Proteins

The small scale expression and purification of the fragment proteins was done expression and HR activity (Table 2).









TABLE 2







Expression and HR activity of hypersensitive response elicitor


truncated proteins (small scale screening)











Amino Acids




Fragment #
(SEQ ID NO:23)
Expression
HR activity





1(+control)
 1-403
+
+


2(−control)

background protein only



 3
105-403
+
+


 4
169-403
+



 5
210-403
+



 6
267-403
+



 7
343-403
+/−



 8
 1-75
+



 9
 1-104
+
+/−


10
 1-168
+
+


11
 1-266
+
+


12
 1-342
+
+


13
 76-209
+
+


14
 76-168
+



15
105-209
+
+


16
169-209




17
105-168
+



18
 99-209
+
+


19
137-204
+
+


20
137-180
+
+


21
105-180
+
+


22
150-209




23
150-180












All of the cloned fragment proteins were expressed at varying levels except for three small fragment (amino acids 169-209, 150-209, and 150-180). Fragments 210-403 and 267-403 were expressed very well, yielding a high concentration of protein from a small scale purification, resulting in a substantial protein band on SDS gel electrophoresis. Other fragments (such as a.a. 1-168 and 1-104) produced much less protein, resulting in faint protein bands upon electrophoresis. It was difficult to determine whether fragment 343-403, the smallest C-terminal protein, was expressed, as there were several background proteins apparent on the gel, in addition to the suspected 343-403 protein. The positive and negative control proteins, consisting of the full length hypersensitive response elicitor protein and only background proteins, respectively, were tested for expression and HR activity as well.


The large scale expression and purification of the fragment proteins was done to determine the level of expression and titer of the HR activity (Table 3).









TABLE 3







Expression level and HR titer of hypersensitive response elicitor


truncated proteins (large sale purification)











Amino acids




Fragment #
(SEQ ID NO: 23)
Expression
HR titer













1(+control)
 1-403
 3.7 mg/ml
5-7 μg/ml 


2(−control)


1:2 dilution 


 4
169-403
 2 mg/ml



 5
210-403
 5 mg/ml



 6
267-403
 4 mg/ml



 7
343-402
200 μg/ml



 8
 1-75
 50 μg/ml



 9
 1-104
 50 μg/ml
3 μg/ml





(1:16 dilution)


10
 1-168
 1 mg/ml
1 μg/ml


13
 76-209
 2.5 mg/ml
5 μg/ml


14
 76-168
 2 mg/ml



15
105-209
 5 mg/ml
5-10 μg/ml  


17
105-168
250 μg/ml



19
137-204
 3.6 mg/ml
3.5 μg/ml  


20
137-180
250 μg/ml
16 μg/ml 










The truncated proteins deemed to be the most important in characterizing the hypersensitive response elicitor were chosen for large scale expression. The positive control (full length hypersensitive response elicitor) was expressed at a relatively high level at 3.7 mg/ml. All of the C-terminal proteins were expressed at relatively high levels from 2-5 mg/ml, except for fragment 343-403 as discussed earlier. The N-terminal fragments were expressed very well also; however, during the purification process, the protein precipitated and very little was resolubilized. The concentrations in Table 3 reflect only the solubilized protein. The internal fragments were expressed in the range of 2-3.6 mg/ml. It was extremely difficult to determine the concentration of fragment 105-168 (it was suspected that the concentration was much higher than indicated), as the protein bands on the SDS gel were large, but poorly stained. The negative control contained several background proteins as expected, but no obviously induced dominant protein.


Example 12
Induction of HR in Tobacco

The full length positive control protein elicited HR down to only 5-7 μg/ml. The negative control (pET 28) imidazole purified “protein”—which contained only background proteins—elicited an HR response down to the 1:2 dilution, which lowered the sensitivity of the assay as the 1:1 and 1:2 dilutions could not be used. This false HR was likely due to an affinity of the imidazole used in the purification process to bind to one or several of the background proteins, thereby not completely dialyzing out. Imidazole at a concentration of ca. 60 mM did elicit a false HR response.


