Hypertension and inflammation: novel insights from human angiotensin type 1 receptor variants

Information

  • Research Project
  • 10090628
  • ApplicationId
    10090628
  • Core Project Number
    R01HL146628
  • Full Project Number
    5R01HL146628-03
  • Serial Number
    146628
  • FOA Number
    PA-18-484
  • Sub Project Id
  • Project Start Date
    4/1/2019 - 5 years ago
  • Project End Date
    1/31/2023 - a year ago
  • Program Officer Name
    VARAGIC, JASMINA
  • Budget Start Date
    2/1/2021 - 3 years ago
  • Budget End Date
    1/31/2022 - 2 years ago
  • Fiscal Year
    2021
  • Support Year
    03
  • Suffix
  • Award Notice Date
    2/3/2021 - 3 years ago

Hypertension and inflammation: novel insights from human angiotensin type 1 receptor variants

Angiotensin II (Ang II) contributes to the pathophysiological consequences of vascular and renal systems and angiotensin receptor type 1 (AT1R) mediates these effects. AT1R-signaling promotes renal sodium retention, vascular remodeling, hypertension, and end organ damage. Genetic variations that increase AT1R can cause pathological outcomes associated with renin angiotensin system (RAS) over-activity. However, genetically variable, transcriptional regulation of the human AT1R gene is poorly understood. Physiological variables like age and diet alter the transcriptional milieu of cells and result in feedback activation of genes. In this regard, the human AT1R gene has a haplotype block of four SNPs: T/A at -810, T/G at -713, A/C at -214, and A/G at -153 in its promoter. Variants -810T, -713T, -214A, and -153A always occur together (haplotype-I) and variants -810A, -713G, -214C, and -153G always occur together (haplotype-II). We have found that haplotype-I is associated with hypertension in Caucasians, and have generated transgenic mice with haplotypes-I and II of the hAT1R gene to study its transcriptional regulation. TG mice with haplotype-I have higher expression of hAT1R with increased blood pressure; suppression of antioxidant defenses (HO1, SOD1) and antiaging molecules (ATRAP, Klotho, Sirt3); and, increased expression of inflammatory (IL-6, TNF?, CRP, IL-1?) and oxidative markers (NOX1). On the other hand, diet-induced obesity and aging are also accompanied by systemic inflammation and redox imbalance that, in turn, alter the cellular transcriptional milieu. Our preliminary studies show that higher binding affinity of transcription factors like USF2, GR and STAT3 increase hAT1R expression in TG-mice with haplotype-I, as compared to haplotype- II. Since AT1R up-regulation can worsen the pathological outcomes of age and diet, understanding its gene- regulation has high translational value with significant clinical impact. Thus, in this application we will analyze how diet and age affect the cellular gene regulatory networks and alters hAT1R expression in our transgenic lines. To eliminate the confounding effects of the endogenous mAT1R gene, mA1TR-/--hAT1R-TG mice will be used. Thus, understanding the role of different physiological variables like age or diet on AT1R gene regulation is crucial to identify patients at increased risk of feedback AT1R overexpression. This can function as an ?early warning? towards timely and directed therapeutic intervention in patients with haplotype-I of the AT1R gene.

IC Name
NATIONAL HEART, LUNG, AND BLOOD INSTITUTE
  • Activity
    R01
  • Administering IC
    HL
  • Application Type
    5
  • Direct Cost Amount
    250000
  • Indirect Cost Amount
    160000
  • Total Cost
    410000
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    837
  • Ed Inst. Type
    SCHOOLS OF MEDICINE
  • Funding ICs
    NHLBI:410000\
  • Funding Mechanism
    Non-SBIR/STTR RPGs
  • Study Section
    ZRG1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    NEW YORK MEDICAL COLLEGE
  • Organization Department
    PATHOLOGY
  • Organization DUNS
    041907486
  • Organization City
    VALHALLA
  • Organization State
    NY
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    105951524
  • Organization District
    UNITED STATES