One definitive domain encompassing a small internal region of the protein from aa. 137-180 (SEQ ID NO: 23), a mere 44 a.a, is identified as the smallest HR domain. The other potential HR domain is thought to be located in the N-terminus of the protein from a. a1-104 (possibly a.a 1-75) (SEQ ID NO: 23). It was difficult to confirm or narrow down the N-terminus HR domain due to the difficulties encountered in purifying these fragment proteins. The N-terminus fragment proteins had to be purified with urea as no protein was recovered when the native purification process was used. Consequently, these proteins precipitated during the renaturing process and were difficult or nearly impossible to get back into solution, thereby making it hard to run the proteins through the HR assay, as only soluble protein is able to elicit HR. Difficulty narrowing the N-terminus HR domain was only compounded by the fact that the negative control elicited false HR at the low dilution levels thereby reducing the sensitivity of the assay.


Surprisingly, when the internal HR domain was cleaved between a.a. 168 and 169 (fragments 76-168 and 105-168) (SEQ ID NO: 23) the fragment lost its HR activity. This suggests that the HR activity of fragment 1-168 (SEQ ID NO: 23) should not be attributed to the internal HR domain, but rather to some other domain, leading to the assumption that there was likely a second HR domain to be found in the N-terminal region of the protein. However, as discussed earlier it was difficult to confirm this assumption.


The hypersensitive response elicitor C-terminus (a.a. 210-403 (SEQ ID NO: 23)) did not contain an HR domain. It did not elicit HR at a detectable level using the current HR assay. Even the large C-terminal fragment from a.a. 169-403 (SEQ ID NO: 23) did not elicit HR even though it contained part of the internal HR domain. As stated above, cleaving the protein between amino acids 168 and 169 (SEQ ID NO: 23) causes a loss of HR activity.


Because some of the small cloned proteins with 61 a.a. or less were not expressed, several oligopeptides were synthesized with 30 a.a. to narrow down the functional region of the internal HR domain. The oligopeptides were synthesized within the range of a.a. 121-179 (SEQ ID NO: 23). However, these oligos did not elicit HR. It was not expected that there would be an HR from oligos 137-166, 121-150, and 137-156 (SEQ ID NO: 23) as these fragments did not contain the imperative amino acids 168 and 169 (SEQ ID NO: 23). It was expected that the oligo 150-179 (SEQ ID NO: 23) would elicit an HR. It is possible that 30 a.a. is too small for the protein to elicit any activity due to a lack of folding and, therefore, a lack of binding or that during the synthesis of the peptides important amino acids were missed (either in the process, or simply by the choice of which 30 amino acids to synthesize) and, therefore, the fragments would not be able to elicit HR.


Example 13
Induction of Plant Growth Enhancement (PGE)

The C-terminal fragments enhanced the growth of tomato by 9% to 2 1%. The N-terminal fragments enhanced the growth of tomato by 4% to 13%. The internal fragments enhanced growth by 9% to 20%. The 76-209 fragment enhanced growth by 18% at a concentration of 60 μg/ml, but not at the typical 20 μg/ml. This was attributed to the inaccuracy of the quantification process (Table 4).












TABLE 4







PGE ht>buffer
PGE ht>buffer


Fragment #
Amino acids
@10 μg/ml
@20 μg/ml


















1(+control)
 1-403
12%
11%


2(−control)

−3%
−2%


 4
169-403
9%
12%


 5
210-403
13%
14%





16% @ 40 μg/ml


 6
267-403
21%
21%





23% @ 40 μg/ml


 7
343-403
7%
 7%


 9
 1-104
4%
 8%


10
 1-168
13%
 5%


13
 76-209
7%
 4%





18% @ μg/ml


14
 76-168
18%
20%


15
105-209
14%
19%


17
105-168
19%
16%


19
137-204
11%
13%


20
137-180

 9%





*A height greater than 10% above the buffer control was necessary to pass the PGE assay.







The oligopeptides enhanced growth from 7.4% to 17.3% (Table 5).














TABLE 5









TMV
PGE


Fragment
Amino acids
Expression
HR titer
efficacy
ht>buffer




















oligo
150-179
NA

72.9%
10.1%


oligo
137-166
NA

61.2%
12.0%


oligo
121-150
NA

60.0%
17.3%


oligo
137-156
NA

−87.7%
7.4%










The data suggests that there is more than one PGE domain, although the C-terminal and internal domains appear to be dominant over the N-terminal domain, as the N-terminal fragments enhanced growth the least amount.


Example 14
Induction of Systemic Acquired Resistance (SAR)

All of the hypersensitive response elicitor fragments tested to date appear to have 60% effilcacy or greater, except for the oligopeptide 137-156 (Tables 5 and 6).













TABLE 6









Efficacy of TMV



Fragment #
Amino acids
control









1 (+control)
 1-403
84% & 72%



2 (−control)

40% & 31%



 4
169-403
64% & 79%



 5
210-403
77% and 78%



 6
267-403
70% and 72%



 9
 1-104
82%



 10
 1-168
69%



13
 76-209
44% and 84%



14
 76-168
83% & 87%



15
105-209
57% and 67%



17
105-168
89%



19
137-204
89% & 77%



20
137-180
64% & 58%











These data suggest that there are multiple SAR domains within the protein.


Example 15
Relationship Between HR, PGE, and SAR

It is clear that the hypersensitive response activity is separable from the plant growth enhancement activity. The C-terminal fragments clearly enhance the growth of tomato by ca. 20% at a concentration of only 20 μg/ml, but these same fragments were not able to elicit HR in tobacco, even at higher concentrations than 200 μg/ml. The SAR activity also appears to be separable from the HR activity. This finding is highly significant for future work on transgenic applications of the hypersensitive response elicitor technology. The fragments that induce PGE and/or SAR but do not elicit HR will be imperative for this technology, as constitutive expression of even low levels of an HR elicitor might kill a plant.


Example 16
Non-HR Eliciting Fragments Derived from the Hypersensitive Response Elicitor from Pseudomonas syringae pv. syringae Induce Resistance in Tobacco to TMV and Promote the Growth of Tomato

To test whether non-HR eliciting fragments derived from HrpZ, the hypersensitive response elicitor from Pseudomonas syringae pv. syringae, is able to induce disease resistance, several fragment constructs were made and the expressed fragment proteins were tested for HR elicitation and disease resistance induction in tobacco and growth promotion in tomato.


The following segments of hrpZ, the gene encoding the hypersensitive response elicitor from Pseudomonas syringae pv. syringae, were amplified by PCR using Pfu Turbo (Stratagene): Regions coding for amino acids 152-190, aa 152-294, aa 190-294, aa 301-341, and full length HrpZ (aa 1-341). The DNA fragments were cloned into pCAL-n (Stratagene) to create C-terminal fusion proteins to the calmodulin-binding peptide. pCAL-n was chosen, because the fusion protein could be easily and gently purified on calmodulin resin. The DNA was transformed into E. coil DH5α, and the correct clones were identified. The clones were then transferred to E. coil BLR DE3 for protein expression. The bacteria were grown in Terrific Broth to an OD620 of 0.8-1.0. Protein expression was then induced with IPTG and the bacteria were incubated for an additional 3 h. All of the HrpZ fragments were able to be expressed this way.


Amino acid fragments 152-294 and 190-294 were chosen for further analysis and characterization. It was expected that the fragment 152-294 contained a domain that elicited the HR, while fragment 190-294 contained no domain that elicited the HR. The cultures were spun down, and the bacteria resuspended in 40 ml of 10 mM Tris pH 8.0. Twenty μl of antifoam and 40 μl of 200 mM PMSF were added, and the bacteria was sonicated to break open the cells. The bacterial debris was removed by centrifugation, and the supernatant was placed in a boiling water bath for 10 min. The precipitate was removed by centrifugation and the supernatant, a crude protein preparation, was retained for tests.


Fifteen μl of each supernatant was run on a gel and stained to determine if the protein was present. It was estimated that about five times as much of the 152-294 fragment was present as the 190-294 fragment. Several dilutions of each preparation were infiltrated into tobacco leaves on two plants for HR tests (Table 7). As shown in Table 7, the 152-294 fragment elicited an HR, but the 190-294 fragment did not.









TABLE 7







HR test results of HrpZ fragments










Dilution of Fragment Preparationa












HrpZ Fragment
1:2
1:5
1:25
1:125





152-294
+,+b
+,+
+,+
−,−


190-294
−,−
−,−
−,−
−,−






aThe preparations were diluted with MilliQ water.




bThe results are indicated for each of two plants. +, HR; −, no HR.







The fragment preparations were then tested for inducing resistance to TMV and for growth enhancement. Due to the difference in concentration of the HrpZ fragments, the 152-294 preparation was diluted 40-fold and the 190-294 preparation was diluted 8-fold. The results showed that the 190-294 aa fragment reduced the number of TMV lesions by 85% in comparison to buffer controls (Table 8). In contrast, the 152-294 aa fragment reduced the number of TMV lesions by only 55%. As also shown in Table 8, plants treated with the 152-294 aa fragment grew 4.64% more than buffer treated plants, while plants treated with the 190-294 aa fragment grew 2.62% more than the buffer treated plants.









TABLE 8







HR test, TMV, and PGE test results













PGE(% > buffer


HrpZ Fragment
HR elicitationa
TMV (% efficacy)b
ht)c





152-294
+
54.64
4.64


190-294

85.25
2.62






a+, elicits HR in tobacco leaves; −, no HR in tobacco leaves.




b% reduction in TMV lesions in unsprayed leaf of tobacco.




c% greater height than buffer sprayed plants.








The results of these tests show that amino acids 152-190 appear to be involved in HR elicitation, because their removal eliminated the ability to elicit the HR. Both fragment preparations achieved disease control and growth enhancement. Thus, the ability to elicit the HR is not the determining factor for reduction in TMV infection and growth enhancement.


Example 17
Use of 13 Amino Acid Peptide Derived from Phytophihora megasperma Stimulates Tomato Seedling Growth

Parsley leaves develop a typical resistance reaction against the soybean pathogen Phytophthora megasperma comprising hypersensitive cell death, defense related gene activation, and phytoalexin formulation. Several years ago, a 42 kDa glycoprotein elicitor was purified from the fungal culture filtrate of Phytophthora megasperma (Parker et al., “An Extracellular Glycoprotein from Phytophthora megasperma f.sp. glycinea Elicits Phytoalexin Synthesis in Cultured Parsley Cells and Protoplasts,” Mol. Plant Microbe Interact. 4:19-27 (1991), which is hereby incorporated by reference). Then, an oligopeptide of 13 amino acid was identified within the 42 kDa glycoprotein. The 13 amino acids peptide appeared to have similar biological activity as that of the full length glycoprotein (42 kDa). It is sufficient to elicit a complex defense response in parsley cells including H+/Ca2+ influxes, K+/Cl− effluxes, active oxygen production, SAR gene induction, and phytoalexin compound accumulation (Numberger et al., “High Affinity Binding of a Fungal Oligopeptide Elicitor to Parsley Plasma Membranes Triggers Multiple Defense Response,” Cell 78:449-460 (1994), which is hereby incorporated by reference).


To test if the 13 amino acid peptide derived from the 42 kDa protein also enhanced plant growth, 20 mg of the oligopeptide was synthesized from Biosynthesis Corp. The synthesized sequence of the peptide is NH2-Val-Trp-Asn-Gln-Pro-Val-Arg-Gly-Phe-Lys-Val-Tyr-Glu-COOH (SEQ ID NO: 39). The synthesized peptide was resuspended in 10 ml of 5 mM potassium phosphate buffer and, then, diluted to 1 and 100 ng/ml with the same buffer. About 100 tomato seeds (variety, Marglobe) were submerged in 20 ml of peptide solution overnight. The soaked seeds were planted in an 8 inch pot with artificial soil. Seeds soaked in the buffer without the peptide were used as a control. After seedlings emerged and the first two true leaves fully expanded, the height of the tomato seedlings was recorded. The peptide was not able to elicit the HR in tobacco and other tested plants. However, it had a profound effect on plant growth promotion. Table 9 shows that tomato seedlings treated with the peptide increased 12.6% in height, indicating that the fungal peptide derived from the 42 kDa glycroprotein can promote tomato seedling growth. Extended studies showed that the peptide also had similar growth effect in other crops including tobacco. Similar growth promotion effects were achieved by plants sprayed with the peptide solution.











TABLE 9






Height
Average


Treatment
of seedlings (cm)
(cm) % Change






















Buffer
6.0
6.0
6.0
5.5
5.5
5.55




5.5
5.5
5.0
5.0
5.5


Peptide Solution (100 ng/ml)
6.5
6.0
6.5
6.5
6.5
6.25
12.6



6.0
6.0
6.0
6.0
6.5









Although the invention has been described in detail for the purpose of illustration, it is understood that such detail is solely for that purpose, and variations can be made therein by those skilled in the art without departing from the spirit and scope of the invention which is defined by the following claims.

Claims
  • 1. An isolated fragment of a hypersensitive response elicitor protein or polypeptide, wherein said fragment is selected from the group consisting of a C-terminal fragment of the amino acid sequence of SEQ ID NO: 23 consisting of the following amino acids of SEQ ID NO: 23: 169 to 403, 210 to 403, 267 to 403, or 343 to 403; an internal fragment of the amino acid sequence of SEQ ID NO: 23 consisting of the following amino acids of SEQ ID NO: 23: 150 to 179, 137 to 166, 121 to 150, 76 to 168, 105 to 168, or 137 to 156; and a fragment of the amino acid sequence of SEQ ID NO: 31 consisting of amino acids 190 to 294 of SEQ ID NO: 31.
  • 2. An isolated fragment according to claim 1, wherein the fragment is a C-terminal fragment of the amino acid sequence of SEQ ID NO: 23 consisting of the following amino acids of SEQ ID NO: 23: 169 to 403, 210 to 403, 267 to 403, or 343 to 403.
  • 3. An isolated fragment according to claim 1, wherein the fragment is an internal fragment of the amino acid sequence of SEQ ID NO: 23 consisting of the following amino acids of SEQ ID NO: 23: 150 to 179, 137 to 166, 121 to 150, 76 to 168, 105 to 168, or 137 to 156.
  • 4. An isolated fragment according to claim 1, wherein the fragment consists of amino acids 190 to 294 of SEQ ID NO: 31.
  • 5. A method of imparting disease resistance to plants comprising: administering a fragment of a hypersensitive response elicitor protein or polypeptide according to claim 1 in a non-infectious form to a plant or plant seed under conditions effective to impart disease resistance to the plant or a plant grown from the plant seed.
  • 6. A method according to claim 5, wherein plants are treated during said administering.
  • 7. A method according to claim 5 further comprising: planting the seeds treated with the fragment of the hypersensitive response elicitor in natural or artificial soil and propagating plants from the seeds planted in the soil.
  • 8. A method of enhancing plant growth comprising: administering a fragment of a hypersensitive response elicitor protein or polypeptide according to claim 1 in a non-infectious form to a plant or plant seed under conditions effective to enhance plant growth of the plant or of a plant grown from the plant seed.
  • 9. A method according to claim 8, wherein plants are treated during said administering.
  • 10. A method according to claim 8 further comprising: planting the seeds treated with the fragment of the hypersensitive response elicitor in natural or artificial soil and propagating plants from the seeds planted in the soil.
  • 11. A method of insect control for plants comprising: administering a fragment of a hypersensitive response elicitor protein or polypeptide according to claim 1 in a non-infectious form to a plant or plant seed under conditions effective to control insects.
  • 12. A method according to claim 11, wherein plants are treated during said administering.
  • 13. A method according to claim 11 further comprising: planting the seeds treated with the fragment of the hypersensitive response elicitor in natural or artificial soil and propagating plants from the seeds planted in the soil.
  • 14. An isolated fragment according to claim 2, wherein the fragment has an amino acid sequence consisting of amino acids 169 to 403 of SEQ ID NO: 23.
  • 15. An isolated fragment according to claim 2, wherein the fragment has an amino acid sequence consisting of amino acids 210 to 403 of SEQ ID NO: 23.
  • 16. An isolated fragment according to claim 2, wherein the fragment has an amino acid sequence consisting of amino acids 267 to 403 of SEQ ID NO: 23.
  • 17. An isolated fragment according to claim 2, wherein the fragment has an amino acid sequence consisting of amino acids 343 to 403 of SEQ ID NO: 23.
  • 18. An isolated fragment according to claim 3, wherein the fragment has an amino acid sequence consisting of amino acids 150 to 179 of SEQ ID NO: 23.
  • 19. An isolated fragment according to claim 3, wherein the fragment has an amino acid sequence consisting of amino acids 137 to 166 of SEQ ID NO: 23.
  • 20. An isolated fragment according to claim 3, wherein the fragment has an amino acid sequence consisting of amino acids 121 to 150 of SEQ ID NO: 23.
  • 21. An isolated fragment according to claim 3, wherein the fragment has an amino acid sequence consisting of amino acids 76 to 168 of SEQ ID NO: 23.
  • 22. An isolated fragment according to claim 3, wherein the fragment has an amino acid sequence consisting of amino acids 105 to 168 of SEQ ID NO: 23.
  • 23. An isolated fragment according to claim 3, wherein the fragment has an amino acid sequence consisting of amino acids 137 to 156 of SEQ ID NO: 23.
Parent Case Info

This application claims benefit of U.S. Provisional Patent Application Ser. No. 60/103,050, filed Oct. 5, 1998.

US Referenced Citations (27)
Number Name Date Kind
4569841 Liu Feb 1986 A
4597972 Taylor Jul 1986 A
4601842 Caple et al. Jul 1986 A
4740593 Gonzalez et al. Apr 1988 A
4851223 Sampson Jul 1989 A
4886825 Ruess et al. Dec 1989 A
4931581 Schurter et al. Jun 1990 A
5057422 Bol et al. Oct 1991 A
5061490 Paau et al. Oct 1991 A
5135910 Blackburn et al. Aug 1992 A
5173403 Tang Dec 1992 A
5217950 Blackburn et al. Jun 1993 A
5243038 Ferrari et al. Sep 1993 A
5244658 Parke Sep 1993 A
5260271 Blackburn et al. Nov 1993 A
5348743 Ryals et al. Sep 1994 A
5494684 Cohen Feb 1996 A
5523311 Schurter et al. Jun 1996 A
5550228 Godiard et al. Aug 1996 A
5552527 Godiard et al. Sep 1996 A
5708139 Collmer et al. Jan 1998 A
5850015 Bauer et al. Dec 1998 A
5859324 Wei et al. Jan 1999 A
5977060 Zitter et al. Nov 1999 A
6001959 Bauer et al. Dec 1999 A
6235974 Qiu et al. May 2001 B1
6277814 Qiu et al. Aug 2001 B1
Foreign Referenced Citations (13)
Number Date Country
0 612 848 Feb 1994 EP
WO 9323532 Nov 1993 WO
WO 9401546 Jan 1994 WO
WO 9426782 Nov 1994 WO
WO 9519443 Jul 1995 WO
WO 9639802 Dec 1996 WO
WO 9815547 Apr 1998 WO
WO 9824297 Jun 1998 WO
WO 9832844 Jul 1998 WO
WO 9837752 Sep 1998 WO
WO 9854214 Dec 1998 WO
WO 9907206 Feb 1999 WO
WO 9907207 Feb 1999 WO
Provisional Applications (1)
Number Date Country
60103050 Oct 1998 US